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Abstract 

Decisions made in setting up and running 
search programs bias the searches that they 
perform. Search bias refers to the definition 
of a search space and the definition of the 
program that navigates the space. This pa- 
per addresses the problem of using knowledge 
regarding the complexity of various syntac- 
tic search biases to form a policy for select- 
ing bias. In particular, this paper shows that 
a simple policy, iterative weakening, is opti- 
mal or nearly optimal in cases where the bi- 
ases can be ordered by computational com- 
plexity and certain relationships hold between 
the complexity of the various biases. The re- 
sults are obtained by viewing bias selection 
as a (higher-level) search problem. Iterative 
weakening evaluates the states in order of in- 
creasing complexity. An offshoot of this work 
is the formation of a near-optimal policy for 
selecting both breadth and depth bounds for 
depth-fist search with very large (possibly 
unbounded) breadth and depth. 

Introduction 
For the purposes of this paper, search bias refers 
to the definition of a search space and the def- 
inition of the program that navigates the space 
(cJ, inductive bias in machine learning [Mitchell, 
19801, [Utgoff, 19841, [RendelI, 19861, [Provost, 
19921). Bias choices are purely syntactic if they 
are not based on domain knowledge, otherwise 
they are semantic. In this work, except where 
I refer to the incorporation of knowledge into the 
search program (e.g., the addition of heuristics), 
bias refers to syntactic bias choices. The choice 
of a depth-first search is a coarse-grained choice; 
the choice of a maximum depth of d is a finer- 
grained choice. Search policy refers to the strat- 

egy for making bias choices based on underlying 
assumptions and knowledge (c$, inductive policy 
[Provost & Buchanan, 1992a]). This paper ad- 
dresses the problem of selecting from among a set 
of bias choices, based solely on complexity knowl- 
edge. I show that in certain cases, optimal or near- 
optimal policies can be formed. 

The problem is attacked by viewing bias selec- 
tion as a (higher-level) state-space search problem, 
where the states are the various biases and the 
goal is to find a bias which is satisfactory with re- 
spect to the underlying search goal (e.g., a search 
depth sufficient for finding the lower-level goal). 
For the purposes of the current exposition, let us 
assume that no knowledge is transferred across 
biases, i.e., the search with one bias has no effect 
on the search with another bias. So, the higher- 
level problem is a search problem where the cost of 
evaluating the various states is not uniform, and 
we know (at least asymptotically) the complex- 
ity of the evaluation of each state. I will refer to 
the worst-case time complexity of searching with 
a given bias as the complexity of that bias. Using 
worst-case time complexity side-steps the problem 
that some problems may be inherently “easier” 
than others with a given bias, and allows biases 
to be ordered independently of the distribution of 
problems that the search program will encounter. 

If we view the strength of a bias to be analogous 
to the complexity of that bias, we can define the 
policy iterative weakening to be: evaluate the bi- 
ases in order of increasing complexity. (The term 
iterative weakening is borrowed from the iterative 
deepening of [Korf, 19851 and iterative broadening 
of [Ginsberg and Harvey, 19901, which are special 
cases of the general technique). In cases where 
the states (biases) can be grouped into equivalence 
classes based on complexity, where there is an ex- 
ponential increase in complexity between classes, 
and where the rate of growth of the cardinality of 
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the classes is not too great (relatively), iterative 
weakening can be shown to be a near-optimal pol- 
icy with respect to the complexity of only evaluat- 
ing the minimum complexity goal state (optimal 
in simple cases). 

Consider an example from machine learning as 
search, where being able to select from among dif- 
ferent search biases is particularly important. The 
complexity of a non-redundant search of a space of 
conjunctive concept descriptions with maximum 
length k is polynomial in the number of features 
and is exponential in k. Given a fixed set of fea- 
tures, iterative weakening would dictate searching 
with k = 1, k = 2, . . . . until a satisfactory concept 
description is found. 

