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 We examine counterfactual explanations for explaining the decisions made by model-based AI systems. 

The counterfactual approach we consider defines an explanation as a set of the system’s data inputs that 

causally drives the decision (i.e., changing the inputs in the set changes the decision) and is irreducible 

(i.e., changing any subset of the inputs does not change the decision). We (1) demonstrate how this 

framework may be used to provide explanations for decisions made by general data-driven AI systems 

that can incorporate features with arbitrary data types and multiple predictive models, and (2) propose 

a heuristic procedure to find the most useful explanations depending on the context. We then contrast 

counterfactual explanations with methods that explain model predictions by weighting features according 

to their importance (e.g., Shapley additive explanations [SHAP], local interpretable model-agnostic 

explanations [LIME]) and present two fundamental reasons why we should carefully consider whether 

importance-weight explanations are well suited to explain system decisions. Specifically, we show that 

(1) features with a large importance weight for a model prediction may not affect the corresponding 

decision, and (2) importance weights are insufficient to communicate whether and how features influence 

decisions. We demonstrate this with several concise examples and three detailed case studies that 

compare the counterfactual approach with SHAP to illustrate conditions under which counterfactual 

explanations explain data-driven decisions better than importance weights. 

Keywords: Explanations, system decisions, interpretable machine learning, explainable artificial 

intelligence 

 

Introduction 

Artificial intelligence (AI) systems use data and predictive 

models to make decisions across many applications and 

industries. In many cases, the ability to explain system 

decisions is critical for the success of the system. For example, 

explanations may help customers understand the reasoning 

behind decisions that affect them. Managers and analysts may 

 
1 Jeffrey Parsons was the accepting senior editor for this paper. Pedro 

Ferreira served as the associate editor.  

use explanations to learn about the domain in which the 

system is being used. Data scientists and machine learning 

engineers may also use explanations to identify, debug, and 

address potential flaws in the system.  

Stakeholders can also be skeptical and reluctant to adopt AI 

systems without the ability to explain system decisions, even 

if the systems have been shown to improve decision-making 
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performance (Arnold et al., 2006; Kayande et al., 2009). In 

fact, many data-rich organizations struggle when adopting AI 

decision-making systems because of managerial and cultural 

challenges rather than issues related to data and technology 

(LaValle et al., 2011). Thus, many researchers have tried to 

reduce the gap in stakeholders’ understanding of AI systems 

by proposing methods for explaining predictive models and 

their predictions.  

Methods for explaining AI models and their predictions 

include extracting rules that represent the inner workings of 

the model (e.g., Craven & Shavlik, 1995; Jacobsson, 2005; 

Martens et al., 2007) and associating weights to each feature 

according to their importance for model predictions (e.g., 

Lundberg & Lee, 2017; Ribeiro et al., 2016). Importance 

weights have become increasingly popular because of 

advances in “model-agnostic” methods that can produce 

importance weights for any predictive model: the weights 

explain predictions in terms of features, so users can 

understand any specific prediction without any knowledge of 

the underlying model or the modeling method(s). For 

example, two popular methods for explaining model 

predictions, local interpretable model-agnostic explanations 

(LIME) (Ribeiro et al., 2016) and Shapley additive 

explanations (SHAP) (Lundberg & Lee, 2017), are model-

agnostic and produce importance-weight explanations. 

This paper contributes to the AI-explanation literature in the 

following ways: 

1. We show that explaining model predictions and 

explaining the decisions of a system-in-practice are not 

the same type of task. 

2. We demonstrate that importance-weight methods are not 

well suited to explain system decisions despite their 

popularity. 

3. We propose a generalized framework based on 

counterfactual reasoning that can produce context-

dependent explanations for decisions made by general, 

data-driven AI systems. 

To support our first contribution, we use multiple examples to 

show that features that have a large impact on a prediction may 

not necessarily affect the decision made using that prediction. 

Conversely, features that affect a system decision may not 

have a substantive impact on the prediction on which the 

decision was based when that impact is calculated using 

feature-importance methods. As a result, importance weights 

designed to explain model predictions may yield an inaccurate 

picture of how input data affect system decisions.  

Our second contribution shows that identifying and 

quantifying important features is not sufficient to explain 

system decisions, even when importance is assessed with 

respect to the decisions being explained. As an example, 

suppose that a credit scoring system denies credit to a loan 

applicant and that feature importance weights reveal that the 

two most important features in the credit denial decision were 

annual income and loan amount. While informative, this 

“explanation” does not explain what made the system deny 

credit. Would changing either income or loan amount be 

enough for the system to approve credit? Would it be 

necessary to change both? Perhaps even changing both would 

not be enough. From the weights alone, it is not clear how the 

important features may influence the decision. This is not an 

indictment of methods that calculate feature importance; they 

were not designed to explain system decisions. However, we 

are not aware of prior work that clarifies this for research or 

practice. 

Finally, our third contribution proposes a general framework 

based on counterfactual explanations as an alternative to 

importance weights. For the question “why did the model-

based system make a specific decision?,” our counterfactual 

approach asks specifically, “which data inputs caused the 

system to make its decision?” This approach is advantageous 

because (1) it explains decisions rather than the outputs of the 

model(s) on which the decisions are based, (2) it standardizes 

the form that an explanation can take, (3) it does not require 

all features to be part of the explanation, and (4) it separates 

the explanations from the specifics of the model. 

Dozens of methods based on counterfactual explanations have 

been proposed (Verma et al., 2020), but most explain model 

predictions rather than system decisions. To the best of our 

knowledge, the first framework for counterfactual 

explanations for decisions was introduced in this journal to 

explain document classifications (Martens & Provost, 2014). 

This framework, which is model agnostic, has also been 

applied to other sparse high-dimensional settings (Chen et al., 

2017; Moeyersoms et al., 2016; Ramon et al., 2020), but 

researchers do not all see how the framework can be 

generalized to settings beyond text (e.g., Biran & Cotton, 

2017; Molnar, 2019; Wachter et al., 2017). Therefore, our 

third contribution extends the framework introduced by 

Martens and Provost to provide explanations for decisions 

made by general, data-driven AI systems that may incorporate 

features with arbitrary data types and multiple predictive 

models. In addition, we propose and showcase a heuristic 

procedure that can search and sort counterfactual explanations 

according to their context-specific relevance. 

We demonstrate these extensions and illustrate the advantages 

of the counterfactual approach by comparing it to SHAP 

(Lundberg & Lee, 2017), an increasingly popular method to 
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explain model predictions that unites several feature-

importance weighting methods. We present three simple 

examples showing the advantages, and then we present three 

business case studies using real-world data to show that the 

differences between the approaches are not purely academic. 

AI Systems and Explanations 

We focus on explaining decisions made by systems that use 

predictive statistical models to support or automate decision-

making (Shmueli & Koppius, 2011), and, in particular, on 

systems that make or recommend discrete decisions. We refer 

to these as artificial intelligence (AI) systems. These AI 

systems may or may not have been built using machine 

learning; this paper studies explaining the decisions of a 

system-in-practice, not how the system was built.2  

Explaining Models and Their Predictions 

Over the past several decades, many researchers have worked 

on explaining predictive models, which is not the same as 

explaining the decisions made with such models, as we 

discuss in detail later in this paper. Because symbolic models, 

such as decision trees, are often considered straightforward to 

explain when they are small, most research has focused on 

explaining nonsymbolic (black box) models or large models. 

Rule-based explanations have been a popular approach to 

explain black-box models. For example, in many credit 

scoring applications, banking regulatory entities require banks 

to implement globally comprehensible predictive models 

(Martens et al., 2007). Typical techniques to provide rule-

based explanations consist of approximating the black-box 

model with a symbolic model (Craven & Shavlik, 1995) or 

extracting explicit if-then rules (Andrews et al., 1995). 

Importantly, these “global” explanations attempt to explain 

the model as a whole rather than explaining particular 

decisions. As Martens and Provost (2014) point out, this can 

be viewed as explaining every possible decision the model 

might make, but the methods are not designed to explain 

individual decisions, which is the focus of our study. 

Furthermore, the model itself being explainable does not 

necessarily imply that individual decisions made by the model 

are explainable. 

Another approach is to produce models explicitly designed to 

be both accurate and comprehensible (Angelino et al., 2018; 

 
2 However, explaining the decisions of the system-in-practice can also help 
to understand the system-building process, for example, by debugging 

training data (Martens & Provost, 2014). 

Wang & Rudin, 2015). However, these studies are about 

building intelligible systems, not explaining the decisions of a 

system currently in use. Therefore, those methods are meant 

to replace existing black-box models with new models that are 

easier to interpret. This may not always be possible, 

particularly if the goal is to explain the decisions of a system 

that incorporates multiple models or subsystems.  

A fundamentally different approach (and one of the primary 

explanation techniques we analyze in this paper) is to explain 

the predictions of complex models by associating a weight to 

each feature in the model. Methods that use this approach 

often decompose each prediction into the (approximate) 

individual contributions of each feature and use the 

decompositions as explanations, allowing one to visualize 

explanations at the instance level. Continuing with the earlier 

credit scoring example, Figure 1 shows an importance-weight 

explanation for an individual who has an above-average 

estimated probability of default (based on one of the case 

studies we present below). These importance weights were 

generated using SHAP (Lundberg & Lee, 2017), which we 

will discuss in the following sections. As the example shows, 

each weight in the explanation represents the attributed impact 

of its respective feature on the prediction. Thus, the weight 

associated with the loan amount feature (“loan_amnt”) 

implies that the feature is attributed to an increase of roughly 

2.5 percentage points in the estimated probability of default 

for that individual. 

The main strength of this approach is that the explanations 

are defined in terms of the domain (i.e., the features), 

separating them from the specifics of the model being 

explained. As a result, models can be replaced without 

replacing the explanation method; end users (such as 

customers or managers) do not need any knowledge of the 

underlying modeling methods to understand the 

explanations, and different models may be compared in 

terms of their explanations in settings where transparency is 

critical. These are some reasons why importance-weight 

methods have become one of the most popular approaches 

to explain model predictions.  

One notable challenge, however, is the computation of the 

weights. For example, a common way of assessing feature 

importance is based on simulating a lack of knowledge about 

features (Lemaire et al., 2008; Robnik-Šikonja & Kononenko, 

2008), typically by comparing the original model’s output 

with the output obtained when the information given by a 

specific feature is removed (e.g., by imputing a default value 

for the feature). Unfortunately, interactions between features 
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may lead to ambiguous explanations because the order in 

which features are removed may affect the importance 

attributed to each feature. Researchers have proposed 

addressing this issue by comparing the model predictions 

when removing all possible subsets of features (Štrumbelj et 

al., 2009), but this is intractable with a large number of 

features. Therefore, recent formulations (such as SHAP) have 

attempted to reduce computation time by sampling the space 

of feature combinations, resulting in sampling-based 

approximations of the influence of each feature on the 

prediction (Datta et al., 2016; Lundberg & Lee, 2017; Ribeiro 

et al., 2016; Štrumbelj & Kononenko, 2010). 

