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Abstract

Inductive machine learning o�ers techniques for dis-

covering new knowledge from business, medical, and

scienti�c databases. Most techniques assume that all

the relevant information for discovery has been gath-

ered and assembled into a single table or database.

With multiple databases it is possible to combine fea-

tures from several perspectives and thus move beyond

the con�nes of an ontology that was �xed by the de-

signers of a single database. We introduce WoRLD

(\Worldwide Relational Learning Daemon"), a sys-

tem that uses spreading activation to enable inductive

learning from multiple tables in multiple databases

spread across the network. We describe the paradigm

and the system, provide demonstrations on synthetic

data sets, and then replicate two real-world successes

of automated discovery.

1 INTRODUCTION

Inductive machine learning o�ers methods for discov-

ering new knowledge from business, medical, and sci-

enti�c databases. Although the need to learn across

multiple tables has been realized [17], most inductive

learning and data mining techniques assume that all

the relevant information for discovery has been gath-

ered and assembled into a single table or database.

With multiple tables and multiple databases it is pos-

sible to combine features from several perspectives

and thus move beyond the con�nes of an ontology

that was �xed by the designers of a single database.

In addition, it is highly likely that interesting and

novel relationships exist in databases other than the

one that motivated an inquiry in the �rst place.
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Unfortunately, combining multiple databases re-

quires substantial knowledge engineering to coa-

lesce relevant information from multiple tables and

databases. This requires a domain expert to deter-

mine which databases and which �elds within them

are relevant. Combining multiple databases also cre-

ates scaling problems for discovery programs. Even

recent work that has begun to address the problem of

learning across multiple databases [17] requires that

the databases reside on the same machine. In prac-

tice, useful databases may exist in remote locations

in an organization, or across the Internet, and in ei-

ther case, their existence may not be known to the

persons initiating an inquiry.

The WoRLD system described in this paper is an

inductive rule-learning program that can learn from

multiple databases distributed about the network. It

demonstrates how databases codi�ed for other pur-

poses can introduce an open-endedness to the frame-

work within which an induction program operates.

Our long-term goal is to reduce the e�ort needed for

knowledge discovery from databases by designing in-

ductive systems that can locate new databases that

contain information relevant to the current discovery

task, and can utilize the information seamlessly for

augmenting the inductive process.

2 DISTRIBUTED LEARNING

The key to WoRLD's ability to treat multiple

databases transparently is its use of spreading acti-

vation [15], instead of item-by-item matching, as the

basic operation of the inductive engine. This meth-

ods works by �rst labelling each item with a marker,

here either \+" or \�" (for items in the concept of

interest and its complement), then propagating these

markers through databases looking for values where

positive or negative markers accumulate. This pro-

cess can span several databases, possibly on di�erent

machines.



2.1 Spreading Activation

Rule learning programs have contributed to real-

world discoveries starting with the early work on

MetaDENDRAL [2] and continuing through recent

work (e.g., in chemical carcinogenicity [11] and botan-

ical toxicology [9, 10]). The fundamental step of these

top-down inductive learners is generating and evalu-

ating all the specializations of a partial rule. That

is, given a partial rule of the form C
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Concept, a learner tries to �nd conjuncts that can be

added to the left-hand side of the rule to improve it.

People

Name City Car

Sam Pittsburgh Corvette

John Pittsburgh Cutlass

Bob New Castle BMW

Tim Los Angeles BMW

Mary New York Jaguar

Figure 1: A Simple Database.

Consider the simple database shown in Figure 1.

Suppose we want to characterize the set consisting

of Sam, John, and Bob. Typical top-down induc-

tive learners, such as MetaDENDRAL-style learn-

ers [2, 3, 18, 19], or decision-tree learners [16], start

with the null rule (which covers everything) and gen-

erate additional conjuncts to specialize it, such as

City = Pittsburgh, Car = Corvette, City = New Castle,

etc. Each conjunct is matched against the data,

and statistics are gathered. The statistics are fed to

an evaluation function that decides which conjuncts

should be further specialized on the next iteration.