However, the size of an ideal feature set might 
not be manageable. In many chemistry domains 
the properties and structure of chemicals provide 
a very large set of features for learning; for exam- 
ple, in the Meta-DENDRAL domain the task is to 
learn cleavage rules for chemical mass spectrome- 
try [Buchanan & Mitchell, 19781. In such domains 
with effectively infinite sets of features, knowledge 
may be used to order the features by potential rel- 
evance. However, it may not be known a priori 
how many of the most relevant features will be 
necessary for satisfactory learning. 

Many existing learning programs represent con- 
cept descriptions as sets of rules, each rule being 
a conjunction of features (e.g., ‘[Quinlan, 19871, 
[Clark & Niblett, 19891, [Clearwater & Provost, 
19901). Th e s p ace of conjunctive rules can be or- 
ganized as a search tree rooted at the rule with 
no features in the antecedent, where each child 
is a specialization of its parent created by adding 
a single conjunct. A restriction on the depth of 
the search tree restricts the maximum complexity 
of the description language (the number of con- 
juncts in a rule’s antecedent). A restriction on 
the breadth of the search restricts the list of fea- 
tures considered. A depth-first search of this space 
would not only face the classic problem of deter- 
mining a satisfactory search depth (see Section 3), 
but also the problem of (simultaneously ) deter- 
mining a satisfactory search breadth. In Section 5 
I develop a near-optimal policy for selecting both 
the depth and the breadth of a depth-fist search. 

Optimal Policies 

The heuristic behind iterative weakening policies 
is by no means new. As mentioned above, and 
discussed further below, iterative deepening and 
iterative broadening are special cases of the gen- 

eral technique. Simon and Kadane [Simon and 
Kadane, 19751 h s ow that in cases where knowledge 
is available regarding the cost of a search and the 
probability of the search being successftil, that an 
“optimal” strategy is to perform the searches in 
order of increasing probability/cost ratio. In the 
case where the probability distribution is uniform 
(or is assumed to be because no probability infor- 
mation is available), this reduces to a cheapest- 
first strategy. Slagle [Slagle, 19641 also discusses 
what he calls ratio-procedures, where tasks are car- 
ried out in order of the ratio of benefit to cost, 
and shows that these “often serve as the basis of 
a minimum cost procedure” (p.258). 

However, the problem addressed in this paper 
is a different one from that addressed by Simon 
and Kadane and Slagle. Their work showed that 
the cheapest-fist strategy was a minimum cost 
strategy with respect to the other possible order- 
ings of the biases. In this paper, the term optimal 
will be used to denote a policy where the asymp- 
totic complexity is no worse than that of a policy 
that knows a priori the minimum cost bias that 
is sufficient for finding the (lower-level) goal. To 
illustrate, given n search procedures, pl, ~2, . . . , 
p,,, previous work addressed finding an ordering of 
the pi’s such that finding the goal will be no more 
expensive than any other ordering of the pi’s. In 
contrast, I address the problem of ordering the pi’s 
such that 6nding the goal will be as inexpensive 
(or almost as inexpensive) as only using p;, , the 
minimum-cost search procedure. 

This paper shows that in some cases the 
cheapest-fist strategy is almost as good (asymp- 
totically) as a strategy that knows the right bias 
a priori. The implications are that in these cases, 
it is a better investment to apply knowledge to re- 
duce the complexity of the underlying task (e.g., 
by introducing heuristics based on the semantics 
of the domain) than to use it to aid in the selection 
of (syntactic) search bias (discussed more below). 

A Single Dimensionall Space 

Let us assume the states of our (higher-level) 
search space can be indexed by their projection 
onto a single dimension, and that the projection 
gives us integer values. In a machine learning 
context this could be the case where the differ- 
ent biases are different types of hypothesis-space 
search, different degrees of complexity of the de- 
scription language (e.g., number of terms in the 
antecedent of a rule), different search depths, etc. 
From now on, let us refer to the states (biases) by 
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their indices, i.e., i denotes the state that gives 
value i when pro jetted onto the dimension in ques- 
tion. Without loss of generality, let us assume 
that ir 5 i2 implies that the complexity of evalu- 
ating ir is less than or equal to the complexity of 
evaluating i2. Let c(i) denote the complexity of 
evaluating i. 