Explaining System Decisions 

As mentioned, our study focuses on AI systems that make, 

support, or recommend discrete decisions. Discrete decision-

making is closely related to classification, and the subtle 

distinction can often be safely overlooked. However, for 

explaining system decisions, it is important to be clear. First, 

there is a definitional difference: a classification model might 

classify someone as defaulting on a loan or not; a 

corresponding decision-making system would use this model 

to decide whether to grant credit. Deciding not to grant a loan 

is not the same (at all) as saying that the individual will default, 

which brings us to the technical difference. 

Classification tasks are usually modeled as scoring problems, 

where we want predictive models to score the observations 

such that those more likely to have the “correct” class will 

have higher scores. For example, scores may correspond to the 

estimated probabilities of defaulting on a loan, and individuals 

may be classified as defaulting or not based on their 

probability of defaulting.  

Decision-making may also be modeled as a “classification 

task” by associating a class with each possible course of action 

(e.g., “grant credit” and “do not grant credit”), which is related 

to (but usually not the same as) classifying individuals 

according to labels in the data. For example, estimated 

probabilities of class membership are often combined with 

application-specific information on costs and benefits to 

produce the next stage of more nuanced scores (e.g., the 

expected profits of granting credit). A system may then use 

these scores to make decisions using a chosen threshold 

appropriate for the problem at hand (Provost & Fawcett, 

2013). Thus, a credit scoring system may decide to extend 

credit to an individual with a relatively high probability of 

default if the interest rate is high, for example.  

Critically, this implies that the final output of the system (i.e., 

the decision) may not correspond to the labels in the training 

data. As an additional example, for a system deciding whether 

to target a customer with a promotion, scores could consist of 

expected profits. In this case, we could estimate a 

classification model to predict the probability that the 

customer will make a purchase and a regression model to 

estimate the size of the purchase (conditioned on the customer 

making a purchase); the expected profits would be the 

multiplication of these two predictions, and the ranking of the 

customers by expected profit could be different from the 

ranking based simply on the classification model score. The 

final output of the decision-making system would be whether 

the customer should be targeted with a promotion, which is 

not the same as predicting whether a customer will make a 

purchase (and because of selection bias and other 

complications, we often patently would not want to learn 

models based on training data of who was targeted). 

Explaining the decisions made by intelligent systems has 

received both practical and research attention from the IS 

community for decades (Gregor & Benbasat, 1999). Martens 

and Provost (2014) provide an overview of the IS literature 

that frames, motivates, and explains the importance of 

explaining system decisions for system adoption, 

improvement, and use. Notably, prior work has shown that 

the ability of intelligent systems to explain their decisions is 

necessary for their effective use: when users do not 

understand the workings of an intelligent system, they 

become skeptical and reluctant to use it, even if the system 

is known to improve decision-making performance (Arnold 

et al., 2006; Kayande et al., 2009).  

More recently, for example, a field study in a department of 

radiology showed that the use of AI systems slowed, rather 

than sped up, the radiologists’ decision-making process 

because the AI systems often provided recommendations 

that conflicted with the doctors’ judgments (Lebovitz et al., 

2022). Lacking a critical understanding of the opaque AI 

systems, the doctors often relied on their own diagnoses, 

which did not concur with the system’s. This result 

highlights the need for methods to make the decisions of 

such AI systems more transparent. 

Counterfactual Explanations 

We now present counterfactual explanations for system 

decisions in detail, showing where we generalize from prior 

work. In general, counterfactual explanations describe a 

situation in the form: “if X had been different, Y would have 

been different.” Thus, counterfactual explanations can be used 

to explain system behavior in a narrow causal sense. 

Specifically: What system input caused the system to make the 

decision that it did? Understanding what causes computer 

system decisions is easier than understanding what causes 
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natural phenomena because we can directly observe the 

counterfactual by changing the system inputs and observing the 

system output. This does not necessarily say anything about 

causal relationships outside the computer system, such as in the 

data-generating process. The “affected outcome” (Y) is the 

focal decision made by the system, and the “causes” (X) are the 

data inputs that are used by the system to make the decision. 

Therefore, in our context, a counterfactual explanation consists 

of a set of data inputs that, when changed, results in a different 

system decision. For instance, in credit scoring, one could 

explain a credit denial decision by saying, “if the applicant had 

a higher income, the system would have granted credit.”   

The idea of taking a causal perspective to explain system 

decisions with counterfactuals was first proposed (to our 

knowledge) in MIS Quarterly (Martens & Provost, 2014), and 

subsequent work expanded on the ideas and methods for 

counterfactual approaches to explaining predictions and 

decisions (Molnar, 2019; Provost, 2014; Verma et al., 2020). 

Martens and Provost (2014) define explanations in terms of 

input data that would change the decision if it were not 

present. Unfortunately, that paper did not seem to make clear 

the general nature of the counterfactual explanations because 

the explanations were originally presented for document 

classification. While the framework subsequently has been 

used in other business settings (Chen et al., 2017; 

Moeyersoms et al., 2016; Provost, 2014; Ramon et al., 2020), 

this initial use has led several researchers to state (mistakenly) 

in their work that the framework is specific to document 

classification and/or categorical features (Biran & Cotton, 

2017; Molnar, 2019; Tamagnini et al., 2017; Wachter et al., 

2017). We recast and generalize this framework to be more 

broadly applicable. 

Evidence-Based Perspective for Counterfactual 
Explanations 

Counterfactual explanations are based on hypothetical 

realities that differ from the observed facts, but for these 

explanations to be useful, these realities must be plausible. 

This leads to three fundamental challenges. First, we must 

define what plausible means, which will vary across 

contexts. Second, searching for all potential explanations 

may be intractable. Third, there may be multiple 

explanations for each decision, so we may need to define 

criteria to choose (or rank) explanations.  

Similar to methods that assess feature importance by 

simulating a lack of knowledge about features, we argue that 

 
3 We should keep in mind the decision-rather-than-classification 
perspective. The decision is to flag the transaction for one or more actions, 

such as sending a message to the account holder to verify. Flagging may be 

some of these challenges may be partially addressed by 

framing counterfactual explanations in terms of absent 

evidence: explanations can be framed in terms of features 

that change the system decision when the evidence they 

provide is no longer present. For illustration, suppose a 

credit card transaction was flagged for fraud control action 

by a data-driven AI system after it was registered as 

occurring outside the country where the cardholder lives, 

and suppose the system would not have flagged the 

transaction absent this location.3 In this case, it is intuitive to 

consider the location of the transaction as an explanation for 

the system decision. There could be other explanations. 

Perhaps the transaction also involved a consumption 

category outside the cardholder’s profile (e.g., a purchase at 

a casino), and excluding this information would also change 

the decision to “do not flag.” Both are counterfactual 

explanations—they comprise evidence without which the 

system would have made a different decision.  

This perspective offers several advantages when addressing 

the challenges mentioned above. First, absent evidence may 

be used to define a reasonable set of plausible changes. For 

instance, in the example above, “removing evidence” from a 

model-based decision-making procedure may imply replacing 

the location of the transaction with the country where the 

cardholder lives or replacing the consumption category with 

the cardholder’s most common consumption category. 

Second, using absent evidence narrows the set of potential 

explanations substantially because the point is not to consider 

all the different ways in which the features could be changed, 

but rather what would be the effect of not having some specific 

evidence. In fact, these explanations have been called 

“evidence counterfactuals” (Provost, 2014; Chen et al., 2017). 

Third, we may rank explanations according to the relevance 

of the features in them (e.g., location may be easier to 

communicate than consumption category). We discuss and 

illustrate these advantages below, after formally defining 

counterfactual explanations. 

Another subtle implication of this perspective is that its 

explanations are generally applied to “non-default” decisions; 

data-driven systems usually make default decisions in the 

absence of evidence suggesting that a different decision 

should be made. In our fraud control example, a transaction 

would be considered legitimate unless there is enough 

evidence suggesting fraud. As a result, explaining default 

decisions often corresponds to saying, “because there was not 

based on a threshold on the estimated likelihood of fraud but may also 
consider the existence of evidence from other transactions and the potential 

loss if the transaction is fraudulent. 
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enough evidence to make a non-default decision.”4 Thus, we 

focus on explaining non-default decisions. 

Defining Counterfactual Explanations 

Following Martens and Provost (2014), we define a 

counterfactual explanation for a system decision as a set of 

features that is causal and irreducible. Being causal means that 

removing the feature set or setting each feature in the set to 

some predetermined counterfactual value (e.g., the mean)5 

causes the system decision to change.6 Irreducible means that 

no proper subset of the explanation is causal. The importance of 

an explanation being causal is straightforward: the decision 

would have been different if not for the specific values of the 

features in the set (the “evidence”). The irreducibility condition 

serves to avoid including superfluous features, which relates to 

the fact that some of the features in a causal set may not be 

necessary for the decision to change. 

Formally, we define counterfactual explanations as follows. 

Consider an instance 𝐼 for which the decision-making system 

𝐶: 𝐼 → {1, … , 𝑘} gives the decision 𝑐. Instance 𝐼 consists of a 

set of features (or attributes) taking on specific values, such as 

𝑖𝑛𝑐𝑜𝑚𝑒 = $50,000 or 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 = FRANCE, and feature 

evidence is “removed” by setting the corresponding feature to 

some predetermined counterfactual value that makes sense in 

the particular application (e.g., the mean or the mode for the 

attribute in the population of interest). Then, given a set of 

features 𝐸 (e.g., {𝑖𝑛𝑐𝑜𝑚𝑒, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦}), 𝐼′(𝐸) represents 

instance 𝐼 after setting the features in 𝐸 to their respective 

counterfactual values, and 𝐸 is a counterfactual explanation for 

𝐶(𝐼) = 𝑐 if and only if: 

𝐶(𝐼′(𝐸)) ≠ 𝑐  (the explanation is causal)       (1) 

∀𝐸′ ⊊ 𝐸: 𝐶(𝐼′(𝐸′)) = 𝑐 (the explanation is irreducible)     (2) 

This definition builds on the explanations proposed by Martens 

and Provost (2014), who developed and applied counterfactual 

explanations for document classifications. In the context of 

document classification, an explanation was thus defined as an 

irreducible set of terms (e.g., words, phrases, n-grams) such that 

 
4 This is not always the case. For example, if a credit card transaction was 

made in a foreign country but the cardholder recently reported a trip abroad, 

the trip report could explain why the transaction was classified as legitimate. 
So, the evidence in favor of a non-default decision may be canceled by 

evidence supporting a default decision. 
5 We will focus on setting features to counterfactual values for several 
reasons. First, simply removing features can be problematic for many AI 

systems, because they require values for input features, and thus require 

feature-value imputation if features are made “not present.” Second, setting 
specific counterfactual values can make more sense than removing features 

depending on the context of the application. Finally, the other methods in 

removing the set from a document changes its classification. 

