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Abstract

Extreme class skew is a hurdle in many ma-
chine learning tasks. In such skewed set-
tings, traditional methods for procuring la-
beled examples, including random sampling
and active learning, are often ineffective—
they struggle to find representative minority
examples. The framework of Dual Supervi-
sion, which incorporates feature-based back-
ground information into traditional super-
vised learning, provides one avenue to com-
bat this problem. However, active learning
for feature information (feature labeling), like
active learning, is often not resilient to ex-
treme class skew. In this work, we present an
alternative to active feature labeling, Guided
Feature Labeling. In this paradigm, human
domain experts are tasked with finding class-
indicative features given a description of a
class. This work explores different data ac-
quisition costs, and demonstrates that under
certain conditions, Guided Feature Labeling
does indeed offer high performance models at
a far lower budget than complementary ac-
tive labeling approaches.

1. Introduction

This paper provides empirical support for the efficacy
of alternative techniques for gathering and incorporat-
ing human resources during the data acquisition phase
of classifier induction. The general class of techniques
presented herein, Guided Feature Labeling, are moti-
vated by classification problems where one class oc-
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curs in far greater numbers than the other. While
the underlying results and techniques can be applied
to a wide range domains, classifier functions, and fea-
ture vectors, we motivate this work with the follow-
ing example data mining application: classifying web
pages for the purpose of safe advertising. Advertis-
ers and advertising networks (hereafter, advertisers)
would like a rating system that estimates whether a
web page or web site displays certain objectionable
content. With such a system, advertisers can control
the destination of their ads, advertising only on those
pages deemed unlikely to display such unacceptable
content (depending on the advertiser, objectionable
categories include: adult content, kids content, hate
speech, malware, etc.).1 Evaluating each potential ad-
vertising opportunity involves classifying the web page
with respect to these objectionable categories. The
classification system can take into account various ev-
idence, including the URL, the page text, anchor text,
DMOZ categories, third-party classifications, position
in the network of pages, and so on. For this paper,
we will consider only the textual html source for each
page, however, the ideas should generalize to any type
of available feature data.

Manually examining every page encountered by such a
system would be prohibitively expensive. This is par-
ticularly true in safe advertising, where models for new
classification categories must be built rapidly to meet
the changing demands of each customer and campaign.
Furthermore, assuming that these classifications are
based on statistical models, predictions will be more
or less effective depending on the amount and quality
of label information used when performing model in-
duction. For a given budget, some subset of web pages

1This site rating system may be best developed and
maintained by a third party to avoid conflicts of interest,
but that complexity does not affect the development here.
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can be examined by humans—potentially at very low
cost using a micro-outsourcing system (Sheng et al.,
2008) such as Amazon’s Mechanical Turk2—to pro-
duce training data for a supervised learning model.

Traditionally, in order to reduce the necessary cost for
building high quality models, active learning is em-
ployed as a mechanism for selecting only those in-
stances for labeling that the model perceives as most
beneficial for training. Typically this learning occurs
in epochs: at each epoch the current model computes
some utility score for all known instances. Those in-
stances with the highest utility are labeled and sub-
sequently incorporated into the training data. The
model is then retrained and the process repeats until
the budget is exhausted.

Attenberg and Provost 2010 demonstrate empirically
that traditional active learning techniques fail in such
extreme class skew settings, such as those faced in safe
advertising, proposing guided learning (referred to as
guided instance labeling in this work to avoid con-
fusion) as a solution. The guided instance labeling
paradigm presents human oracles with a concise de-
scription of a class being considered. The oracles are
then tasked with seeking instances that represent this
class, using their background knowledge of the prob-
lem and whatever tools they are comfortable using,
such as a search engine. Attenberg and Provost as-
signed a variety of costs associated with this guided
seeking, showing that in many high skew settings,
guided instance labeling can completely eclipse the
performance of an active learner for a given budget,
even when the costs-per-guided-example are several
times the costs per label.