Iterative weakening is a rather simple policy in 
these cases. It specifies that the states should be 
evaluated in order of increasing i. It may seem 
that iterative weakening is a very wasteful pol- 
icy, because a lot of work might be duplicated in 
evaluating all the states. However, if c(i) is ex- 
ponential in i, then the arguments of [Korf, 19851 
apply. Korf shows that iterative deepening, itera- 
tive weakening along the search-depth dimension, 
is an optimal policy with respect to time, space, 
and cost of solution path. In short, since the cost 
of evaluating i increases exponentially, the com- 
plexity of iterative deepening differs from that of 
searching with the correct depth by only a con- 
stant factor. Thus “knowing” the right bias buys 
us nothing in the limit. This paper concentrates 
solely on time complexity. 

Theorem: (after [Korf, 19851) Iterative weak- 
ening is an asymptotically optimal policy, with re- 
spect to time complexity, for searching a single- 
dimensional space where the cost of evaluating 
state i is O(b’). 

Iterative Broadening is a similar technique in- 
troduced in [Ginsberg and Harvey, 19901, where 
the dimension in question is the breadth of the 
search. In this case, the complexity increases only 
polynomially in i, however the technique is shown 
to still be useful in many cases (a characteriza- 
tion of when iterative broadening will lead to a 
computational speedup is given). 

Theorem: (after [Ginsberg and Harvey, 19901) 
Iterative weakening is an asymptotically near- 
optimal policy, with respect to time complexity, 
for searching a single-dimensional space where the 
cost of evaluating state i is O(id). (It is within a 
dth-root factor of optimal-see [Provost, 19931.) 

A similar technique is used in [Linial, et al., 
19881 for learning with an infinite VC dimension. 
If a concept class C can be decomposed into a se- 
quence of subclasses C = 61 U C2 U . . . such that 
each C; has VC dimension at most i, then itera- 
tive weakening along the VC dimension is shown 
to be a good strategy (given certain conditions). 

Thus, previous work helps us to characterize the 
usefulness of iterative weakening along a single di- 
mension. However, in specifying a policy for bias 

selection there may be more than one dimension 
along which the bias can be selected. The rest of 
this paper considers multi-dimensional spaces. 

Multi-Dimensional S 
Consider the general problem of a search where 
the states have different costs of evaluation (in 
terms of complexity). We want to find a good pol- 
icy for searching the space. Let each state be in- 
dexed according to its projection onto multiple di- 
mensions, and let us refer to the state by its vector 
of indices Z(assume, for the moment, that there is 
a one-to-one correspondence between states and 
indices). Let c(Z) be the complexity of evaluat- 
ing state Z. Iterative weakening specifies that the 
states (biases) should be evaluated by increasing 
complexity. Let us consider some particular state 
complexity functions. (For clarity I will limit the 
remaining discussion to two dimensions, but men- 
tion results for n dimensions. A more detailed 
treatment can be found in [Provost, 19931). 

al Searches 
nsider a particular c(Z): c(i, j) = bi + bj. This 

is the complexity function for the situation where 
two (depth-first) searches must be performed, 
and both subgoals must be discovered before the 
searcher is sure that either is actually correct. 

How well will iterative weakening do on this 
problem? The following theorem shows that it 
is nearly optimal-within a log factor. For the rest 
of the paper, let ii = (i,, j,) denote the minimum- 
co goal state, and let b > 1. 

&ion: Given a search problem where 
the complexity of evaluating state (i, j) is bi + bj, 
any asymptotically optimal policy for searching 
the space must have worst-case time complexity 
O(b”‘), where m = max(i,, j,) (the complexity of 
evaluating the minimum-complexity goal state). 