Our definition generalizes their counterfactual explanations in 

two important ways. First, it makes explicit how the 

explanations may be used for broader system decisions. 

Second, their practical implementation of explanations removes 

evidence by setting features to zero, whereas we generalize to 

arbitrary counterfactual values. 

Going back to our credit scoring example, suppose a system 

using the model prediction explained in Figure 1 decides not to 

grant credit to that individual. Figure 2 shows some 

counterfactual explanations for the credit denial decision. 

Removing Feature Evidence 

A vital practical question raised by our definition of 

counterfactual explanations is what counterfactual values 

should be used to “remove" feature evidence from instances? 

Most explanation methods, including methods that do not 

provide counterfactual explanations, such as importance-

weight methods, typically simulate a lack of knowledge about 

features by replacing their values with some default value, 

such as the mean. For example, Martens and Provost (2014) 

replace the value of features that represent the presence of a 

word in the document (binary indicator, count, term 

frequency-inverse document frequency [TFIDF] value, etc.) 

with a zero. This makes sense in the context of document 

classification because if we consider the presence of a word as 

evidence for a classification, removing that evidence—that 

word—would be represented by a zero for the corresponding 

feature.7 However, different evidence-removal strategies may 

be more appropriate in other applications, such as in the 

cardholder-level perspective discussed in our fraud example. 

The explanation framework we present is agnostic to which 

method is used to define the counterfactual values associated 

with each feature, taking the position that this decision is 

domain and problem dependent. For example, Saar-

Tsechansky and Provost (2007) discuss various strategies for 

dealing with missing features when applying predictive 

models; any of them could be used in conjunction with this 

framework to define counterfactual values. 

our comparisons use feature-value imputation to produce explanations; 

thus, doing the same allows an apples-to-apples comparison. Nonetheless, 

our framework would also apply to simply removing features under the 
condition that the AI system being explained can deal with feature removal. 
6 As mentioned, it is critical to differentiate what is causing the data-driven 

system to make its decisions from causal influences in the actual data-
generating processes in the “real” world. Counterfactual explanations for 

AI system decisions relate to the former and do not necessarily tell us 

anything about the latter. 
7 They discuss the case where the absence of a word would be evidence as 

well; see the original paper. 
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Figure 1. Example of an Importance-Weight Explanation for a Model Prediction 

 

Explanation 1: Credit denied because {“loan_amnt”} is above average. 

Explanation 2: Credit denied because {“annual_inc”} is below average. 

Explanation 3: Credit denied because {“fico_range_high”, “fico_range_low”} are below average.  

Figure 2. Examples of Counterfactual Explanations for a System Decision 

In our comparison with feature-importance methods presented 

below, we use the same approach that those methods use 

(mean imputation) so that the analysis is a comparison of the 

two different types of methods and is not confounded by using 

different strategies for replacing feature values. Nevertheless, 

in one of the case studies, we use model-based imputation to 

demonstrate how it satisfies different needs when producing 

explanations.  

Importantly, within a particular domain and explanation 

context, the system developers and domain experts should 

choose the most appropriate method for producing 

counterfactual values, as a one-size-fits-all strategy is unlikely 

to work well in practice. The examples in this study are meant 

as a broad guideline of when certain methods can work better. 

For example, if a manager wants to understand why a certain 

loan application was rejected, then using mean imputation to 

explain that the application was rejected because the 

applicant’s annual income is below average could be 

reasonable. However, this explanation may not suffice for the 

applicant, particularly if the explanation is meant to be used as 

a recommendation for how to get the loan approved. In such 

cases, model-based imputation could be used to develop 

counterfactual values that match those of similar applicants 

whose loan applications were approved.  

A Procedure for Finding Useful Counterfactual 
Explanations 

Our definition of counterfactual explanations for system 

decisions allows any procedure for finding such explanations. 

For example, fast solvers for combinatorial problems may be 

used to find counterfactual explanations (Schreiber et al., 

2018). We adopt heuristic procedures in this paper. Algorithm 

1 (see below) shows how a generalization of the algorithm 

proposed by Martens and Provost (2014) may be used to find 

counterfactual explanations. 
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Algorithm 1. Evidenced-based Explainer (EBE) 

 

Algorithm 1 generalizes the original algorithm by using 𝐼′(𝐸) 

to represent instance 𝐼 after setting the features in 𝐸 to their 

respective counterfactual values. Feature values were always 

set equal to zero in the original algorithm, which would be a 

specific instance of 𝐼′(𝐸) in our generalized framework. The 

second generalization is presented below: the introduction of 

a preference function. 

This algorithm finds counterfactual explanations using a 

heuristic search that requires the decision to be based on a 

scoring function, such as a probability estimate from a 

predictive model. The search algorithm then uses this scoring 

function to first consider features that, when changed to their 

counterfactual values, reduce the score of the predicted class 

the most. This heuristic may be desirable when the goal is to 

find the smallest explanations, such as when explaining the 

decisions of models that use thousands of features. Another 

possible heuristic is to consider features according to their 

overall importance for the prediction, where the importance 

may be computed by a feature importance explanation 

technique (Ramon et al., 2020). Both heuristics have been 

shown to scale well in high-dimensional settings (Martens & 

Provost, 2014; Ramon et al., 2020). 
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However, the shortest explanations are not necessarily the 

best explanations. For instance, users may want to use the 

explanations as guidelines for what to change in order to 

affect the system decision. As an example, suppose that a 

system decides to warn a man that he is at high risk of having 

a heart attack. An explanation that “the system would not 

have made the warning if the patient were female” is of little 

use as a guide for action. Generally, some features will lead 

to better explanations than others depending on the 

application. Some features may be easy to change, while 

others may be practically impossible to change (e.g., 

gender)—thus, while an explanation including a very 

difficult-to-change feature would indeed explain the 

decision, it would not give practical guidance toward what 

could be done to affect the decision. 

Therefore, we allow the incorporation of a preference 

function as part of the heuristic procedure to search first for 

the most relevant explanations. We pose the preference 

function as a cost function on the feature changes: the cost 

function associates costs to the adjustment of features so that 

sets of features that satisfy desirable characteristics are 

searched first. Importantly, the cost function is meant to be 

used as a mechanism to capture the relevance of 

explanations, meaning that the cost of changing the features 

might not represent an actual cost (see the second case 

study). Returning to the heart attack example: if we assign 

an infinite cost to changing the gender feature, the heuristic 

would not select feature combinations that include it, 

regardless of its high impact on the output score. Instead, the 

heuristic would prefer explanations with many modest but 

“cheap” changes, such as changing several daily habits. 

More specifically, we adjust the procedure proposed by 

Martens and Provost (2014) so that the heuristic searches 

first for the feature combinations for which the output 

score changes the most per unit of cost. Doing so only 

requires the definition of a cost function 𝑐(𝐼, 𝐸), which 

represents the “cost” of setting the features in 𝐸 to their 

respective counterfactual values, and sorting potential 

explanations in descending order according to the score 

change per unit of cost: 

(𝑓𝑐(𝐼) − 𝑓𝑐(𝐼′(𝐸)))

𝑐(𝐼, 𝐸)
,                                                                       (3) 

instead of in ascending order according to 𝑓𝑐(𝐼′(𝐸)) (as in 

lines 14-15 of Algorithm 1). Similar approaches have been 

suggested for inverse classification (Lash et al., 2017), any 

of which could be used to find counterfactual explanations. 

Limitations of Importance Weights 

This section uses three synthetic and illustrative examples to 

highlight two reasons importance-weight explanations may 

not be well suited to explain data-driven decisions made by AI 

systems. Example 1 illustrates that features with a large 

impact on a prediction (and thus large importance weights) 

may not affect the decision made using that prediction. The 

next two examples show that importance weights are 

insufficient to communicate how features actually affect 

decisions (even when importance is determined with respect 

to system decisions rather than model predictions). More 

specifically, we show that importance weights can remain the 

same despite substantial changes to decision-making 

(Examples 1, 2, and 3) and that features deemed unimportant 

by the weights can actually affect the decision (Example 3). 

Similar examples to the ones discussed in this section will 

come up again in the Case Studies section when comparing 

importance weights with counterfactual explanations using 

real-world data.  

Throughout this section, the examples assume that we want to 

explain the binary decision made for a three-feature instance 

𝐼 and decision procedure 𝐶𝑖 as defined here: 

𝐼 = {𝐴1 = 1, 𝐴2 = 1, 𝐴3 = 1}        (4) 

𝐶𝑖(𝐼) = {
1, if 𝑌̂𝑖(𝐼) ≥ 1
0, otherwise

           (5) 

where {𝐴1, 𝐴2, 𝐴3} are binary attributes, and 𝐶𝑖 is the decision-

making procedure (an AI system) that employs the scoring (or 

prediction) function 𝑌̂𝑖 to make decisions. The examples that 

follow will use different 𝑌̂𝑖. The examples assume that domain 

knowledge has guided us to set feature values equal to zero 

when considering features as part of a counterfactual 

explanation. 

We compute importance weights using SHAP (Lundberg & 

Lee, 2017), a popular approach to explain model predictions. 

Before we focus on the disadvantages of importance weights 

for explaining system decisions, let us point out that SHAP 

has several advantages for explaining data-driven model 

predictions: (1) it produces numeric “importance weights” for 

each feature at an instance level, (2) it is model agnostic, (3) 

its importance weights tie instance-level explanations to 

cooperative game theory, providing a solid theoretical 

foundation, and (4) SHAP unites several feature importance 

weighting methods, including the relatively well known 

LIME (Ribeiro et al., 2016). 

In the case of SHAP, importance weights consist of the 

(approximated) Shapley values of the features for a given 
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model prediction. Shapley values correspond to the impact 

each feature has on the prediction, averaged over all possible 

joining orders of the features. In this context, a joining order 

is a permutation according to which the impact of the features 

on a model’s prediction is considered (e.g., first 𝐴2, then 𝐴3, 

and lastly 𝐴1). The impact of a feature corresponds to the 

change in the model prediction when the feature’s default 

(counterfactual) value is replaced with the value observed for 

that instance, so a feature’s Shapley value is the feature’s 

average impact across permutations. We illustrate the 

computation of Shapley values in the examples below. 

A major limitation of Shapley values is that computing them 

becomes intractable as the number of features grows. SHAP 

circumvents this limitation by sampling the space of joining 

orders, resulting in a sampling-based approximation of the 

Shapley values. There are only three features in the examples 

that follow, so the approximations are not necessary here, but 

they will be needed in the Case Studies section, where the 

number of features is much larger. 