As a supplement to traditional supervised learning, hu-
man background information regarding the class polar-
ity of individual features can be incorporated into pre-
dictive systems via dual supervised models (Melville
et al., 2009; Sindhwani & Melville, 2008). In the case of
our motivating example, this information would take
the form of classes associated with given terms (fea-
ture labels); however, any type of background feature
associations can potentially incorporated into a suit-
able model. In order to efficiently allocate a limited
budget in a dual-supervised setting, prior work has
investigated active dual supervision, interleaving the
predictions of both components of a dual supervised
model in order to select informative instances and fea-
tures for labeling at each epoch (Melville & Sindhwani,
2009a; Sindhwani et al., 2009). While dual supervision
provides an interesting alternative path for building
machine learning models, this strategy too has diffi-

2https://www.mturk.com/mturk/welcome

culties adequately exploring complex, highly skewed
problem spaces, as we see in Figure 1.

As an analogue to guided instance labeling for example
labels, this work introduces Guided Feature Labeling to
provide an alternate source for incorporating human
knowledge into the model building process. Guided
Feature Labeling tasks human oracles with finding fea-
tures (or feature values) that are likely to indicate
membership in the class of interest. For instance, in
the problem of safe advertising, an oracle may provide
terms that tend to appear in certain types of offensive
content. Guided Feature Labeling can be contrasted
with feature labeling, where oracles are presented a
feature with an unknown class affiliation, and asked
to provide a label. As seen in Figure 1, our Guided
Feature Labeling can offer superior generalization per-
formance for a given number of examples than active
learning, active feature labeling, and even guided in-
stance labeling in settings with moderate class skew.
We use this potential performance advantage to moti-
vate further investigation into Guided Feature Label-
ing.

The remainder of this work proceeds as follows: in
Section 2 we offer an explanation of Guided Feature
Labeling and present a review of guided instance la-
beling. Section 3 covers the datasets and details rel-
evant to the experiments performed throughout this
work. Section 4 explores different acquisition costs
for the different strategies investigated herein, show-
ing that Guided Feature Labeling is competitive even
when costing several times as much as explicit labeling.
Section 5 provides a detailed review of prior work, and
Section 6 provides a conclusion and gives directions for
future work.

2. Guided Instance Labeling and
Guided Feature Labeling

Guided learning (Attenberg & Provost, 2010) is an al-
ternative technique for utilizing human resources for
model development, beyond traditional (active) in-
stance labeling. Here, humans are tasked with seeking
examples satisfying some criteria. For that paper, the
basic guided instance labeling task is straightforward:
find examples representing the different classes in some
proportion, ρ. These instances are provided as input
to classifier induction.

Humans, using tools such as web search engines com-
bined with their own background knowledge on the
criteria defining the task, can often find informative
examples with an efficiency far exceeding that which is
possible by a model-based active learner. This is par-
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ticularly true in settings with highly skewed, disjunc-
tive concepts, and in the early stages of active learn-
ing where the model does not have a refined knowl-
edge of the input space. In these settings, models
induced through a guided instance labeling process
are often able to achieve a far greater level of gen-
eralization performance at a given cost than is possi-
ble through many active learning schemes, including
active learning schemes designed specifically for high
skew settings, e.g. (Tomanek & Hahn, 2009; Blood-
good & Shanker, 2009).

Active feature labeling and active dual supervision
have been proposed as alternative applications of hu-
man resources towards the construction of classifica-
tion models (Melville & Sindhwani, 2009b). At each
epoch in this setting the base classifier selects features
(or features and instances in the case of active dual
supervision) that it believes will be most informative.
These features are presented to oracles for labeling,
and the resulting feature labels, representing class as-
sociations, are incorporated into the subsequent clas-
sifier. As we show, in settings where the base learner
does not have at least a rudimentary understanding of
the problem space, active dual supervision, like active
learning, suffers from poor selections. This may often
be the case in highly skewed problems, where those
features that tend to indicate the minority class may
not have been discovered yet. In this case, the label se-
lection technique likely degrades to random sampling
of features to label, implying that any difficulties per-
forming active feature labeling would be exacerbated
by high dimensional representations of the problem
space.

