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Abstract

In this paper I present issues and
results pertaining to goal-directed
inductive machine learning, in
particular, inductive learning that takes
into account the cost of the errors made
when the learned concept description is
used. Previous work introduced the
notion that learning programs should be
able to take as input different policies,
so that they can learn under different
pragmatic considerations. This paper
shows that inductive learning can trade
off classification accuracy for a
reduction in cost, when the learning
program uses a cost function to
evaluate its learned knowledge. In
particular, I discuss costs related to
risks, in the classic mushroom and
breast-cancer domains, and monetary
costs in a domain of diagnosing errors
in the local loop of the telephone
network.

1 Introduction

In inductive machine learning it is usually
assumed that the goal of learning is to
maximize the classification accuracy of the
resultant concept description (sometimes along
with some concern for the comprehensibility of
the concept description). However, in some
cases it is not possible to achieve perfect
classification because of insufficient data or
computational resources, or an inadequate
description language. A policy that treats all
misclassification errors identically may run into
trouble in domains where different types of

errors have different costs, especially if there is
a large disparity in the costs.

In previous work [Provost & Buchanan,
1992a], [Provost, 1992] we introduced the
notion of inductive policy as the strategy for
selecting inductive bias based on pragmatic
considerations and the underlying assumptions
of the domain. In this paper I discuss a
particular pragmatic consideration: different
errors may have different costs. I show that a
standard rule learner can be run with a policy
that allows it to trade off accuracy for reduced
cost of errors, by criticizing the rules learned
based on a user-defined cost function. (The
decision to learn with sensitivity to prediction
cost is similar to the decision to be sensitive to
the cost of measuring features, as in [Tan &
Schlimmer, 1990].)

Section 2 describes the approach I used in the
experiments below. Sections 3 and 4 describe
results in three domains. Section 3 summarizes
results (previously reported in [Provost 
Buchanan, 1992a]) on the mushroom domain
(stored in the UCI repository) where accuracy
is traded for reduced risk. Similar results are
observed in the breast-cancer domain (also in
the UCI repository). Section 4 discusses
preliminary results showing that similar
tradeoffs can be made with respect to monetary
costs, when learning to diagnose errors in the
telephone local loop. Finally, Section 5
discusses lessons learned and future directions.

2 One Approach

For this work I took a standard machine
learning algorithm and built policies around it
for learning with sensitivity to the cost of errors
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(I discuss alternative approaches below). The
learning program is RL [Clearwater & Provost,
1990], a rule-learning program that performs a
general-to-specific heuristic search of the space
of condition-action rules defined by a domain-
specific vocabulary. Each rule’s condition is a
conjunction of features; a set of rules is viewed
as a disjunction. (Domain-specific evidence-
gathering techniques can be used to make
classifications from a rule set.) The search is
guided by an explicit bias describing such
things as" criteria for good rules, a complexity
limit on the rules, thoroughness of the search,
etc. RL is described in detail in [Provost,
1992].

The policies built around the learning algorithm
have a simple, iterative structure: learn,
criticize, modify, learn, criticize, modify, learn,
etc. The learn phase is a run (or several runs)
of the learning system. The criticize phase
analyzes the results of the learning and goes
hand-in-hand with the modify phase. The
concept description may be modified and/or the
bias of the learning system may be modified
(based on the critique). Finally, the system
iterates until some convergence criteria are
satisfied. Subsequent learning can use the
description formed (so far) as prior knowledge
to guide and restrict further learning.

The results summarized in Section 3 and
presented in Section 4 were generated with
different high-level systems. The results in
Section 3 were generated with the SBS
Testbed, a system that allows different policies
to be specified under different pragmatic
constraints, by giving the system different sets
of bias selection operators and a bias evaluation
function. The SBS Testbed is described in
detail in [Provost, 1992], and in [Provost &
Buchanan, 1994]. It uses bias-selection
operators to create tentative candidate biases,
learns rules with each, combines these with the
previously learned rule set, and chooses the
best of the tentative sets with respect to the
evaluation function. The current bias is set to
the bias with which the best rule set was
learned, and the process iterates until one of
several stopping criteria is met. The specific set
of operators used below performs a hill-
climbing search in RL’s bias space,
constructing a concept description across biases
and using the learned knowledge to guide and
restrict its search.