Example 1: Distinguishing Between Predictions 
and Decisions 

All importance weighting methods (that we are aware of) are 

designed to explain the output of scoring functions, not system 

decisions. This is problematic because a large impact on the 

scoring function does not necessarily translate to an impact on 

the decision. Example 1 illustrates this point by defining 𝑌̂1 as 

follows: 

𝑌̂1(𝐼) = 𝐴1 + 𝐴2 + 10𝐴1𝐴3 + 10𝐴2𝐴3;       (6) 

thus, the prediction and the decision for instance 𝐼 are 𝑌̂1 = 22 

and 𝐶1 = 1, respectively. Note that, in practice, we often do 

not know the exact functional form of 𝑌̂𝑖 or 𝐶𝑖, so we are not 

able to peek into the internals of the explained model/system 

and can only probe it by feeding it different inputs and 

examining the outputs. 

Table 1 shows how to compute the Shapley values of the 

features with respect to 𝑌̂1. Each row represents one of the six 

possible joining orders of the features, and each column 

corresponds to the impact of one of the three features across 

those joining orders. The last row shows the average impact 

of the features across the joining orders, which corresponds to 

the Shapley values. 

 
8 SHAP can also be used to explain nonbinary categorical decisions by 

transforming the output of the decision system into a “scoring function” that 
returns 1 if the decision is the same after changing the features and returns 

0 otherwise. This transformation, originally introduced by Moeyersoms et 

According to Table 1, SHAP gives 𝐴3 a larger weight than 𝐴1 

or 𝐴2 due to its large impact on 𝑌̂1. However, if we take a 

closer look at 𝐶1 and 𝑌̂1 simultaneously, we can see that 𝐴3 

does not affect the decision-making procedure at all! More 

specifically, 𝐴3 only affects 𝑌̂1 if 𝐴1 or 𝐴2 is already present, 

but if one of those features is present, then increasing the score 

does not affect the decision because 𝑌̂1 is already greater than 

or equal to one (implying that 𝐶1 = 1 regardless of 𝐴3). 

Therefore, the large “importance” of a feature for a model 

prediction may not imply any impact on a decision made with 

that prediction. 

We might then conclude that the issue would be solved by 

using SHAP to compute feature importance weights for 

system decisions (rather than for model predictions). Table 2 

shows the Shapley values of the features with respect to the 

decision-making procedure 𝐶1 instead of 𝑌̂𝑖.
8 It illustrates that 

𝐴3 indeed does not affect the decision at all. However, the next 

examples show that, even when importance weights are 

computed with respect to the decision rather than the model 

prediction, the weights do not effectively capture how features 

affect decisions. 

Example 2: Multiple Interpretations for the 
Same Weights 

In Example 1, the decision changes when we change 𝐴1 and 

𝐴2 simultaneously, and changing any of the features 

individually does not change the decision. Therefore, 

according to the definition in the Counterfactual Explanations 

section, there is a single counterfactual explanation, {𝐴1, 𝐴2}.  

However, suppose we were to use the following scoring 

function to make decisions instead: 

𝑌̂2(𝐼) = 𝐴1𝐴2          (7) 

Table 3 shows the Shapley values for 𝐶2, which are the same 

as for 𝐶1 (see Table 2) because features 𝐴1 and 𝐴2 are equally 

important in both cases. However, the decision-making 

procedure is different because the new scoring function 

implies that changing either feature would change the 

decision. Therefore, with the new scoring function, there 

would be two counterfactual explanations, {𝐴1} and {𝐴2}, but 

the importance weights do not capture this. This implies that 

importance weights do not effectively communicate how 

changing the features may change the decision.

al. (2016) (also in the context of using Shapley values for instance-level 

explanations), would allow us to use SHAP to obtain importance weights 
even for decisions with multiple, unordered alternatives that cannot 

normally be represented as a single numeric score. 
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Table 1. Shapley Values for 𝒀̂𝟏 and All the Joining Orders Used in Their Computation 

Joining orders Impact of 𝑨𝟏 Impact of 𝑨𝟐 Impact of 𝑨𝟑 

𝐴1,𝐴2,𝐴3 1 1 20 

𝐴1,𝐴3,𝐴2 1 11 10 

𝐴2,𝐴1,𝐴3 1 1 20 

𝐴2,𝐴3,𝐴1 11 1 10 

𝐴3,𝐴1,𝐴2 11 11 0 

𝐴3,𝐴2,𝐴1 11 11 0 

Shapley values 6 6 10 

 

Table 2. Shapley Values for 𝑪𝟏 and All Counterfactual Explanations for This Decision. 

Joining orders Impact of 𝑨𝟏 Impact of 𝑨𝟐 Impact of 𝑨𝟑 

𝐴1,𝐴2,𝐴3 1 0 0 

𝐴1,𝐴3,𝐴2 1 0 0 

𝐴2,𝐴1,𝐴3 0 1 0 

𝐴2,𝐴3,𝐴1 0 1 0 

𝐴3,𝐴1,𝐴2 1 0 0 

𝐴3,𝐴2,𝐴1 0 1 0 

Shapley values 0.5 0.5 0 
Note: There is a single counterfactual explanation: {𝐴1, 𝐴2} 

 

Table 3. Shapley Values for 𝑪𝟐 and All Counterfactual Explanations for This Decision. 

Joining orders Impact of 𝑨𝟏 Impact of 𝑨𝟐 Impact of 𝑨𝟑 

𝐴1,𝐴2,𝐴3 0 1 0 

𝐴1,𝐴3,𝐴2 0 1 0 

𝐴2,𝐴1,𝐴3 1 0 0 

𝐴2,𝐴3,𝐴1 1 0 0 

𝐴3,𝐴1,𝐴2 0 1 0 

𝐴3,𝐴2,𝐴1 1 0 0 

Shapley values 0.5 0.5 0 
Note: There are two counterfactual explanations: {𝐴1} and {𝐴2} 

 
Example 3: Positive Impact with Non-Positive 
Weights 

Example 1 showed that even if a feature has a large, positive 

importance weight for a model’s instance-level prediction, 

changing the feature may not affect the decision made for 

that instance. 

Importance weights can also be misleading when used to 

explain system decisions because the opposite can also be 

true: a feature with an importance weight of zero may affect 

the decision. We illustrate this with a third example, for which 

we use the following scoring function: 

𝑌̂3(𝐼) = 𝐴1 + 𝐴2 − 2𝐴1𝐴2 − 𝐴1𝐴3 − 𝐴2𝐴3 + 3𝐴1𝐴2𝐴3          (8) 

Table 4 shows the Shapley values with respect to 𝐶3. The values 

are the same as in the previous examples, but the decision-

making process has changed once again. Notably, changing 𝐴3 

can change the decision from 𝐶3 = 1 to 𝐶3 = 0, as evidenced 

by the impact of 𝐴3 in the first and third joining orders, but the 

importance weight of 𝐴3 is 0. The counterfactual explanation 

framework, on the other hand, reveals that there are three 

counterfactual explanations in this example: {𝐴1}, {𝐴2}, and 

{𝐴3}. Thus, a feature that we might mistakenly deem as not 

important due to its nonpositive importance weight is, in fact, 

important for the purposes of explaining the decision 𝐶3(𝐼) =
1.  (Removing it will change the decision!) 

Drawbacks of Using Averages 

While the previous examples were constructed to illustrate the 

limitations of importance weights, they reveal an important 

insight: it is difficult to capture the impact of features on 

decisions with a single number, especially when features 

interact with each other. This is particularly relevant when 

explaining black-box models (such as neural networks), 

which are well-known for learning complex interactions 

between features. Moreover, the Case Studies section shows 

how the hypothetical examples in this section also occur in 

real-world scenarios. 



Fernández-Loría et al. / Explaining Data-Driven Decisions Made by AI Systems 

1646 MIS Quarterly Vol. 46 No. 3 / September 2022 

 

Table 4. Shapley Values for 𝑪𝟑 and all Counterfactual Explanations for this Decision. 

Joining orders Impact of 𝑨𝟏 Impact of 𝑨𝟐 Impact of 𝑨𝟑 

𝐴1,𝐴2,𝐴3 1 -1 1 

𝐴1,𝐴3,𝐴2 1 1 -1 

𝐴2,𝐴1,𝐴3 -1 1 1 

𝐴2,𝐴3,𝐴1 1 1 -1 

𝐴3,𝐴1,𝐴2 0 1 0 

𝐴3,𝐴2,𝐴1 1 0 0 

Shapley values 0.5 0.5 0 

Note: There are three counterfactual explanations: {𝐴1}, {𝐴2}, and {𝐴3} 
 

The main reason importance weights are problematic for 

explaining system decisions is that they aggregate across 

potential explanations (i.e., feature sets) to provide a single 

explanation per decision. Thus, each decision is explained using 

a single vector of weights. Typically, the importance weighting 

methods summarize the impact of features in a single vector by 

averaging across multiple feature orderings. The problem is that 

the average impact of a feature is not fine-grained enough to 

reveal dynamics between features. More importantly, it is 

difficult to interpret: why should the average across feature 

orderings be relevant to explain a decision? After all, it may not 

be representative of the potential impact of features (as in the 

case of 𝐴3 in Example 3). 

Counterfactual explanations circumvent the drawbacks of using 

averages because the explanations are defined at the 

counterfactual level, meaning that each explanation represents 

a counterfactual world in which the decision would be different. 

This allows a single decision to have multiple explanations, 

allowing for a richer interpretation of how the features may 

influence the decision. Table 5 summarizes the differences 

between the two approaches. 

Case Studies 

We now present three case studies to illustrate these phenomena 

using real-world data.9 The first case study contrasts 

counterfactual explanations with explanations based on 

importance weights, showing fundamental differences. The 

second case study showcases the power of counterfactual 

explanations for high-dimensional data and shows how the 

heuristic procedure that generates counterfactual explanations 

may be adjusted to search and sort explanations according to 

their relevance to the decision maker. The third case study 

shows the application of counterfactual explanations to AI 

systems that integrate multiple models predicting different 

things, so the systems are more complex than simply applying 

a threshold to the output of a single predictive model. In all case 

 
9 The code is available at https://github.com/ferlocar/explanations. 
10 The Lending Club data contain a substantial number of loans for which 

traditional models estimate moderately high likelihoods of default, despite 

studies, we use SHAP to compute importance weights with 

respect to the decision-making procedure rather than model 

predictions (as discussed above).  