Guided Feature Labeling is a technique analogous
to guided instance labeling for the task of providing
feature-class associations. Rather than having human
oracles seek class representative examples, Guided
Feature Labeling tasks laborers with finding discrimi-
native (polar) features associated with the class of in-
terest. In the case of our motivating example, safe
advertising, this would include polar terms that may
indicate membership in the class of offensive pages.
However, other domain-specific information is equally
applicable, be that certain symptoms or physical traits
being associated with certain rare disease, or customer
characteristics that may indicate an increased likeli-
hood to buy a product. This acquisition approach is
fundamentally different from active learning or active
feature labeling; rather than have a learner select in-
formative instances or features for an oracle to label,
oracles are asked to seek features that represent a class.
In a dual supervision setting, this feature label infor-
mation can supplement the instance-supervised por-

tion of the model, providing a potential bootstrap to
help an active learner (or active dual learner) overcome
the cold start problem that plagues high-skew model
construction.

3. Experimental Setup and Results

All experiments presented below are conducted on a
set of 35, 000 web pages extracted from a stream of
real ad impressions. Each url has been hand labeled
as to the presence or absence of adult content. In the
setting considered here, positive instances are deemed
unsafe for advertising. This dataset has a class skew
of roughly 80 to 1.

3.1. Experimental Framework

Dual Supervision techniques can be divided into two
categories—early fusion and late fusion. Early fusion
approaches, such as (Melville et al., 2009; Sindhwani &
Melville, 2008), integrate instance and feature supervi-
sion to produce a single composite model. In contrast,
a late fusion approach builds separate models based
on labeled instances and labeled features, and com-
bines the outputs of these models in order to classify a
new instance. The advantage of a late fusion approach
is that any existing supervised classifier can be used
to learn from labeled instances, without requiring to
adapt it to incorporate labeled features. We explore
one such late fusion approach here.

In particular, we estimate the probability that in-
stance xj belongs to class yi by the convex combina-
tion of instance-based and feature-based probability
estimates:

P (yi|xj) = αPe(yi|xj) + (1− α)Pf (yi|xj)

Here Pe(yi|xj) and Pf (yi|xj) represent the probabili-
ties generated by the instance based and feature-label
based models respectively. The parameter α is the
weight for combining these two probability estimates,
representing the confidence placed in each predictor.
While clever selection of α could no doubt improve
predictive performance, we chose to fix its value at 0.5
for the purpose of this work, in order to isolate our
results from influence of weight selection.

The instance-based component, Pe(yi|xj), is computed
through a logistic regression classifier: Pe(yi|xj) =

1

1+e−wT xj
. For our motivating example, xj is a vec-

tor space representation of each document, with each
entry corresponding to the encountered frequency of
a certain term in a document. For the feature-based
component model, we follow (Melville et al., 2009), as-
suming that the feature/class associations provided by
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the oracle are the conclusion of many instance obser-
vations. We seek a Näıve Bayes probability estimator
that is likely to generate these instances. Given:

V — the “vocabulary”, i.e., the set of features in the
problem domain
P — the set of features with positive class associations
N — the set of features with negative class associa-
tions
U — the set of unknown words: V − (P ∪N )
m — the number of features in the domain: |V|
p — the number of positive features: |P|
n — the number of negative features: |N |

We segregate the feature space into three classes: posi-
tive, negative, and unknown to reflect the feature/class
associations. Features belonging to these three classes
are denoted fp, fn, and fu respectively. The likelihood
components of the Näıve Bayes model are given by:

P (fp|yp) = P (fn|yn) =
1

p+ n

P (fp|yn) = P (fn|yp) =
1
r

1
p+ n

P (fu|yp) =
n(1− 1/r)

(p+ n)(m− p− n)

P (fu|yn) =
p(1− 1/r)

(p+ n)(m− p− n)

The class probability for a given x = ~f is then:

Pf (y|x) =
P (y)
P (x)

∏
f∈x

P (f |y)

Throughout this work, we use r = 100. The
derivation for this probability estimator can be found
in (Melville et al., 2009). While the instance-trained
and background-trained components of this late-fusion
dual-supervised model provide efficient, reasonable
predictions, the strategy presented in this paper does
not depend on the specific functional form of classifier
used.

Each document is encoded with the standard vector
space representation by storing the frequencies of the
4, 096 terms with the highest global information gain.
All experiments are averages across ten folds of cross
validation. Due to the skew involved in our experi-
ments, at each epoch, we report the area under the
ROC curve. Each epoch consists of thirty additional
instances or features being revealed to the model.