To construct the concept description across
biases, the policy combines the most recently
learned (tentative) rule set with the currently
held rule set. In short, it takes the union of the
current set and the tentative set and prunes it,
using a greedy heuristic, to find a subset of the
rules that performs maximally well with respect
to the bias-evaluation function (which could be
called non-monotonic theory construction).
The heuristic sorts the rules based on a
certainty factor (as in [Quinlan, 1987]), and
then iterates through the rule set removing the
first rule (on each iteration) that does not help
the performance (cf. the greedy rule set pruning
heuristic from [Quinlan, 1987]). The
evaluation functions used in Section 3
combined accuracy with risk, and are described
below.

For the results in Section 4 regarding
diagnosing errors in the telephone local loop, it
was clear from previous analysis (described in
[Danyluk & Provost, 1993b]) that a learning
bias would be required that would allow many,
very small disjuncts to be learned. The policy
used in this domain was to bias RL
appropriately for learning small disjuncts, and
start with a reasonably quick search of the rule
space (using a narrow beam search in RL).
The policy was iterative, as above, pruning
learned rule sets with a greedy heuristic to
remove rules that hurt (or did not help) the
performance, and increasing the beam width
when no improvement was achieved. In both
Sections 3 and 4, the learned rule sets were
used to restrict further learning from
considering new rules that did not cover at least
one new example (see [Provost & Buchanan,
1992b]). The evaluation functions used in
Section 4 combined accuracy with monetary
costs, and are described below.

This is but one approach to learning with
sensitivity to the cost of errors. Unfortunately,
machine learning work usually treats error
costs as equal and concentrates solely on
predictive accuracy. One exception to this is
the CRL system [Tcheng, Lambert, Lu, &
Rendell, 1989], which allows the user to
specify domain dependent error metrics, which
can then be used to guide the learning;
however, results as to the method’s efficacy are
not presented. Another alternative technique
would be to learn a probabilistic concept
description and apply it in combination with
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decision-analytic techniques (which take into
account costs, benefits and likelihoods). This
is similar to the work of Etzioni [Etzioni,
1991], which studies the introduction of
decision-analytic techniques into an agent’s
control policy (and the use of learning to aid
estimation). Cost-sensitive-classification work
from statistics should also be considered in
such a comparison, an overview is given in
[James, 1985].

3 Risks as Costs (or Better Safe than
Sorry)

In many domains the cost of making mistakes
is asymmetric--especially where significant
risks are involved. For example, in the classic
mushroom domain [Schlimmer, 1987], under
normal circumstances no harm is done when an
edible mushroom is classified as poisonous. In
contrast, classifying a poisonous mushroom as
edible can have dangerous (sometimes mortal)
consequences. The assumption that a certain
prediction is more risky than another should
lead to a different learning policy than that
taken when one can assume that all mistakes
can be weighted equally. Obviously, for the
mushroom domain a completely safe policy
would be not to even use a learning program;
instead use a concept description that always
predicts a mushroom is poisonous---dangerous
predictions would never be made. However,
this approach would never allow any
mushroom to be eaten. The policy used by
mushroom experts varies from expert to expert.
A very conservative policy requires
considerably more evidence, for example, than
a less conservative one [Spear, 1992].

[Provost & Buchanan, 1992a] showed that in
the mushroom domain, a learning program can
be biased to learn a risk-averse rule set, at the
expense of a reduction in the classification
accuracy. Manual selection of learning bias
achieved as low as 0.04% dangerous errors,
keeping an accuracy of 84.5% (averages over
10 runs, training on 100 examples, testing on
915). This work also showed that a learning
system that can learn with different policies
under different pragmatic considerations
(described above) can trade off accuracy for
reduced risk automatically. When the system
was given a policy to maximize accuracy, it
achieved 96.3% accuracy (average 10 runs,
etc.), but 2.7% of its predictions were risky

errors. Factoring in a penalty for risky
predictions allowed the risk rate to be reduced
to 0.16%, while the accuracy was degraded to
82.2%.