Bob, +

Tim, -

Mary, -

John, +

Sam, +

Corvette, +

Cutlass, +

Jaguar, -

New York, -

Los Angeles, -

New Castle, +

Pittsburgh, ++

BMW, +-

Figure 2: An Equivalent Simple Network.

WoRLD's inductive algorithm is identical to that of

the MetaDENDRAL-style rule learners, speci�cally

the RL program [3], except that the matching portion

of the algorithm is replaced by spreading activation,

and the collection and counting of markers. Consider

the representation in Figure 2, in which attribute val-

ues are represented by pointers into the space of val-

ues (with a di�erent type pointer for each di�erent

attribute). Instead of testing all the possibilities to

characterize the set, WoRLD places a class marker

on each data item. After propagating these markers

along attribute links the learner then checks the cov-

erages of predicates by counting how many positive

and negative markers accumulate on the correspond-

ing value nodes, thereby replacing the matching step

in the rule learners.

People

Name City Car

Sam Pittsburgh Corvette

John Pittsburgh Cutlass

Bob New Castle BMW

Tim Los Angeles BMW

Mary New York Jaguar

Cities

City State

Pittsburgh Pennsylvania

New Castle Pennsylvania

Los Angeles California

New York New York

Figure 3: A Two Table Relational Database.

2.2 Joining Databases

Now, consider the two-table database shown in Fig-

ure 3. In the traditional approach, a domain engineer

who thought that State might be a relevant attribute

for the discovery problem would join the tables on

the column City, adding additional information to

the data set. Subsequently, a standard learner can

�nd that State = Pennsylvania perfectly characterizes

the concept.

There are several problems with constructing joins

in advance, although it is an obvious �rst sugges-

tion. First of all, constructing all possible joins to cre-

ate the universal relation will require a huge amount

of space, particularly if the newly joined tables can

also be connected to many others. Second, the re-

sulting space of predicates to test will also be huge

since they cover the space of all values in every �eld.

Third, in a distributed environment the target ta-

bles may be maintained only as network pointers|



and these remote databases may also point to other

foreign databases. Finally, and perhaps most impor-

tantly, the process of creating relevant joins manually

is time- and e�ort-consuming, prone to errors of omis-

sion, subject to bias errors of commission and, for all

the e�ort, still �xed in advance.

Bob, +

Tim, -

Mary, -

John, +

Sam, +

Pittsburgh, ++

New Castle, +

Los Angeles, -

New York, -

Corvette, +

Cutlass, +

Jaguar, -

BMW, +-

Pennsylvania
+++

California

New York

-

-

Figure 4: An Equivalent Two Table Network.

By using the spreading-activation method, there

is no need to create a single join. Consider the al-

ternate conceptual representation in Figure 4. Here,

both tables are represented as a common linked struc-

ture. Markers are propagated across multiple links,

when possible. The diagram shows the result of

this process: all three positive markers have accu-

mulated on Pennsylvania, the unifying concept of the

original set. Thus, the basic learning operation|

searching for predicates that have encouraging statis-

tics with respect to their coverage of positive and

negative examples|can be performed across multi-

ple databases in a straight-forward manner.

In the WoRLD system, the operations of marker

propagation and accumulation were implemented us-

ing basic database operations|relational algebra and

common aggregate operations. It propagates mark-

ers from one database to another using a join opera-

tion to add relevant columns to the new table, along

with their positive and negative counts. Accumula-

tions of markers are counted by projecting on each

column, then counting the markers for each value in

that column using a summation operator. This de-

sign choice was made to facilitate learning across ex-

isting databases, each with its own query engine. Not

unexpectedly, we have found that a direct implemen-

tation of marker propagation is much more e�cient,

but may require database format conversions.

An important feature of our approach is that there

is no assumption that the databases all reside on the

same machine. After markers are spread through the

columns of a database they are collected and tallied,

then sent to other databases to look for additional

connections deeper in the relational structure. In our

implementation the markers are propagated between

databases as a stream of data. This stream can be

transmitted across a regular network link, and the

process is continued seamlessly on the next machine.

Each database has additional information for each

column specifying where on the network (or local ma-

chine) to look for potential joins, similar to links on

the World-Wide-Web. As with the WWW, there is

no need for a master map of the entire structure|

each database has its own links into the network, and

these can be followed as they are encountered.