Study 1: Importance Weights vs. Counterfactual 
Explanations 

To showcase the advantages of counterfactual explanations over 

feature importance weights, we explain system decisions to 

accept or deny credit based on real data from Lending Club, a 

peer lending platform. The data contain comprehensive 

information on all loans issued starting in 2007. The data set 

includes hundreds of features for each loan, including interest 

rate, loan amount, monthly installment, loan status (e.g., fully 

paid, charged off), and other attributes related to the borrower, 

such as type of home ownership and annual income. To simplify 

the setting, we used the data sample used by Cohen et al. (2018) 

and focused on loans with a 13% annual interest rate and a 

duration of three years (the most common loans), resulting in 

71,938 loans. The loan decision-making is simulated but is in line 

with consumer credit decision-making as described in the 

literature (Baesens et al., 2003).10 

We use 70% of this data set to train a logistic regression model 

that predicts the probability of borrowers defaulting using the 

following features: loan amount (loan_amnt), monthly 

installment (installment), annual income (annual_inc), debt-to-

income ratio (dti), revolving balance (revol_bal), incidences of 

delinquency (delinq_2yrs), number of open credit lines 

(open_acc), number of derogatory public records (pub_rec), 

upper boundary of the FICO score range (fico_range_high), 

lower boundary of the FICO score range (fico_range_low), 

revolving line utilization rate (revol_util), and months of credit 

history (cr_hist). The model is used by a simulated system that 

denies credit to loan applicants with a probability of default 

above 23%. We use the system to decide which of the held-out 

30% of loans should be approved. 

these all being issued loans. This may be due to Lending Club’s business 
model, where external parties choose to fund (invest in) the loans. 

https://github.com/ferlocar/explanations
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Table 5. Summary of Differences Between Importance Weights and Counterfactual Explanations for 
System Decisions 

 Importance weights Counterfactual explanations 
(evidence-based framework) 

Unit of analysis Instance level: There is one explanation for 
each system decision. 

Counterfactual level: There may be multiple or 
no explanations for each system decision. 

Output explained Model predictions (although the methods can 
be adapted to explain system decisions): 
Critically, a feature that affects model 
predictions may not affect system decisions. 

System decisions. 

Design intent Quantify feature importance: The explanations 
do not communicate how system decisions 
change as a result of changing the features. 

Explain system decisions: The explanations are 
defined in terms of how system decisions 
change as a result of changing features. 

Approach Summarize the impact of each feature in a 
single number. However, features may affect 
system decisions in different ways depending 
on the values of other features. 

Identify features that affect the system decision 
within the context of specific values for the 
other features. 

Comparing counterfactual explanations to explanations based 

on feature importance weights shows that counterfactual 

explanations have several advantages. First, importance 

weights do not communicate which features would need to 

change in order for the decision to change; thus, their role as 

explanations for decisions is incomplete. Figure 3 shows the 

feature importance weights assigned by SHAP to four loans 

(different colors) denied by the system. For instance, 

according to SHAP, loan_amnt was the most important 

feature for the credit denial of all four loans. However, this 

information does not fully explain any of the decisions. The 

credit applicant of Loan 1, for example, cannot use the 

explanation to understand what would need to be different to 

obtain the loan. Was it the amount of the loan? The annual 

income? Both? 

Table 6, in contrast, shows all counterfactual explanations for 

the credit denial decision of Loan 1. Each column represents 

an explanation, and the arrows in each cell show which 

features are present in each explanation (recall that a 

counterfactual explanation is a set of features). The last 

column shows the difference between the original value of 

each feature and the value that was imputed to simulate 

evidence removal (the mean in this case), illustrating how our 

generalized counterfactual explanations may be applied to 

numeric features.  

For example, as shown in Column 1, one possible explanation 

for the credit denial of Loan 1 is that the loan amount is too 

large (it is $16,122 larger than the average), given the other 

aspects of the application. One could explain the decision in 

several other ways. The explanation in Column 4 suggests that 

the $28,000 loan would have been approved if the applicant’s 

annual income and credit history had not been below average. 

These explanations make it immediately apparent how the 

features influenced the decision. This highlights two 

additional advantages of counterfactual explanations: they 

give a deeper insight into why the loan was denied and provide 

alternatives that could change the decision. 

Table 7 shows the counterfactual explanations for Loan 4 to 

emphasize this last point. Figure 3 shows that the most 

important features for Loan 1 and Loan 4 are the same. So, 

from this figure alone, one may conclude that these two credit 

denial decisions should have similar counterfactual 

explanations. Yet, comparing Table 6 and Table 7 reveals that 

this in fact is not the case. Loan 4 has more explanations, and 

even though the explanations in both loans have similar 

features, the only explanation that the loans have in common 

is that the loan amount is too large; there is no other match.  

Nonetheless, one can see that not all features shown in Figure 

3 and Tables 6 and 7 would be relevant for loan applicants 

looking for recommendations for how they might get their 

loan approved. SHAP may be adjusted further to compute 

weights only for a subset of features. Because SHAP also 

deals with evidence removal by imputing default values, we 

can easily extend SHAP to only consider certain (relevant) 

features by setting the default values of the irrelevant features 

equal to the current values of the instance. Then, SHAP will 

compute importance weights only for the features with a value 

different from the default. We do this for Loan 4 and define 

loan amount and annual income as the only relevant features. 

This would make sense in our context if customers can only 

ask for less money or show additional sources of income. 
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Figure 3. Feature Importance Weights According to SHAP 

 

Table 6. Counterfactual Explanations for Loan 1 

Features 
Explanations Distance from 

mean 1 2 3 4 5 6 

loan_amnt ▲      +$16,122 

installment     ▲  +$540 

annual_inc  ▼ ▼ ▼ ▼ ▼ -$9,065 

dti       n/a 

revol_bal      ▼ -$4,825 

delinq_2yrs       n/a 

open_acc       n/a 

pub_rec       n/a 

fico_range_high   ▼    -16 

fico_range_low  ▼     -16 

revol_util      ▲ +11% 

cr_hist    ▼   -92 months 
Note: ▲ means the feature is too large to grant credit. ▼ means the feature is too small to grant credit. 

 

Table 7. Counterfactual Explanations for Loan 4 

Features 
Explanations Distance 

from mean 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

loan_amnt ▲               +$12,372 

Installment      ▲      ▲   ▲ +$417 

annual_inc  ▼              -$15,065 

dti    ▲      ▲     ▲ 4 

revol_bal                n/a 

delinq_2yrs                n/a 

open_acc        ▲      ▲  1 

pub_rec         ▲       1 

fico_range_high   ▼       ▼ ▼ ▼ ▼ ▼  -21 

fico_range_low   ▼ ▼ ▼ ▼ ▼ ▼ ▼       -21 

revol_util       ▲      ▲  ▲ +12% 

cr_hist     ▼      ▼    ▼ -39 months 
Note: ▲ means the feature is too large to grant credit.▼ means the feature is too small to grant credit. 
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Under these conditions, SHAP computes an importance 

weight of 0.5 for both the loan amount and the annual 

income, and there are two counterfactual explanations: the 

loan amount is too high, or the annual income is too low 

(columns 1 and 2 in Table 7). However, consider a different 

scenario. Suppose the bank were stricter with the loans it 

approves and used a decision threshold 2.5 percentage 

points lower. Now, the Loan 4 applicant would need both to 

reduce the loan amount and to increase their annual income 

before the loan would be approved. This situation is 

analogous to Example 2 in the Limitations of Importance 

Weights section. With this different decision system, there 

is a single counterfactual explanation (instead of two) 

consisting of both features, so the counterfactual framework 

captures the change in the decision-making procedure. 

However, SHAP would still show an importance weight of 

0.5 for each feature. Thus, the counterfactual explanations 

and the SHAP explanations exhibit different behavior. 

SHAP explanations suggest that the two decisions are 

essentially the same. The counterfactual explanations 

suggest that they are quite different, which we argue is 

preferable in most settings.  

Another crucial aspect of counterfactual explanations is the 

method used to choose counterfactual values.11 Such 

methods should be carefully chosen according to the 

domain and the problem. For example, mean imputation 

may be adequate to explain to a Lending Club investor why 

she should not invest in a particular loan, but other 

imputation methods may be more appropriate for explaining 

the same decision to the loan applicant. For instance, if the 

applicant is a 20-year-old requesting a loan to pay for 

tuition, then having a short credit history may not be 

considered unusual. Thus, a more appropriate imputation 

method may consist of replacing the credit history with a 

value that is typical of individuals requesting student loans.  

We illustrate next how counterfactual explanations may be 

generated using model-based imputation. For each of the 12 

available features, we fit a linear regression model using as 

training data the applicants who would be granted a loan by 

the system and using the other features as predictors. We 

then use each of these models to impute feature values. For 

instance, in our previous example, the credit history model 

may be used to impute the expected credit history of the 20-

year-old requesting the student loan.  

Table 8 shows how the observed values for the four loans 

shown in Figure 3 differ from the corresponding default 

values when using mean imputation and model-based 

imputation (the entries in the table are these differences). 

The table shows several interesting results. First, although 

all the loan amounts are above average (according to mean 

imputation), these amounts are relatively common among 

other applicants with similar characteristics, as evidenced 

by the small differences with respect to the default value 

under model-based imputation. Therefore, even though the 

importance weights in Figure 3 hint at the loan amount as 

the primary reason for credit denial, this feature may not be 

considered relevant evidence in the context of these 

applicants. Moreover, the gap in annual income under 

model-based imputation is substantially larger, which 

reveals that the annual income of these applicants may be 

more anomalous than what is suggested by mean 

imputation. Additionally, features that consist of evidence 

against creditworthiness under mean imputation may 

actually be evidence in favor under model-based imputation 

(and vice versa). For example, in the case of Loan 4, the 

applicant has one more credit line than the average 

applicant, and as a result, this feature is part of two 

counterfactual explanations in Table 7 (see open_acc). 

However, according to model-based imputation, this user 

has one less credit line than other applicants with similar 

characteristics, which may be considered evidence in favor 

of creditworthiness depending on the context. Therefore, 

the method used to produce counterfactual values provides 

another way in which counterfactual explanations may be 

tailored to the context. 

As an illustration, Table 9 shows all the counterfactual 

explanations for the four loans shown in Figure 3 when 

using model-based imputation (rather than mean 

imputation). These explanations frame evidence against 

creditworthiness relative to similar approved applications. 

The table shows that the counterfactual explanations have 

changed (compared to the ones in Tables 6 and 7) to reflect 

that the loan amount is no longer considered evidence 

against creditworthiness (because similar applicants have 

applied for similar amounts), whereas annual income is now 

considered the primary reason for credit denial.

 
11 This is also crucial for feature importance methods that use imputation to 
simulate a lack of knowledge about features, such as SHAP. We are not 

aware of a similar discussion in the literature about those methods. 
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Table 8. Differences Between Observed Values and Default Values for Four Loans, Using Mean 
Imputation and Model-Based Imputation 

Features 
Mean imputation Model-based imputation 

Loan 1 Loan 2 Loan 3 Loan 4 Loan 1 Loan 2 Loan 3 Loan 4 

loan_amnt 16,122 15,722 6,672 12,372 123 79 -13 1 

Installment 539 528 226 417 -4 -3 1 0 

annual_inc -9,065 -9,065 -27,065 -15,065 -32,568 -85,302 -29,903 -32,926 

dti -1 -1 10 4 2 -14 6 5 

revol_bal -4,825 10,730 506 589 -9,750 -12,829 -10,982 -6,081 

delinq_2yrs 0 0 0 0 0 -1 0 0 

open_acc -3 29 7 1 -4 26 6 -1 

pub_rec 0 0 0 1 0 0 0 1 

fico_range_high -16 -21 -26 -21 0 0 0 0 

fico_range_low -16 -21 -26 -21 0 0 0 0 

revol_util 11 -12 32 12 -3 6 22 1 

cr_hist -92 -22 -104 -39 -91 -68 -113 -58 

 

Table 9. Counterfactual Explanations Using Model-Based Imputation 

Loan 1 Explanation 1. Credit denied because: 

- Annual income is $32,658 less than expected. 