As with most active learning research, we simulate
how a real learning system would behave in a realistic
setting. In the case of guided instance labeling and
Guided Feature Labeling, we rely on class-conditional
random sampling. For Guided Feature Labeling, this
entails choosing features uniformly at random accord-
ing to some proportion, ρ; ρ|b| of the features gathered
at each epoch have minority class associations, and
(1 − ρ)|b| are randomly selected from those features
with majority class associations. Here, ρ ∈ [0, 1], and
|b| is the number of selections made at each epoch. A
similar simulation is used in the guided instance label-
ing setting; class-conditional random selection is used
in accordance to some mixing parameter. Experimen-
tal validation in (Attenberg & Provost, 2010) shows
that models trained using actual explicit human gath-
ering behave similarly to those trained through guided
instance labeling.

The feature polarity oracle is simulated by assigning
labels to the 500 terms in the data set with the high-
est information gain. The label assigned to each of
these terms corresponds to the class with the highest
likelihood, e.g. arg maxy

p(y|f)
p(y) for class y and term

f . The remaining terms in the vector space receive an
“unknown” label not denoting any class polarity. In
our setting, all features are treated as unknown by de-
fault; therefore, a returned label of unknown does not
change the state of the feature-based classifier.

3.2. Experimental Results

Figure 1 presents a comparison of guided instance la-
beling, Guided Feature Labeling, traditional uncer-
tainty sampling on instances, certainty sampling on
features3 as in (Melville & Sindhwani, 2009b), and
uniform random sampling from both features and in-
stances. For this particular experiment, we assume
an equal cost of data acquisition for labeled instances,
features, and for the guided selection of both instances
and class-indicative features. We see that given this
equal cost assumption, the guided techniques clearly
dominate random sampling and uncertainty sampling
for our example problem setting. Note that while cer-
tainty sampling on features may waste many queries
on features with “unknown” class associations, thereby
not offering any improvement to the subsequent classi-
fier, Guided Feature Labeling requests result in a fea-
ture with a definitive class association. This greatly
improves the chances that a model constructed under
Guided Feature Labeling is able to see gains in gener-
alization performance over successive epochs.

3Sampling most certain features was found to perform
better than sampling uncertain features.
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Figure 1. Comparison of data acquisition strategies. The
vertical axis shows the generalization performance of the
models, the horizontal axis shows the total cost incurred
for labeling.

4. Budget-Sensitive Data Acquisition

Figure 1 clearly shows the potential efficacy of guided
selection techniques over conventional learning tech-
niques in certain settings. However, a uniform cost
over the four types of proposed efforts may be unrealis-
tic. The search process necessary for guided techniques
likely requires a greater deal of human effort than sim-
ple labeling, and therefore may incur a greater cost per
instance.

In this section, we seek to explore the generalization
performance achievable at a given cost for models
trained on different data acquisition strategies. Fig-
ures 2 and 3 present different cost structures for per-
forming guided instance labeling and Guided Feature
Labeling respectively. Here c = 1 indicates that one
instance selected by guided instance selection costs as
much as one label request. We note from these fig-
ures that even at fairly extreme cost settings, guided
instance selection is able to achieve much better gen-
eralization performance than uncertainty sampling for
a given budget. This distinction is less pronounced in
the case of Guided Feature Labeling (Figure 3), where
a cost of about eight labels per guided request, fea-
ture certainty sampling seems preferable in our sample
problem.

Guided instance selection excels in cases where hu-
man experts can identify representative examples more
easily than a machine learning algorithm with little
knowledge of the problem space. As the human ora-
cles’ difficultly of finding examples from the minority
class increases, so is the acquisition cost likely to in-
crease. However, since the problem has been posed
to a machine learning system, it is to be expected
that system designers or human oracles can provide de-

Figure 2. Comparison of different guided instance selection
acquisition costs in comparison to traditional uncertainty
sampling.