Theorem: Given a search problem where the 
complexity of evaluating state (i, j) is bi+bj, itera- 
tive weakening gives a time complexity of O(mb”), 
where m = max(i,, j,). 

Proofi In the worst case, iterative weakening 
evaluates all states Tsuch that c(Z) 5 c(i;), where 
t 
29 = (ig, j,) is the (minimum-complexity) goal 
state. Thus the overall complexity of the policy 
. 

ls’ T;1 c(i) = x bi + bi. 

CWMG >I {(i,j)lb'+ti<b'g+big} 

The terms that make up the sum can be grouped 
into equivalence classes based on complexity. Let 
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a term b” be in class ck. Then the overall com- 
plexity becomes: 

21 lb 
k 

Ck > 
k=l 

where I&] denotes the cardinality of the set of 
equivalent terms. The question remains as to the 
number of such terms (complexity of b”). The 
answer is the number of vectors (i, j) whose max- 
imum element is k, plus the number of vectors 
(i, j) whose minimum element is k. The number 
of such vectors is 2m, so the overall complexity is: 
CT=1 2mbk, which is: O(mbm). 

Corollary: Given a search blem. where the 
complexity of evaluating state (i, j) is b’ + b3, iter- 
ative weakening is within a log factor of optimal. 

Proof: The optimal complexity for this prob- 
lem is O(N) = O(bm); iterative weakening has 
complexity O(mbm) = O(N log N). 

For n dimensions, the proximity to being op- 
timal is dependent on n. In general, for such 
searches iterative weakening is O(m”-’ bm) = 
O(N(log N)“-l). (See [Provost, 19931.) 

If we have more knowledge about the problem 
than just the complexity of evaluating the various 
states, we can sometimes come up with a better 
policy. In this case, the policy that immediately 
springs to mind is to let i = j and search to depth 
i = 1,2, . . . in each (lower-level) space. This is, 
in fact, an optimal policy; the amount of search 
performed is 

m 

x 2b” = O(bm). 
k=l 

We have, in effect, collapsed the problem onto a 
single dimension. The particular extra knowledge 
we use in specifying this optimal policy is that a 
solution found in state & will also be found in & if 
& is componentwise less than or equal to &. (As 
is the case for a pair of depth-first searches.) 

A Search within a Search 
Let us consider a search problem where the com- 
plexity of evaluating state (i, j) is b’+J. This com- 
plexity function is encountered when evaluating 
the state involves a search within a search. For 
example, consider a learning problem where there 
is a search for an appropriate model, with a search 
of the space of hypotheses for each model (e.g., to 
evaluate the model). Iterative weakening is once 
again competitive with the optimal policy. 

Proposit ion: Given a search problem wkere 
the complexity of evaluating state (i, j) is b’+J, 

any asymptotically optimal policy for searching 
the space must have worst-case time complexity 
0 ( bm), where m = i, + j, (the complexity of eval- 
uating the minimum-complexity goal state). 

Theorem: Given a search problem where the 
complexity of evaluating state (i, j) is bi+j, itera- 
tive weakening gives a time complexity of O(mb”), 
wherem=&+j,. 

Proof: Similar to previous proof. Note that in 
this case, the cardinality of the set of equivalent 
terms is equal to the number of vectors (i, j) whose 
components sum to k, which is k-l (given positive 
components). Thus the overall complexity of the 
policy is: CpY!l(k - l)bk, which is: O(mb”). 

Corollary: Given a search problem *where the 
complexity of evaluating state (i, j) is b’+J, itera- 
tive weakening is within a log factor of optimal. 

Proof: The optimal complexity for this prob- 
lem is O(N) = 0 (b”); iterative weakening has 
complexity O(mb”) = O(N log N). 4 

For n dimensions, the proximity to being 
optimal is dependent on n. In general, for 
such searches iterative weakening has complexity 
O(mnW1bm) = O(N(log N)“-‘). (See [Provost, 
19931.) 