Predicting the edibility of mushrooms is not the
only classification task where the risk
associated with different errors differs. In
many medical diagnosis domains the "cost" of
different errors is also different. In the classic
breast-cancer domain [Michalski, et al., 1986],
it is not possible (given the information
provided) to come up with a concept
description that makes no errors. However,
the two different types of errors in this domain
do not have equivalent costs. One type of error
would be to predict a recurrence of cancer,
when in fact it would not occur. The other type
would be to predict that the cancer would not
occur, when in fact it would. For this section,
I will assume that in terms of safety the second
type of error (falsely saying "everything’s ok")
is more costly than the first (falsely saying
"we’d better watch out for recurrence"). Note
that this does not tell the whole story, because
the medical procedures that stem from a false
prediction of recurrence might be costly both in
terms of money and safety.

For this data set, previous learning work has
reported accuracies in the 65%-75% range. It
is interesting to note that the simple rule,
predict the most commonly occurring class
from the training set, performs in this range
since approximately 70% of the examples are
from one class (no recurrence); however, all 
its errors (30%) are of the risky type. This,
taken together with the specialists’ reported
accuracy of only 64% [Michalski, et al., 1986],
lends credence to the belief that accuracy alone
is not a sufficient basis upon which to judge the
results of learning.

Running the cost-sensitive system with a policy
for maximizing accuracy achieved 70.3%
(averaged over 10 runs, using 100 examples
for training, 100 examples for evaluation, and
86 for testing), with a risky prediction rate of
18.1%. Penalizing the system for risky errors
allowed a reduction in the risky prediction rate
to 4.4%, with a corresponding average
accuracy of 44.5%. (Note that the "always
safe" rule yields 0% risk in this domain, with
an accuracy of 30%.) These results are
presented in detail in [provost, 1992].
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The explicit representation of how the system
should deal with the accuracy/safety tradeoff
allows the system to select biases to learn a
concept description that gives a good score
with respect to this function, and thereby
performs well with respect to the tradeoff. The
problem of specifying the bias-evaluation
function (in light of a particular inductive
policy) remains. However, the first functions
chosen in the previous studies performed very
well. I assert that specifying this function and
letting the system select the bias automatically
is easier than manual bias selection (such as
that mentioned above), because its specification
is more directly related to the assumption in
question (i.e., the relative importance of the
different prediction errors and predictive
accuracy).

4 Monetary Costs

MAX is an expert system developed by
NYNEX Science and Technology that
performs high-level diagnosis of customer-
reported telephone troubles [Rabinowitz,
Flamholz, Wolin, & Euchner, 1991]. Due to
the volume of troubles handled by MAX, even
a small improvement in its accuracy is
extremely valuable each dispatch typically
involves at least one hour of time by a highly
trained worker. Because the process of tuning
and updating the MAX system is very tedious
and time intensive, and since the MAX system
must be modified to take into account the
differences that exist with each new site, and
must be modified to take into consideration
changes over time, it is interesting to consider
whether machine-learning techniques can be
useful to help in automating such modifications
(see [Danyluk & Provost, 1993a]). 
mentioned in Section 2, previous work has
shown that if a learning system is biased to
learn very small disjuncts (as well as larger
ones), it can learn high-accuracy concept
descriptions from the data used in this study.
Now I will consider adding monetary costs to
the equation.

MLT1). The representative sends the
information from the trouble report and the
electrical tests to a maintenance administrator
(MA), who evaluates the trouble and
determines how the company should take care
of ("dispatch") the trouble. MAX
(Maintenance Administrator eXpert) plays the
role of an MA, i.e., it uses the MLT test
results, together with other information, to
make a screening diagnosis. The only
exception is that MAX has the option of
referring difficult problems to a human MA.
MAX diagnoses a problem based on the
following information: results of the MLT,
knowledge about the customer’s line, and
general knowledge about equipment. MAX
can "dispatch the trouble" in any of the
following ways (costs indicated2): to cable
repair technician (~$158), to internal repair
technician (i.e., to customer’s home) (~$158),
to central office (~$79), request further testing
(~$5), send to human MA (-$0).

4.2 Saving Money

As mentioned above, MAX can save large
sums of money due to the volume of
dispatches. Since one primary goal is to save
money, high accuracy should not be the sole
consideration when building the system
(manually or automatically). In this section, 
present a case study of learning with sensitivity
to monetary costs. For these results, I
concentrated on 1500 examples of dispatches.
For the following experiments, 500 examples
were used for training, 500 for evaluating
concept descriptions during learning, and 500
for final testing.