Figure 3. Comparison of different guided feature labeling
acquisition costs in comparison to feature certainty sam-
pling.

scriptions of positive instances, features that are likely
to distinguish the positive class from the bulk of in-
stances. In the dual supervision setting, this back-
ground knowledge can be encoded into a dual supervi-
sion model, and is the essence of Guided Feature La-
beling. Figure 4 explores some possible cost scenarios.
We see that as the cost of instance selection rises, it be-
comes preferable to perform Guided Feature Labeling.
Note that a cost-per-feature of c = 2, Guided Feature
Labeling is very competitive with guided instance la-
beling, when the latter incurs a cost-per-instance of
c = 8. At this cost setting, both guided strategies
are superior to active learning on either features or
instances.

5. Related Work

There has been a great deal of research on active learn-
ing in the machine learning community. Often this
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Figure 4. Comparison of different guided feature labeling
and guided instance selection facquisition costs in compar-
ison to feature certainty sampling and instance uncertainty
sampling.

work assumes the active learner is given some initial
set of data upon which initial models can be built.
However, the cost of acquiring this initial set is of-
ten ignored. Attenberg and Provost 2010 proposed a
generalization of this process, guided instance label-
ing, where class conditional instances can be acquired
from an oracle for a certain cost. They demonstrated
that under certain cost assumptions, simply continuing
the process of having oracles actively acquire data may
dramatically outperform active learning, even with sig-
nificant imbalance in acquisition costs.

There is an extensive body of work investigating
strategies for learning in highly skewed settings. This
work includes over-sampling the minority class or
under-sampling the majority class (Chawla et al.,
2002; Liu et al., 2009). A different branch of work
investigates the application of non-uniform misclassifi-
cation costs during training in order to give additional
consideration to the class of interest (Domingos, 1999).

There has been some work on active learning on
skewed data. Tomanek and Hahn 2009 investigate
Query By Committee-based approaches to sampling
labeled sentences for the task of named entity recog-
nition. The goal of their selection strategy is to
encourage class-balanced selections by incorporating
class-specific costs. This work assumes that classifiers
can often accurately infer which instances belong to
the minority class, giving higher weight to instances
thought to belong to the minority class and with a high
degree of uncertainty. Our work differs from this by
extending to extreme cases where initial performance
is poor. Additionally, our techniques are more general,
able to extend beyond the tasks faced in NLP.

Bloodgood and Shanker 2009 use a similar approach

to (Tomanek & Hahn, 2009), incorporating class spe-
cific cost factors to encourage choosing from the mi-
nority class in the skewed setting. Here the base rate
is estimated on a small random sample. We note that
in many realistic settings, random samples may not re-
veal any minority instances, thereby foiling this tech-
nique.

Zhu and Hovy 2007 investigate active learning in con-
junction with over and under-sampling to alleviate the
class imbalance problem. Here active learning is used
to choose a set of instances for labeling, with sampling
strategies used to improve the class distribution. Our
work differs by seeking strategies for acquiring a good
class distribution in the data, removing the necessity
for performing sub-sampling.

Ertekin et al focus on learning with highly imbalanced
data sets. Given a large, imbalanced pool of labeled
instances, the authors randomly sub-sample instances,
choosing to keep only those that are closely positioned
to the margin of a SVM classifier. The authors do not
address the problem of seeking unlabeled instances in
the wild. Furthermore, the margin-based active learn-
ing heuristic is very similar to uncertainty sampling,
a strategy that we demonstrate to exhibit difficulty in
the extremely skewed cases.

We note that many active learning strategies depend
to some degree on the quality of the current model—
until the model “warms up”, the instance selection
is essentially random. This cold-start problem has
been examined by Zhu et al. , work extended by Don-
mez and Carbonell 2008. This work seeks to find
“clusters” of distinct content among the unlabeled in-
stances. While these techniques offer greater potential
overcoming the cold-start than many common active
learning techniques, they still are unlikely to succeed
in the extremely skewed case. There is often so much
diversity within the majority that such a method will
miss the minority instances. Additionally, these com-
plex methods don’t scale well to the data sizes neces-
sary to experience an extreme class skew.