In this case, the policy of collapsing the space 
and iteratively weakening along the dimension i = 
j does not produce an optimal policy. If we let 
m=i,+j,,intheworstcase,asm-too,thei= j 
policy approaches b” times worse than optimal. 

Important: Relative Growth 

As we have seen from the preceding examples, in 
general, the important quantity is the growth of 
the complexity function relative to the growth of 
the number of states exhibiting a given complex- 
ity. In the cases where there is but one state 
for each complexity (e.g., iterative deepening, it- 
erative broadening) we have seen that the faster 
the rate of growth of the complexity function, the 
closer to optimal. In multidimensional cases, as 
the dimensionality increases the policy becomes 
further from optimal because the number of states 
of a given complexity increases more rapidly. 

Let us now consider a multidimensional problem 
with a (relatively) faster growing complexity func- 
tion, namely c(Z) = bij. This is another function 
where the strategy of choosing i = j and searching 
i = 1,2, . . . is not optimal, even if we have the extra 
knowledge outlined above. If we let m = $js, in 
the worst case, as m --+ 00 the ratio of the overall 
complexity of the i = j policy to the optimal ap- 
proaches brnzmm (very much worse than optimal). 
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However iterative weakening does very well- 
even better than in the previous case. The follow- 
ing theorem shows that in this case, it is within a 
root-log factor of being an optimal policy. 

Proposition: Given a search problem where 
the complexity of evaluating state (i, j) is b’J, 
any asymptotically optimal policy for searching 
the space must have worst-case time complexity 
O(bm), where m = iajs (the complexity of evalu- 
ating the minimum complexity goal state). 

Theorem: Given a search problemSwhere the 
complexity of evaluating state (i, j) is baJ, iterative 
weakening gives a time complexity of 0 (fib”), 
where m = iaja. 

Proof: Similar to previous proofs. Note that 
in this case, the cardinality of the set of equiva- 
lent terms is equal to the number of factors of k, 
which is bounded by A. Thus the overall com- 
plexity of the policy is: 5 Cpzl fib”, which is: 
o(fib”> 

Corolla : Given a search problem+where the 
complexity of evaluating state (i, j) is b’J, iterative 
weakening is within a root-log factor of optimal. 

Proof: The optimal complexity for this prob- 
lem is O(N) = 0 (b”); iterative weak 
complexity O(fib”) = O(Ndi). 

For n dimensions, the proximity to being opti- 
mal is again dependent on n. In general, for such 
searches iterative weakening can be shown to have 
complexity O(ml”gnbm ) = O(N(logN)l”sn). (See 
[Provost, 19931.) The above results suggest that 
this bound may not be tight. 

The general problem can be illustrated with the 
following schema: Complexity(IW) = 

x 4) L c(ig)):l 

< c(ig) - l{+(i) 5 c(ii)}I - 
which is the complexity of evaluating the goal 
state, multiplied by the number of states with 
equal or smaller complexity. This gives slightly 
looser upper bounds in some cases, but illustrates 
that there are two competing factors involved: the 
growth of the complexity and the growth of the 
number of states. As we have seen, in some cases 
domain knowledge can be used to reduce the num- 
ber of states bringing a policy closer to optimal. 

Knowledge Can Reduce No. of States: 
Combining Broadening and Deepening 

For rule-space searches such as those defined for 
the chemical domains mentioned in Section 1, we 

want to select both a small, but sufhcient set of 
features (search breadth) and a small, but sufli- 
cient rule complexity (search depth). Ginsberg 
and Harvey write, ‘LAn attractive feature of it- 
erative broadening is that it can easily be com- 
bined with iterative deepening . . . any of (the) 
fixed depth searches can obviously be performed 
using iterative broadening instead of the simple 
depth-fist search” ([Ginsberg and Harvey, 19901 
p. 220). This is so when the breadth bound is 
known a priori. It will be effective if the breadth 
bound is small. When neither exact breadth or 
depth is known a priori, and the maxima are very 
large (or infinite), we are left with the problem of 
designing a good policy for searching the (high- 
level) space of combinations of b, the breadth of a 
given search, and d the depth of a given search. 