Loan 2 Explanation 1. Credit denied because: 

- Annual income is $85,302 less than expected. 

Loan 3 Explanation 1. Credit denied because: 

- Annual income is $29,903 less than expected. 

Explanation 2. Credit denied because: 

- Debt-to-income ratio is six units more than expected. 

- Revolving line utilization rate is 22% more than expected. 

- Credit history is 113 months less than expected. 

Explanation 3. Credit denied because: 

- Debt-to-income ratio is six units more than expected. 

- Open credit lines are six more than expected. 

- Credit history is 113 months less than expected. 

Loan 4 Explanation 1. Credit denied because: 

- Annual income is $32,926 less than expected. 

Note: “expected” refers to the value that model-based imputation predicts for this example. 

Study 2: High-Dimensional and Context-
Specific Explanations 

Our second case study uses Facebook data to showcase the 

advantages of counterfactual explanations when explaining 

data-driven decisions in high-dimensional settings. The data, 

collected through a Facebook application called 

myPersonality,12 has also been used to compare the 

performance of various counterfactual explanation methods 

(Ramon et al., 2020). We used a sample that contains 

information on 587,745 individuals from the United States, 

including their Facebook Likes and a subset of their Facebook 

profiles. In general, Facebook users do not reveal all their 

 
12 Thanks to the authors of the prior study, Kosinski et al. (2013), for sharing 

the data. 

personal characteristics, but their Facebook Likes are available 

to the platform. To simulate a decision-making system for this 

case study, we assume that a (fictitious) firm wants to launch a 

marketing campaign to promote a new product to users who are 

older than 50. Given that not all Facebook users share their age, 

the firm could use a predictive model to predict who is over 50 

(using Facebook Likes) and use the predictions to decide whom 

to target with the campaign.  

A user’s Facebook Likes are the set of Facebook pages that 

the user chose to “Like” on the platform (we capitalize 

“Like”, as have prior authors, to distinguish the act on 

Facebook). Thus, we represent each Facebook page as a 
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binary feature that takes a value of 1 if the user Liked the 

page and 0 otherwise. We kept only the pages Liked by at 

least 1,000 users, leaving us with 10,822 binary features. The 

target variable for modeling is also binary and takes a value 

of 1 if the user is more than 50 years old and 0 otherwise. 

We use 70% of the data to train a logistic regression model. 

In our fictitious setting, the model is used by a decision 

system that targets the top 1% of users with the highest 

probability of being older than 50, which (in our sample) 

implies sending promotional content to the users with a 

probability greater than 41.1%. We use the system to decide 

which of the held out 30% of users to target. 

Importantly, while the system could generate value for the 

firm, we need to consider a user’s sense of privacy and how 

they might feel about being targeted with the promotional 

campaign. For example, some users may feel threatened by 

highly personalized offers (“How do they know this about 

me?”) and may want to know why they were targeted (Chen 

et al., 2017). Explanations can also lead to higher user 

engagement resulting from more confidence and 

transparency in product recommendations (Friedrich & 

Zanker, 2011). In such settings, users are unlikely to be 

interested in the intricacies of the model but rather in the data 

about their behavior used to target them. If that is the case, 

framing explanations in terms of comprehensible input 

features (e.g., Likes) is critical.  

One approach is to use importance weights to rank Facebook 

pages according to their feature importance (as computed by 

a technique such as SHAP) and then show the user the 

topmost predictive pages they Liked. However, given the 

large number of features (Facebook pages), computing 

weights in a deterministic fashion is intractable. SHAP 

circumvents this issue by sampling the space of feature 

combinations, resulting in sampling-based approximations 

of the influence of each feature on the prediction. However, 

the downside is that the estimated values may be far from the 

real values, which may yield inconsistent results. For 

example, if we were to use the topmost important features to 

explain a decision, we should consider whether different 

runs of a nondeterministic method repeatedly rank the same 

pages as the most important. Unfortunately, the set of the 

topmost important features becomes increasingly 

inconsistent (across different runs of SHAP) as the number 

of features increases.  

For instance, in our holdout data set, there is a 34-year-old 

user who would be targeted with an ad for older persons (the 

 
13 We use the SHAP implementation provided here: 

https://github.com/slundberg/shap. At the time of writing, the default 

sample size was 2048 + 2𝑚, where 𝑚 is the number of features with a non-

model predicts a 42% probability that this user is at least 50 

years old). So, as an example, suppose this user wants to 

know why they are targeted. Let’s say that we have 

determined that showing the top three most important 

features makes sense for this application. Table 10 shows the 

top three most predictive pages according to their SHAP 

values (importance weights) for the system decision. The 

table shows the result of running SHAP five times to 

compute the importance weights, each time sampling 4,100 

observations of the space of feature combinations.13 Because 

SHAP uses sampling-based approximations, we can see that 

SHAP values vary every time we compute them, resulting in 

different topmost predictive pages. Importantly, while some 

pages appear recurrently, only Paul McCartney appears in all 

five approximations. 

As we show in more detail below, this inconsistency is the 

consequence of using SHAP to estimate importance weights for 

too many features. This specific user Liked 64 pages, which is 

not an unusually large number of Likes—more than a third of 

the targeted users had at least that many. There are (at most) 64 

non-zero SHAP values to estimate, making the task 

significantly simpler than if we had to estimate importance 

weights for all 10,822 features. However, even with a sample 

size already larger than the implementation’s default, SHAP 

proves unreliable to find the most important pages (let alone to 

estimate the importance weights for each page).  

We increased the sample size for SHAP in order to observe 

when the estimates became stable for this particular task. For 

this specific user, it took eight times more samples from the 

feature space for the same three most-important pages to 

match consistently across all approximations, increasing 

computation time substantially (from 3 to 21 seconds per 

approximation on a standard laptop). This time would 

increase dramatically for data settings with hundreds of non-

zero features, which are not uncommon (see, e.g., Chen et 

al., 2017; Perlich et al., 2014). 

In contrast, counterfactual explanations were found in a 

tenth of a second (on the same laptop), five of which we 

show in Figure 4. Each explanation consists of a subset of 

Facebook pages that would change the targeting decision if 

removed from the set of pages Liked by the user. In other 

words, each of the sets shown in Figure 4 is an explanation 

that represents a minimum amount of evidence that changes 

the decision if removed. These explanations are short, 

consistent (because they are generated deterministically), 

and directly tied to the decision-making procedure.

default value. Our choice of 4,100 is larger than the SHAP implementation’s 

default sample size for all of the experiments we run. 

https://github.com/slundberg/shap
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Table 10. Likes Identified by SHAP as the Three Most Important and Their SHAP Values for Five 
Different Runs for a Single Decision to Target a User with the Over-50 Ad 

Elvis Presley 
(0.1446) 

Paul McCartney 
(0.1471) 

Paul McCartney 

(0.1823) 

Paul McCartney 
(0.1541) 

Elvis Presley 
(0.1582) 

Bruce Springsteen 
(0.1302) 

William Shakespeare 
(0.1321) 

Neil Young 
(0.1676) 

Elvis Presley 
(0.1425) 

Paul McCartney 
(0.1489) 

Paul McCartney 
(0.1268) 

Brain Pickings 
(0.1319) 

The Hobbit 
(0.1417) 

Leonard Cohen 
(0.1359) 

Bruce Springsteen 
(0.1303) 

Note: Importance weights (SHAP values) shown in parentheses. 

 

Explanation 1: The user would not be targeted if {Paul McCarney} had not been Liked. 

Explanation 2: The user would not be targeted if {Elvis Presley} had not been Liked. 

Explanation 3: The user would not be targeted if {Neil Young} had not been Liked. 

Explanation 4: The user would not be targeted if {Leonard Cohen} had not been Liked. 

Explanation 5: The user would not be targeted if {Brain Pickings} had not been Liked. 

Figure 4. Counterfactual Explanations for the Decision to Target a User with the Over-50 Ad 

 
As an additional demonstration of the negative impact that 

an increasing number of features may have on the 

consistency of sampling-based feature-importance weights, 

we show how the more pages a user has Liked, the more 

inconsistent the set of the top three most important pages 

becomes. The process is as follows. First, we picked a 

random sample of 500 users in the holdout data who would 

be targeted. Then, we applied SHAP five times to 

approximate the importance weights of the features used for 

each of the 500 targeting decisions (sampling 4,100 

observations each time). Finally, for each targeting decision, 

we counted the number of pages that appeared consistently 

in the top three most important pages across all five 

approximations. We call this the number of matches. Thus, 

if the approximations were consistent, we would expect the 

same three pages to appear in the top three pages of all 

approximations, and there would be three matches. In 

contrast, if the approximations were completely inconsistent, 

no pages would appear in the top three pages of all five 

approximations, and there would be no matches.  

The result of the experiment is in Figure 5a, which shows the 

average number of matches by quantile. As predicted, SHAP 

approximations are not consistent for users who have Liked 

many pages. Recall that SHAP is supposed to be estimating 

the Shapley values for the features; thus, they ought to be 

consistent. However, for the largest instances, most cases 

have only one page that appears in all five SHAP runs. This 

 
14 Recall that targeting decisions may have several counterfactual 
explanations. We report the average sizes of the first explanation found for 

each targeting decision. 

implies that (for most users) the default SHAP 

implementation is not reliable enough to explain decisions 

by showing the topmost important pages. 

Alternatively, we could use counterfactual explanations to 

explain the targeting decisions, but we might worry about 

giving unnecessarily large explanations. We ran Algorithm 

1 to find one counterfactual explanation for each of the 500 

targeting decisions. This took about 15 seconds, whereas 

conducting the SHAP experiment detailed above took about 

an hour on the same machine. Figure 5b shows the average 

size of the counterfactual explanations by quantile.14 The 

figure shows that explanations are larger for users who Liked 

many pages but remain relatively small considering the 

number of features present, which concurs with the findings 

of Chen et al. (2017). 

Finally, in this case study, we also adjust our method to 

incorporate domain-specific preferences (“costs”) and 

showcase how they can lead to more comprehensible 

explanations. The explanations shown so far (in both case 

studies) were generated using Algorithm 1, which does not 

consider the relevance of the various possible explanations 

and was designed to find the smallest explanations first. 

Nonetheless, short explanations may include Likes of 

relatively uncommon pages, which may be unfamiliar to the 

person analyzing the explanation.  
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Figure 5. Variations in Explanations by Number of Likes 

To illustrate how domain preferences can be considered when 

generating explanations, let’s say that for our problem, 

explanations that include pages with few Likes are 

problematic. The recipient of the explanation is much less 

likely to know these pages, so they would be better served 

with explanations using popular pages. To this end, we can 

adjust the heuristic search (as discussed in the Counterfactual 

Explanations section) to find explanations that include more 

relevant—i.e., more popular—pages by associating lower 

costs to their “removal” from an instance’s input data. 