2.3 Extensions

There are several natural extensions to WoRLD's

basic process. First, we are not limited to rela-

tional databases. The spreading-activation learning

methodology accomodates hierarchical background

knowledge naturally. Classi�cations of objects can be

represented using ISA links. Markers are propagated

across these also, and unifying concepts can consist of

classes as well as individual values. Second, ISA hi-

erarchies can also include more complex inheritance

structures. In [1], we describe a system that acco-

modates ISA hierarchies, role structures, and non-

monotonic inheritance.

Finally, there is no limit on the number of joins

that the method will accomodate. Markers are passed

from one database to another based on potentially rel-

evant relationships (those that would cause a domain

engineer to consider a join). The markers are �ltered

by the distribution of values in the new column; they

are tallied (as before), and they are passed to other

databases that can be joined to the new column. The

process continues as long as additional databases are

found which can be joined. Although limits may be

placed on the extent of spreading, for example by lim-

iting the number of joins or the strength of semantic

links, the horizon e�ect of stopping with arbitrary

limits may be overcome by continuing the joins as

long as the pathway looks promising, which can be

judged by the number and distribution of markers on

values.

3 EXPERIMENTS

We designed a class of synthetic data sets to eval-

uate the WoRLD system. Our goal was to demon-

strate that the system could discover rules that re-



quired linking multiple databases across machines,

to support our contention that coalescing multiple

databases onto a single machine (into a single table) is

not necessary in order for a standard rule-learning ap-

proach to be e�ective. To this end, we distributed the

relevant features of concepts to be discovered across

multiple tables, on both monolithic and distributed

platforms. Figure 5 and Figure 6 show how seven

tables were structured relationally for our discovery

problems. The links represent joins. In each case,

the seven tables were �rst stored on a single ma-

chine, then on seven machines on the local network.

WoRLD successfully discovered the target concepts in

every case.

1

Incidentally, there was a factor of four

speedup from parallelism in each case. We consider

this result to be encouraging; however, our primary

thrust in the design of the prototype was not run-time

e�ciency.

  . . .

Table 1

Table 2 Table 3 Table 7

Figure 5: A Simple Relational Topology.

Table 1

Table 2 Table 3

Table 4 Table 5 Table 6 Table 7

Figure 6: A More Complex Relational Topology.

As a further demonstration, we replicated the re-

sults of automated knowledge discovery from two

real-world domains. In the �rst experiment we repro-

duced a clinically relevant botanical toxicology dis-

covery made by KBRL [9], a precursor of WoRLD

that learns across complex inheritance networks. In

that work, we linked a database of poison plant

exposures to databases of geographical and climate

data in order to explain an interesting class of poi-

sonings in terms of basic environmental principles.

1

Remember that WoRLD is functionally equivalent to a

MetaDENDRAL-style rule learner in the learning biases it can

incorporate.

WoRLDwas able to replicate KBRL's discovery with-

out the need to manually link the databases into a

single inheritance network. In the second replication,

WoRLD successfully reproduced previously known

concept de�nitions that identify high-risk pneumonia

patients [4].

4 CONCLUSIONS

The system described in this paper allows database

maintainers to link their databases to others on

the network for learning. The WoRLD system

not only uses local links to foreign databases, but

can also follow a series of links through databases

on the network. But to achieve the long-range

goal of autonomous learning across databases dis-

tributed around the World-Wide-Web, several signif-

icant problems will need to be solved.

The most signi�cant problems of the WoRLD sys-

tem are its reliance on a set of manually constructed

and maintained links between databases, and its as-

sumption of a standardized vocabulary across hetero-

geneous databases. One possible solution to these

problems is to create a thesaurus, or ontology, of

databases and terms in a domain. Similar suggestions

have been made for molecular biology [8, 13], and

medicine [14]. Instead of requiring database main-

tainers to specify explicit links to other databases on

the network, appropriate links for a discovery pro-

gram can be inferred from the ontology. Database

maintainers would need to draw their concepts and

terminology from this database, but many of the

problems of reusability, synonyms, morphological

variants, etc., will be solved. Considerable work has

already been done in this direction [5, 6, 7, 12].
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