The complexity of evaluating a state in this 
space is O(bd). Strict iterative weakening would 
specify that we order the states by this complex- 
ity, and search all states such that bd 5 bad9 (the 
goal state). We begin to see two things: (i) the 
analysis is not going to be as neat as in the pre- 
vious problems, and (ii) as d grows, there will be 
a lot of different values of b to search. The second 
point makes us question whether the policy is go- 
ing to be close to optimal; the first makes us want 
to transform the problem a bit anyway. 

In this problem we can use the knowledge that a 
state Zis a goal state if 7is componentwise greater 
than or equal to zg. Since bd can be written as 
rldlos@), our intuition tells us that it might be a 
good idea to increment b exponentially (in pow- 
ers of 2). We can then rescale our axes for easier 
analysis. Let & = log(b), and consider integer val- 
ues of 6. We now have the problem of searching 
a space where the complexity of searching state 
(i, j) is bij. We know that iterative weakening 
is a near-optimal policy for such a space. Un- 
fortunately, the overshoot along the b dimension 
gets us into trouble. Given that the complex- 
ity of evaluating the (minimum-complexity) goal 
state is O(2dg10s(bg) ), the first “suflicient” state 
reached using our transformed dimensions would 
be ( gg, da), where b, = ]log( b,)] . The difference 
in complexity between evaluating the minimum- 
complexity goal and the new goal is the difference 
between 0(2dPos(b)J) and 0( 2d10s(b)), which in the 
worst case approaches a factor of 2d. 

The solution to this problem is to decrease the - 
step size of the increase of db. A satisfactory step 
size is found by collapsing the space onto the ( sin- 
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gle) dimension k = d log( b), and only considering 
integer values of k. Because we are now looking at 
stepping up a complexity of 0(2rd’“s(‘J~) (rather 
than 0(2dr10g@)l)), the overshoot of the minimum- 
complexity goal state is never more than a factor 
of 2, which does not affect the asymptotic com- 
plexity. Using iterative weakening along this new 
axis brings us to within a log factor of optimal. 

Proposition: Given a depth-first search prob- 
lem where the complexity of evaluating state (b, d) 
is bd (for possibly unbounded b and d), any asymp- 
totically optimal policy for searching the space 
must have worst-case time complexity 0(2m), 
where m = 43 l%(b) Oh e complexity of evaluating 
the minimum-complexity goal state). 

Theorem: Given a depth-first search problem 
where the complexity of evaluating state (b, d) is 
bd, iterative weakening in integer steps along the 
dimension k = d log(b) gives a time complexity of 
0 ( 6a2fi), where rit = [da log( b9)1 . 

Proof: In the worst case, iterative weakening 
evaluates all states k such that k is an integer 
and c(k) 5 c( IL,1 ), where c(k) is the complexity 
function along the k axis, and k, is the (minimum- 
complexity) goal state. Thus the overall complex- 
ity of the policy is: 

x 44 
{klc(k)sc( [ksl),k is an integer} 

= Ixl 2”. 
{k12k<2*,k is an integer} 

The states that make up the sum can be grouped 
into equivalence classes based on complexity. Let 
a state (b,d) b e in class CI, iff d log (b) = k (for 
integer k). Then the overall complexity becomes: 
cp!, l&12”, where I& I denotes the cardinality of 
the set of equivalent states. The question remains 
as to the number of states with complexity of 2”. 
The answer is the number of vectors (b, d) where 
dlog(b) = k (for integer k) . Since d is an inte- 
ger, the number of such vectors is at most k, so 
the overall complexity is: 5 CF!, k2”, which is: 
O(ti294 

Corollary: Given a depth-first search problem 
where the complexity of evaluating state (b, d) is 
bd, iterative weakening in integer steps along the 
dimension k = dlog(b) is within a log factor of 
optimal. 