Specifically, we adjust the heuristic search to penalize less-

popular pages (those with fewer total Likes) by assigning 

them a higher cost. 

Table 11 shows examples of how the first explanation found 

by the algorithm changes depending on whether the relevance 

heuristic is used. As expected, the explanations found when 

using the relevance heuristic can include more pages than the 

“shortest first” search; however, those pages are also more 

popular (as evidenced by their number of Likes). Importantly, 

these examples show how the search procedure can be easily 

adapted to find context-specific explanations. In this case, the 

user may be interested in finding explanations with popular 

pages. However, the search could also be adjusted to first 

show the explanations with pages recently Liked by the user 

or pages related to the advertised product.  

Study 3: System Decisions with Multiple Models 

Our third case study illustrates the advantages of our 

proposed approach when applied to complex AI systems, 

including those that use multiple models to make decisions. 

We used the data set from the KDD Cup 1998, available at 

the UCI Machine Learning Repository. The data set was 

originally provided by a national veteran’s organization that 

wanted to maximize the profits of a direct mailing campaign 

requesting donations. Therefore, the business problem 

consisted of deciding which households to target with direct 

mail. Importantly, one could approach this problem in 

several ways, such as:  

1. Using a regression model to predict the amount that 

a potential target will donate so that we can target 

that individual if that amount is larger than the 

break-even point. 

2. Using a classification model to predict whether a 

potential target will donate more than the break-

even point so that we can target that individual. 

3. Using a classification model to predict the 

probability that a potential target will donate and a 

regression model to predict the amount if the 

potential target were to donate. By multiplying the 

results of these two models together, one could 

obtain the expected donation amount and send 

direct mail if the expected donation is larger than 

the break-even point.  

To showcase system decisions that incorporate multiple 

models, we illustrate our generalized framework using the 

third approach, used by the winners of the KDD Cup 1998. 
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Table 11. First Counterfactual Explanation Found 

User ID 
First explanation found 
(WITHOUT the relevance heuristic) 

First explanation found 
(WITH the relevance heuristic) 

11 

“It’s a Wonderful Life” (1,181 Likes) 

“JESUS IS LORD!!!!!!!!!!!!!!!!!!!!!!!!!!! if you know this is 
true press like. :)” (1,291 Likes) 

“Reading” (47,288 Likes) 

“American Idol” (15,792 Likes) 

“Classical” (8,632 Likes) 

38 

“The Hollywood Gossip” (1,353 Likes) 

“Remember those who have passed. Press Like if 
you’ve lost a loved one” (2,248 Likes) 

“Pink Floyd” (43,045 Likes) 

“Dancing With The Stars” (5,379 Likes) 

“The Ellen DeGeneres Show” (16,944 Likes) 

“American Idol” (15,792 Likes) 

108 

“Six Degrees Of Separation ­ The Experiment” (3,373 
Likes) 

“They’re, Their, and There have 3 distinct meanings. 
Learn Them.” (3,842 Likes) 

“Star Trek” (11,683 Likes) 

“Turn Facebook Pink for 1 Week for Breast 
Cancer Awareness” (12,942 Likes) 

We used XGBoost for both regression and classification 

training with 70% of the data and the following feature 

subset: age of household head (AGE), wealth rating 

(WEALTH2), mail order response (HIT), male active in the 

military (MALEMILI), male veteran (MALEVET), 

Vietnam veteran (vietvets), World War II veteran 

(WWIIVETS), employed by local government 

(LOCALGOV), employed by state government 

(STATEGOV), employed by federal government 

(FEDGOV), percent Japanese (ETH7), percent Korean 

(ETH10), percent Vietnamese (ETH11), percent adult in 

active military service (AFC1), percent male in active 

military service (AFC2), percent female in active military 

service (AFC3), percent adult veteran age 16+ (AFC4), 

percent male veteran age 16+ (AFC5), percent female 

veteran age 16+ (AFC6), percent Vietnam veteran age 16+ 

(VC1), percent Korean veteran age 16+ (VC2), percent 

WWII veteran age 16+ (VC3), percent veteran serving after 

may 1975 only (VC4), number of promotions received in the 

last 12 months (NUMPRM12), number of lifetime gifts to 

card promotions to date (CARDGIFT), number of months 

between first and second gift (TIMELAG), average dollar 

amount of gifts to date (AVGGIFT), and dollar amount of 

most recent gift (LASTGIFT). 

Consider the following setting. The decision-making system 

uses the classification and regression models on the holdout 

30% of data to target the 5% of households with the largest 

(estimated) expected donations, essentially targeting the 

(predicted) most profitable households given a limited 

budget. In this case, both the decision maker and the targeted 

may be interested in explanations for why the system 

decided to send a particular piece of direct mail. This is a 

particularly challenging problem for methods designed to 

explain model predictions (not decisions) because the 

system makes decisions using more than one model. It is 

possible that the most important features for predicting the 

probability of donation are not the same as the most 

important features for predicting the donation amount. 

Therefore, determining which features led to the targeting 

decision is not straightforward. 

To illustrate this better, consider one targeted household in 

the holdout data, for which we computed SHAP values for 

its predicted probability of donating (given by the 

classification model) and its predicted donation amount 

(given by the regression model). We normalized the SHAP 

values for each model prediction so that the sum of the 

values adds to 1. The top five most important features for the 

probability prediction and the regression prediction are 

shown in Figure 6a and Figure 6b, respectively. 

Interestingly, only VC3 (percent of WWII veterans in the 

household) is one of the most important features for both the 

classification and the regression models. We cannot explain 

the targeting decision from these figures alone: even though 

we know the most important features for each prediction, 

there is no way of telling what was actually vital for the 

system to make the targeting decision. Was the household 

targeted because of the size of the last gift (LASTGIFT)? Or 

would the household’s high probability of donating justify 

the targeting decision even if LASTGIFT had a smaller 

value? 

As discussed earlier, SHAP may be used to compute feature 

importance weights for system decisions that incorporate 

multiple models by transforming the system output into a 

scoring function that returns 1 if the household is targeted 

and 0 otherwise. 
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(a) Top features for probability 

 

(b) Top features for amount 

Figure 6. Features with Largest Importance Weights 

However, feature importance weights for decisions (rather 

than model outputs) would not explain how features affect 

decisions. In contrast, counterfactual explanations can 

transparently be applied to system decisions that involve 

more than one model. Specifically, because the predicted 

expected donation is a scoring function (which is the result 

of multiplying the predictions of the two models), we can 

use the same framework and procedures showcased in the 

previous examples to find explanations for targeting 

decisions. Table 12 shows the explanations found for the 

targeted household discussed above. 

Interestingly, some of the highest-scoring SHAP features, 

shown in Figure 6, are not present in any of the 

explanations (e.g., MALEVET), whereas some features 

that are present in some explanations do not have large 

SHAP values (e.g., AVGGIFT). In fact, AVGGIFT had a 

negative SHAP value in the regression model (meaning we 

would expect its impact on the nondefault decision to be 

negative), but it appears in all explanations. This example 

illustrates the importance of defining explanations in terms 

of decisions and not predictions, particularly when dealing 

with complex, nonlinear models, such as XGBoost.  

More specifically, because SHAP attempts to evaluate the 

overall impact of features on the model prediction, it 

averages out the negative and positive impacts that features 

have on the prediction when their values are changed 

alongside all other feature combinations. Hence, if a 

feature has a large negative impact in one feature ordering 

and several small positive impacts in other orderings, that 

feature may have a negative SHAP value if the single 

negative impact is greater than the sum of the small positive 

impacts. This behavior is the same as illustrated by 

Example 3 in the Limitations of Importance Weights 

section, which is counterproductive to understanding the 

influence of features on decision-making. Averaging the 

impact of features over all feature orderings hides the fact 

that, in nonlinear models, features may provide evidence in 

favor or against a decision depending on what other 

features are changed, which explains why AVGGIFT had 

a negative SHAP value but is present in the explanations 

shown in Table 12.  

Discussion 

These studies with real-world data illustrate various 

advantages of counterfactual explanations over importance 

weighting methods. The first study shows that the importance 

weights of features are not enough to determine how they 

affect system decisions. It also shows how different 

imputation methods may be used to generate and customize 

counterfactual explanations for various purposes and users. 
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Table 12. Explanations for Targeting Decision 

Features 
Explanations 

1 2 3 4 5 6 

AGE      ▼ 

WWIIVETS ▲      

VC1   ▼    

VC2     ▲  

VC3  ▲     

NUMPRM12  ▲ ▲ ▲ ▲ ▲ 

CARDGIFT    ▲   

AVGGIFT ▲ ▲ ▲ ▲ ▲ ▲ 

LASTGIFT ▲ ▲ ▲ ▲ ▲ ▲ 
Note: ▲ means the household was targeted because the feature is above average.▼ means the household was targeted because the 
feature is below average. 

The second study demonstrates the strengths of counterfactual 

explanations in the presence of high-dimensional data. In 

particular, the study shows that sampling-based approximations 

of importance weights become worse as the number of features 

increases. Counterfactual explanations sidestep this issue because 

small subsets of features are usually enough to explain decisions. 

Moreover, the study showcased a heuristic procedure to search 

for and sort counterfactual explanations according to their 

relevance. Finally, the third study shows that importance weights 

may be misleading when decisions are made using multiple (and 

complex) models. More specifically, we see a real instance of the 

phenomenon in the synthetic example in the Limitations of 

Importance Weights section, in which features with nonpositive 

SHAP weights may have a positive effect on system decisions.  

It has been argued that a disadvantage of counterfactual 

explanations is that each instance (decision) usually has multiple 

explanations (Molnar, 2019); this is also referred to as the 

Rashomon effect. The argument is that multiple explanations are 

inconvenient because people may prefer simple explanations 

over the complexity of the real world.15 This issue may be 

exacerbated as the number of features increases because the 

number of counterfactual explanations may grow exponentially. 

In contrast, most importance weighting methods converge to a 

unique solution in theory (e.g., Shapley values in the case of 

SHAP), if allowed enough run time.  

However, as we have shown, instance-weight explanations 

have serious deficiencies for explaining decisions, so we 

cannot argue that they are preferable because they are 

simpler. Moreover, our second case study shows that 

importance weighting methods may not scale well when the 

number of features increases because their approximations 

may become inconsistent. In the case of counterfactual 

explanations, measures of relevance (e.g., number of Likes 

in our Facebook case study) may be incorporated as part of 

 
15 Of course, this “disadvantage” could be avoided by showing only one of 
the counterfactual explanations, which could be a unique solution by 

defining a preference order over feature subsets, as we have discussed. 

the heuristic procedures used to find and rank counterfactual 

explanations. Thus, the fact that there are multiple 

counterfactual explanations is not necessarily problematic. 