Donmez et al 2007 propose a hybrid active learning
technique whereby a density-sensitive learning tech-
nique is used to overcome the initial deficiencies of
uncertainty sampling until the derivative of the learn-
ing rate decreases below some threshold. After this
point, traditional uncertainty sampling is incorporated
to the instance selection. The intuition here is that the
density-sensitive technique is better for exploring the
space, while uncertainty sampling is better at “fine
tuning” the decision boundary.

Active learning in the context of dual supervision mod-



Guided Feature Labeling for Classifier Induction

els is a new area of research with very little prior work,
to the best of our knowledge. Most prior work in ac-
tive learning has focused on pooled-based techniques,
where examples from an unlabeled pool are selected
for labeling (Cohn et al., 1994). In contrast, active
feature-value acquisition (Melville et al., 2005) and
budgeted learning (Lizotte et al., 2003) focus on es-
timating the value of acquiring missing features, but
do not deal with the task of learning from feature la-
bels. Raghavan et al. 2007 and Raghavan et al. 2006
study the problem of tandem learning where they com-
bine uncertainty sampling for instances along with co-
occurence based interactive feature selection. Godbole
et al. 2004 propose notions of feature uncertainty and
incorporate the acquired feature labels into learning
by creating one-term mini-documents. Druck et al.
2009 perform active learning via feature labeling using
several uncertainty reduction heuristics. Sindhwani
et al. 2009 also study the problem of active dual su-
pervision, applied to a graph-based dual supervision
method. They explore various heuristic approaches to
active learning for instances and features separately.
In order to interleave selections from both instances
and features, they randomly probe an active instance
learner or an active feature learner for the next query.
In contrast, we take a holistic approach to active dual
supervision, where by estimating the potential value
of features and instances on the same scale, we select
the type of acquisition that is most likely to benefit
our classifier.

Learning from labeled examples and features via dual
supervision is itself a new area of research. Sind-
hwani et al. 2008 use a kernel-based framework to build
dual supervision into co-clustering models. Sindhwani
and Melville (Sindhwani & Melville, 2008) apply sim-
ilar ideas for graph-based sentiment analysis. There
have also been previous attempts at using only feature
supervision, mostly along with unlabeled documents.
Much of this work (Schapire et al., 2002; Wu & Sri-
hari, 2004; Liu et al., 2004; Dayanik et al., 2006) has
focused on using labeled features to generate pseudo-
labeled examples that are then used with well-known
models. In contrast, Druck et al. 2008 constrain the
outputs of a multinomial logistic regression model to
match certain reference distributions associated with
labeled features. In a similar vein, Liang et al. 2009
learn from labeled examples and constrains on model
predictions.

6. Conclusions and Future Work

Guided feature labeling provides an alternative strat-
egy for taking advantage of human resources for im-

proving supervised learning: humans are tasked specif-
ically with providing (finding) class-indicative fea-
tures. In combination with a dual-supervision system,
which allows class-polarity information about features
to be taken as input, guided feature labeling allows hu-
mans quickly to prime the modeling procedure based
on their background knowledge of the domain. In ad-
dition, humans can continue to add value if it is possi-
ble to search for class-indicative features with the aid
of search engines or other tools. This paper demon-
strates that for certain settings, using guided feature
labeling can result in generalization performance far
exceeding that obtainable using traditional instance-
or feature-based active learning in a dual-supervision
setting.

This work is a first foray into the guided acquisition
of feature information, and is meant to serve as a mo-
tivation for future work. This future work includes
intelligent mixing of guided instance selection, guided
feature labeling, active learning, and active dual su-
pervision. Such work would be particularly beneficial
when the estimated costs of each strategy can be es-
timated, and then can be used to guide choices made
at each epoch. Additionally, more sophisticated active
learning strategies may effectively interleave the selec-
tion of instances and features for labeling. Such in-
terleaving is also likely to benefit any guided selection
strategy. A thorough study of the latest active dual
supervision strategies in concert with guided instance
labeling is a promising direction for future research.
We also conjecture that guided feature labeling is an
ideal candidate to help alleviate the bootstrapping, or
“cold-start,” problem for active learning. Finally, we
would like to evaluate real human oracles’ abilities at
performing guided feature labeling, comparing this to
our simulation strategy, thereby assessing the viability
of our proposal in real data mining settings.
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