As in the previous section, the system judged
potential concept descriptions based on a linear
polynomial that factored in both accuracy and
cost--in this case, the sum of the dollar costs
of the errors made by the set of rules on the
evaluation data. Below I will refer to the

4.1 A Quick Max Overview

When a customer has a problem with his (or
her) phone/line, he calls 611 to report the
trouble. A NYNEX representative takes a
report of the trouble and also initiates electrical
tests on the line (a "mechanized loop test" or

1 MLT was developed, and is maintained, by AT&T.

2 These costs are reasonable values that have been
selected from baseline studies. These are not the actual
costs to NYNEX, which are still under debate (e.g.,
sending a problem to a human MA is not really free).
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coefficients in this function as A and B, based
on the function:

score = A * accuracy - B * cost.
For these experiments I concentrated solely on
the cost of errors made, ignoring the cost of
correct dispatches. This is based on the
assumption that the correct dispatch would
have to be made eventually after an erroneous
dispatch was detected, so the difference
between the costs is the cost of the error. This
assumption is arguable for some special cases,
but seems to be a good first approximation.

The following experiments deal with two
additional issues: the default class and the
redundancy level of the pruned rule sets. For
previous work, the most frequently occurring
class was used as the default class (as is
common in inductive machine learning).
However, in this domain the most frequently
occurring class (dispatch to the customer’s
home) is a high-cost dispatch. If the objective
is to reduce cost, a more rational default would
be to send the problem to a human maintenance
administrator----considered a freebie for this
study.

The second additional issue is that of
redundancy in the pruned rule sets. As
described above, the criticize/modify step in the
iterative policy prunes rules from the currently
held rule set. There are two intuitive options
for such pruning: (i) prune rules that decrease
the evaluation score of the rule set, or (ii) prune
rules that do not increase the score of the rule
set. For brevity I will call option (i) redundant
pruning, because it leaves a rule set with some
redundancy, and option (ii) non-redundant
pruning.

4.3 Results

When the system was run with A=I and B=0
(consider accuracy alone), with "dispatch 
home" as the default and redundant pruning,
the results were as expected: high accuracy
(89.2%) and moderate error cost ($6839 for 
500 test cases). Learning with a default of
"send to human MA" produced small
reductions in the accuracy (84.8%) and the cost
($5258). It is interesting to note, however, that
it is better to take the rule set learned with
"dispatch to home" as the default, and switch
the default to "send to human MA" when it is

used on the final test set; this yielded an
accuracy of 84.8%, but a cost of only $4626.
This phenomenon can be explained by the fact
that the reduced cost is not due to the system
optimizing the rule set for cost. It is due to the
fact that with the latter method the errors made
by the default rule have lower costs. More
specifically, when pruning for higher accuracy
with the default "dispatch to home," the system
discarded all rules whose class was "dispatch
to home" that made even one erroneous
prediction, because the default rule covered for
them. This reduced the number of high cost
errors of commission in the resultant rule set.

Perhaps counterintuitively, when running the
system with "dispatch to home" as the default
and redundant pruning, factoring in the cost of
errors had (almost) no effect on the
performance of the rule sets. Even with A=0
and B=I (consider cost alone), the accuracy
was still 89.2% and the cost around $6700.
The reason for this effect was that by using a
high-cost default, the best the system could do
to minimize the cost of errors was to maximize
the accuracy (i.e., the best way to avoid costly
errors is not to make errors).

Factoring in the cost of errors was much more
effective when the default was set to "send to
human MA," since now errors of omission
were not costly (and the system could
concentrate on reducing the number of costly
errors of commission). Table 1 shows that by
changing the relative weights of accuracy and
cost in the evaluation function, different levels
of tradeoff can be achieved (in Table 1, B=I
for all experiments). The tradeoff spectrum is
fairly well behaved, ranging from high
accuracy and high cost when the function is
dominated by the accuracy term, to much lower
accuracy with significantly reduced cost when
the function is dominated by the cost term.