Proof: The optimal complexity for this prob- 
lem is O(N) = 0(2m) where m = da log(b,); it- 
erative weakening has a complexity of O(ti2”)). 

Since rit = [ml, rit 5 m + 1. So iterative weak- 
ening has a complexity of O((m + 1)2(m+1)) = 
O(mzm) = O(N log N). 

When IW is not a Good Policy 

Several problem characteristics rule out iterative 
weakening as a near-optimal policy. The smaller 
the relative growth of the complexity of the states 
(wrt. the growth of the number of states with a 
given complexity), the farther from optimal the 
policy becomes. For example, in one dimension, 
if c(i) = i then the optimal policy is O(i) whereas 
iterative weakening is O(i2) even when there is 
only one state per equivalence class. On the other 
hand, the rate of growth may be large, but so 
too might the size of the class of states with the 
same complexity. In the previous sections, we 
saw equivalence classes of states with cardinalities 
whose growth was small compared to the growth 
of the class complexities. If, instead of counting 
the number of factors of k or the number of pairs 
that sum to k , we had an exponential or combi- 
natorial growth in the size of the classes, iterative 
weakening would fail to come close to optimal. 
(The bd problem was one where the number of 
terms grew rapidly.) 

One reason for a very large growth in the size 
of the equivalence classes is a choice of dimensions 
where there is a many-to-one mapping from states 
into state vectors. Thus, in the chemical domains, 
for iterative weakening to be applicable it is essen- 
tial to be able to order the terms based on prior 
relevance knowledge. The ordering allows a policy 
to choose the fist b terms, instead of all possible 
subsets of b terms. 

Conclusions 

The simple policy of iterative weakening is an 
asymptotically optimal or near-optimal policy for 
searching a space where the states can be or- 
dered by evaluation complexity, and they can be 
grouped into equivalence classes based on com- 
plexity, where the growth rate of the complexi- 
ties is large and the growth rate of the size of the 
classes is small (relatively). 

This has important implications with respect 
to the study of bias selection. If the bias selec- 
tion problem that one encounters fits the criteria 
outlined above, it may not be profitable spend- 
ing time working out a complicated scheme (e.g., 
using more domain knowledge to guide bias selec- 
tion intelligently). The time would be better spent 
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trying to reduce the complexity of the underly- 
ing biases (e.g., using more domain knowledge for 
lower-level search guidance). On the other hand, 
if the complexity of the biases is such that itera- 
tive weakening can not come close to the optimal 
policy, it might well be profitable to spend time 
building a policy for more intelligent navigation of 
the bias space. For example, domain knowledge 
learned searching with one bias can be used to re- 
strict further the search with the next bias (see 
[Provost & Buchanan, 1992b]). 

This paper assumed that the problem was to 
choose from a fixed set of biases. Another ap- 
proach would be to try to 6nd a bias, not in the 
initial set, that better solves the problem. By re- 
ducing the complexity of the underlying biases, 
as mentioned above, one is creating new (perhaps 
semantically based) biases with which to search. 
Even if iterative weakening is an optimal policy 
for selecting from among the given set of biases, 
a better bias might exist that is missing from the 
set. (As a boundary case of a semantically based 
bias, consider this: once you know the answer, 
it may be easy to prune away most or all of the 
search space.) 

The dual search problem and combining deep- 
ening and broadening are examples of when addi- 
tional knowledge of relationships between the bi- 
ases can be used to come up with policies closer to 
optimal than strict iterative weakening. In these 
cases, knowledge about the subsumption of one 
bias by another is used to collapse the bias space 
onto a single dimension. In the former case, it- 
erative weakening along the single dimension was 
then an optimal policy. In the breadth and depth 
selection problem, the knowledge about the sub- 
sumption of biases is sufficient to give a near- 
optimal policy. Utilizing more knowledge at the 
bias-selection level will not help very much unless 
the complexity of the underlying biases is reduced 
first. 
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