Our study could find short, consistent, and relevant 

explanations significantly faster than it could compute 

importance weights, even with many features.  

A factor briefly explored in the first case study is the 

sensitivity of the explanations to the method used to produce 

counterfactual values. This is not a challenge particular to 

the counterfactual approach; feature importance approaches, 

such as SHAP, also require the choice of such a method (e.g., 

mean imputation). We argue that the evidence-based 

perspective is useful to define relevant counterfactuals and 

that the choice of the method should thus carefully match the 

domain and the intent behind the explanations. This is an 

interesting direction for future research, as we would expect 

distinct alternatives for dealing with evidence removal to 

affect explanations differently, resulting in different 

interpretations of the system decision. For example, mean 

and model-based imputation can produce very different 

explanations, and each may be more appropriate in different 

settings (as shown in our first case study).  

Another option is to forgo imputation strategies altogether and 

produce counterfactual values with another procedure. For 

example, continuous features could be discretized into bins, and 

the algorithm we propose could be easily adapted to greedily 

search feature values across bins until the predicted class is 

changed, as done by Gomez et al. (2020). This procedure could 

be guided by the preference function introduced in our 

framework to search first for the most relevant counterfactual 

values. Similarly, methods proposed for inverse classification 

(e.g., Lash et al., 2017) could also be used to produce 

counterfactual explanations.  
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Importantly, our study compares importance weights with a 

specific type of counterfactual explanation. As defined in the 

Counterfactual Explanations section, our explanations use 

the evidence-based perspective to create counterfactuals in 

which the evidence supporting the decision made by the 

system is absent, but other types of counterfactuals may be 

of interest when explaining decisions. For example, our first 

case study showed that some loan applicants were denied 

because the amount they requested was larger than average. 

While this explains the credit denial decision, these 

applicants may instead be interested in the maximum amount 

they could be approved for. Such a counterfactual 

explanation could be defined as a set of “minimal” feature 

adjustments that changes the decision. 

Other researchers have proposed various methods to obtain 

such counterfactual explanations (Verma et al., 2020). For 

example, in the context of explaining predictions (not 

decisions), Wachter et al. (2017) define counterfactual 

explanations as the smallest change to feature values that 

changes the prediction to a predefined output. Thus, they 

address explanations as a minimization problem in which larger 

(user-defined) distances between counterfactual instances and 

the original instance are penalized more. However, their method 

(1) focuses on models for which the gradient at the decision 

point can be computed, (2) does not work with categorical 

features, and (3) may require access to the machine learning 

method used to learn the model (which usually is not available 

for deployed decision-making systems). Tolomei et al. (2017) 

define counterfactual explanations similarly but instead propose 

how to find such explanations when using tree-based methods. 

Other counterfactual methods have been implemented in the 

Python package Alibi.16 The package includes a simple 

counterfactual method loosely based on Wachter et al. (2017) 

and an extended method that uses class prototypes to improve 

the interpretability and convergence of the algorithm (van 

Looveren & Klaise, 2021). 

Another key assumption behind all the instance-level 

explanation methods discussed in this paper (feature 

importance and counterfactual) is that examining an 

instance’s features will make sense to the user. This presumes 

that the features themselves are comprehensible, which would 

not be the case, for example, if the features are too low level 

or for cases where the features have been obfuscated, for 

example to address privacy concerns (see, e.g., the discussion 

of “doubly de-identified data” by Provost et al., 2009).  

Another promising direction for future research is studying 

how users perceive these different sorts of explanations. One 

such direction is to analyze how various types of explanations 

affect users’ adoption and interpretation of AI systems, 

 
16 See https://github.com/SeldonIO/alibi. 

preferably through user studies (Binns et al., 2018; Dodge et 

al., 2019). Kaur et al. (2020) studied data scientists’ use of 

interpretability tools (including SHAP) when uncovering 

common issues that arise when building and evaluating 

predictive models. They found that despite being provided 

with standard tutorials, few participants could accurately 

describe what the visualizations were showing. As a result, 

some participants overtrusted the model because they used the 

explanations to rationalize suspicious observations, whereas 

others became skeptical of the visualizations and eventually 

stopped using them. 

Importantly, different users are likely to require different 

information from explanations, and it is thus unlikely that a 

particular explanation will always be the best for every 

objective. Other researchers have recognized this and have 

proposed general frameworks to define characteristics of good 

explanations based on user needs (Lu et al., 2019). The present 

study builds on this school of thought by providing a flexible 

explanation framework that may be used to address a wide and 

diverse range of needs. We discuss this in more detail below 

as part of the managerial implications of our study. 

How explanations are visualized is also likely to affect how 

users perceive them. Although this paper used text and tables 

to present counterfactual explanations, interactive tools are 

probably much better suited for visualizing counterfactual 

explanations, especially if the goal is to analyze decisions at 

an aggregate level. What would work best in practice to 

visualize explanations is also likely to be context dependent, 

but there is already a nascent stream of research proposing 

tools to visualize counterfactual explanations, as proposed by 

Martens and Provost (2014). Examples include Gomez et al. 

(2020), Krause et al. (2017), and Tamagnini et al. (2017). Any 

of these visualization tools could be easily adapted to display 

the counterfactual explanations proposed by our framework.  

Another interesting direction is to learn from data the 

explanations that work better for different users. In the 

context of consumer-facing recommendations, McInerney et 

al. (2018) propose a method that simultaneously learns the 

best content to recommend for each user and the type of 

explanation(s) to which each user responds best. They 

showcase their method with music recommendations and 

find that personalizing explanations and recommendations 

together significantly increases user engagement. Therefore, 

explanations may also have an important role in the outcome 

that the system decisions seek to optimize. This type of 

method could be used in conjunction with our framework to 

learn the imputation strategies or cost functions that are most 

effective to improve decisions (or other outcomes). 

https://github.com/SeldonIO/alibi
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Having said this, more work is needed to provide explanations 

that truly address user needs and, in particular, the needs of 

decision subjects rather than decision makers. Barocas et al. 

(2020) reveal several easily overlooked assumptions on which 

uses of counterfactual explanations (and explanation methods in 

general) often rely and which may have negative effects on users 

of system decisions, specifically when those explanations are 

then used to suggest concrete actions. For example, feature 

changes may interact with facts about a person’s life that are 

invisible to the model; thus, the system may recommend 

something that would interfere with another goal in the person’s 

life. Changes that might be inexpensive for one person might be 

costly for another person, and we may therefore need to account 

for how feature changes affect costs and how costs vary across 

the population. In other cases, highlighting what the person must 

not change might be as important as the explanation itself: think 

about a mortgage applicant who switched jobs to increase her 

annual income only to find out that she now does not qualify for 

a home loan due to her short time of employment at her new job. 

While our framework could be used to work around some of 

these problems (e.g., decision subjects could communicate their 

costs by ranking features according to how easy they would be 

to change), these are unresolved challenges that require careful 

solutions to avoid other potential issues (e.g., privacy concerns, 

excessive complexity, users gaming the system). To address 

these challenges, future research should seek to understand 

what actions people actually take when confronted with 

explanations and how they are affected by those actions. 

Managerial Implications 

Importance weighting methods are rapidly becoming a popular 

(if not the most popular) alternative for explaining model 

predictions. However, this paper shows that these methods may 

not be appropriate to explain the decisions made by model-

based AI systems. Notably, the examples and case studies in 

this paper illustrate various pitfalls that managers should be 

aware of when deploying importance-weight explanations. The 

most salient is that importance weights are insufficient to 

communicate whether and how features affect decisions. Our 

paper proposes a counterfactual framework as an alternative 

specifically designed for such a task, illustrating its advantages 

throughout the examples. 

We also demonstrate how counterfactual explanations can be 

applied much more broadly—to more problems and 

systems—than many prior authors seem to have realized. Our 

case studies use the proposed counterfactual explanations to 

explain system decisions made (1) using numeric and 

categorical features, (2) in low- and high-dimensional 

settings, (3) with linear and nonlinear models, and (4) with 

system decisions based on one or multiple predictive models. 

The examples and case studies were also motivated by 

business settings commonly encountered in practice and in 

which AI systems may be particularly useful, such as credit 

scoring and targeted advertising. 

Finally, we propose two ways managers or other end users 

may tailor counterfactual explanations to suit their context. 

The first consists of defining how to deal with the removal 

of evidence to generate explanations. This choice should be 

driven by business context and may change according to 

stakeholder needs. Continuing with the targeted advertising 

example, mean and mode imputation may be a reasonable 

approach for users who want to understand which of their 

actions led the system to target them. At the same time, a 

manager using the system to make those targeting decisions 

may want to understand which features led to the best 

targeting decisions to decide which features to keep 

investing in (assuming the manager is using purchased third-

party data for targeting, which is not unusual). Thus, for the 

manager’s use case, a better approach to deal with evidence 

removal might be to simulate the system behavior if the 

manager were to stop purchasing data for that feature, for 

example, by using a model built without those features.  

The second consists of allowing end users to tailor 

explanations by incorporating context information as part of 

the heuristic procedure used to generate counterfactual 

explanations. Such information could consist of the cost of 

acquiring or changing the features, the degree of relevance 

of the features, or other domain-driven “rules” (e.g., the 

feature value for “is_female” should not be changed if 

“is_pregnant=1”). We propose (and illustrate how) to 

incorporate this information as part of a user-defined cost 

function that a heuristic procedure may use to search first for 

potential explanations with “lower costs,” resulting in more 

context-specific explanations. 

Conclusion 

We examine the problem of explaining data-driven 

decisions made by AI systems from a causal perspective: if 

the question we seek to answer is “why did the system 

make a specific decision,” we can ask “which inputs caused 

the system to make its decision?” This approach is 

advantageous because (1) it standardizes the form that an 

explanation can take, (2) it does not require all features to 

be part of the explanation, and (3) the explanations can be 

separated from the specifics of the model. Thus, we define 

a (counterfactual) explanation as a set of features that is 

causal (meaning that changing the values of these features 

changes the decision) and irreducible (meaning that 

changing the values of any proper subset of the features in 

the explanation does not change the decision). 
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Importantly, this paper shows that explaining model predictions 

is not the same as explaining system decisions because features 

that have a large impact on predictions may not have an 

important influence on decisions. Moreover, we show through 

examples and case studies that the increasingly popular 

approach of explaining model predictions using importance 

weights has significant drawbacks when repurposed to explain 

system decisions. In particular, we demonstrate that importance 

weights may be ambiguous or even misleading when the goal 

is to understand how features affect a specific decision. 

Our work generalizes previous work on counterfactual 

explanations in two important ways: First, we explain system 

decisions (which may incorporate predictions from several 

predictive models using features with arbitrary data types) 

rather than model predictions. Second, we do not enforce any 

specific method to produce counterfactual values for the 

features. Finally, we also propose a heuristic procedure that 

allows the tailoring of explanations to domain needs by 

introducing costs, for example, the costs of changing the 

features responsible for the decision. 
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