An interesting question arises from the results
summarized in Table 1. One would like the
cost to be minimized when cost is the sole
factor in evaluation. However, for the
experiment with A=0 and B=I, there was still a
substantial cost of errors (albeit, one-third of
the cost of errors for the highest accuracy case,
above). This is due to the redundant pruning.
As mentioned above, this domain is one where
special cases play a very large role. For a
selection of 500 examples, there will be many
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Table 1: Accuracy can be traded off for reduced cost (redundant pruning). A is the relative weight 
accuracy (as a percent) to cost. Rules are learned on 500 examples, and pruned on a separate 500;
accuracy and cost are computed on a third set of 500 examples.

A [ # rules accuracy cost II A # rules accuracy COSt

0 162 59.2 $2330 50 175 75.2 $3357
1 162 59.2 $2330 100 174 75.2 $3436

10 162 59.2 $2330 150 245 83.6 $3446
30 163 60.4 $2335 200 244 82.8 $4078

special cases that do not appear at all in a
disjoint selection of 500 examples. Thus,
when the rules are evaluated (on a set of
evaluation examples), many rules that would
make errors on a different set of examples,
instead have no effect on the score (and are
kept by the redundant pruning). This has
important benefits when trying to maximize
accuracy (n0n-redundant pruning throws away
good rules, and degrades accuracy), but hurts
when trying to minimize cost.

Table 2 shows the effects of factoring in the
cost of errors when non-redundant pruning is
used to discard rules that do not seem to affect
the performance in a positive manner
(otherwise, the experiments are identical to
those described in Table 1). We see that now
the system shows the intuitively satisfying
effect of finding a zero-cost set of rules (a null
set of rules) when the objective is to minimize
cost. Also, the performance of the learned rule
sets behaves reasonably well as the relative
weight of accuracy to cost is increased.

5 Conclusions and Future Directions

What lessons can we learn from the results
presented above? First, it is clear that inductive
learning can be effectively directed by different
goals--here goals regarding tradeoffs between
the accuracy of a learned concept description
and the cost of using it--and that an iterative
learn-prune-learn cycle is an effective means of
directing the learning.

In addition, there are important factors to
consider, namely: what default is to be used
and what type of pruning is to be used. With
respect to defaults, a high-cost default seems to
force the system to maximize accuracy, even
when directed to minimize cost. This is
because with a high-cost default, errors of
omission become very costly, so pruning error-
prone rules is not efficacious. With respect to
pruning, for domains such as NYNEX MAX
where special cases play a large role, non-
redundant pruning degrades accuracy.

Table 2: Accuracy can be traded off for reduced cost (non-redundant pruning). A is the relative weight
of accuracy (as a percent) to cost. Rules are learned on 500 examples, and pruned on a separate 500;
accuracy and cost are computed on a third set of 500 examples.

A # rules accuracy cost II A # rules accuracy cost
0 0 27.6 $0 60 42 68.6 $1396
1 31 51.4 $661 70 48 75.8 $1875

10 35 51.8 $661 80 53 79.0 $2191
20 39 52.2 $996 90 53 79.0 $2191
30 33 52.8 $680 100 53 79.0 $2191
40 50 63.2 $1242 150 56 79.8 $2195
50 42 68.6 $1396 200 56 80.2 $2670
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This is because special case rules seem to have
no effect on the evaluation if their
corresponding special cases do not appear in
the evaluation data. On the other hand, this
same phenomenon makes non-redundant
pruning effective for reducing the cost of using
a rule set, because it throws away rules that do
not increase the score (and may make costly
mistakes on another set of examples). We saw
in Section 4 that with non-redundant pruning,
if the objective is to minimize cost (alone), the
learner learned a zero-cost rule set.3

It is possible that a system that selects inductive
bias automatically can select an appropriate
default class and pruning strategy (which both
fit into an extended definition of inductive bias,
as in [Provost & Buchanan, 1994]). I have not
yet experimented with this idea.

The precise relationship between the specific
evaluation function given to the system and the
specific tradeoff achieved needs to be
investigated further. At this point, achieving a
precise tradeoff is more a matter of intuition
and experimentation in the specification of the
inductive policy (viz., the evaluation function)
than a matter of firm theory. One possibility is:
if a g.iven minimum level of accuracy and/or
maximum cost is specified, use the
criticize/modify phase of the learning process to
attempt to achieve these specific levels. Other
issues for future investigation include: does the
iterative process really provide substantial
benefits, or would learning a very large,
redundant rule set and pruning (once) be better?
And, can we incorporate better techniques for
using learned knowledge and goals to guide
subsequent search?
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