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ABSTRACT

In the United States financial firms have the regulatory obligation
to monitor the communications of their employees (e.g., emails,
chats, phone calls) in order to detect misconduct. Some forms of
misconduct are illegal activities (e.g., insider trading, bribery) while
others are policy violations (e.g., improper security practices, or
inappropriate language use). Traditionally, firms have deployed rel-
atively simple rule-based systems for employee surveillance. Such
systems generate many false positive alerts and are hard to adapt
to the changing environment. Recently, firms have attempted to im-
prove their systems by transitioning from the rule-based techniques
to statistical machine learning approaches. However, they still treat
the problem of misconduct detection as a single-document classi-
fication problem. We present an approach that focuses on actors,
connections among actors, and on cases of misconduct. Further-
more, we highlight the importance of having a “human-in-the-loop”
approach, where humans are both guided by and guide the system
at the same time, in order to detect malfeasance faster and to adapt
to changing environments. We also discuss how humans can play a
key role for detecting shortcomings of existing machine-learning-
based malfeasance-detection systems. Our multifaceted approach
has been developed and tested in real environments within both
massive and smaller financial institutions, and we discuss practical
constraints and lessons learned.!
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1 INTRODUCTION

Financial institutions have been the focus of increased regulatory
scrutiny over the last decade, with more than $321 billion dollars®
paid in fines, mainly due to problematic and unethical behavior of
the firms’ employees. One of the key problems that causes these
fines is the lack of effective tools to monitor employees’ actions,
which permits employees to misbehave without being detected.
Firms in the financial industry have the obligation to monitor their
employees and investigate any potential cases of malfeasance. The
types of malfeasance can vary, from bribery and insider trading, to
improper promises to clients, violations of information security, to
sexual harassment. Unfortunately, the existing systems in place to
detect malfeasance still rely on archaic, rule-based technology that
generates massive numbers of false alerts and places a heavy burden
on human reviewers to reason from alerts on low-level events (e.g.,
emails) to inferences about the presence of malfeasance.

Recent efforts attempting to replace the rule-based systems with
statistical machine learning approaches have had limited success.
The key problem is that such systems replicate the approach of
the rule-based systems, which are event focused—they attempt to
classify individual observations of events as malfeasance. Events
here could be particular emails, chats, calls, trades, etc. Unfortu-
nately, individual events are rarely sufficient, even for a human, to
determine whether malfeasance has occurred.

We take a holistic approach, focusing on compiling and analyzing
cases of misconduct, including events, actors, other entities (such as
companies), and connections. Our system ingests digital interactions
of employees and systematically analyzes and aggregates them
to construct the cases, which are scored and ranked in order of
importance. Processing cases, instead of individual events, reduces
the effort humans must invest to decide whether there is sufficient
evidence to warrant escalation, whether the case requires further
evidence gathering, whether it should “brew” for a while longer,
or whether it is something innocuous that can be closed without
further action.

The usual “label-cases-and-then-learn-models” paradigm tends
to produce unsatisfactory results in this domain, due to: the extreme
rarity of malfeasance, the lack of a true instance on which to base
training cases, the non-self-revealing nature of the problem, and the
high level of domain knowledge required. Thus, our approach (and
philosophy) is that the best training information can be obtained
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by observing the investigators work, following a “human-in-the-
loop” paradigm, where humans are both guided by and guide the
system at the same time. The training information goes beyond
the labeling of cases (e.g., "good case", "bad case"), which now can
be done by observing the final dispositions of the cases. We also
can examine the level of activity on a case, as a proxy for interest
or importance. Moreover, humans are better suited to find cases
of malfeasance, when provided with good tools [2], and can find
important instances that machine learning algorithms miss [1].
Actively engaging them and making them an integral part of the
overall process can substantially improve the quality of the resultant
system.
Overall, we make the following contributions:

e We present a multifaceted human+machine-learning sys-
tem, to identify cases of employee misconduct. We discuss
knowledge engineering, graph analysis, and actor analysis.

e We present lessons learned from building systems from the
ground up for a massive international bank and for smaller
financial institutions.

e We provide some preliminary results of our system’s perfor-
mance compared to other alternatives.

2 RELATED WORK

Finding misconduct in digital environments has long been of in-
terest to researchers and practitioners from both academia and
industry. Fraud detection was one of the earliest commercial appli-
cations of sophisticated machine learning, where systems already
were moving from event-based detection to richer case-based de-
tection based on multi-modal sources of evidence [5, 15, 31].

Fraud detection work in telecommunications introduced the
notion that network analysis can play a substantial role [9, 15].
Network-based techniques, applied on digital interactions, have
also been used to identify suspicious individuals or entities in online
auctions [29], the online advertising ecosystem [35], the business
world [22], and the physical world [24]. Identifying spam sites to
improve web search results has been the focus of the TrustRank
algorithm [20] and follow-up topical variations [36]. Our system
incorporates network analysis; however, our network consists of
firm employees, and thus the network incorporates real-world social
and professional relationships. Therefore, one of our contributions
is to evaluate the usefulness of socio-professional networks to locate
suspicious individuals in a corporate setting.

Interest in network-based approaches has been invigorated with
the proliferation of social media [19, 37], as the role of users has
shifted from passive content consumers to that of active producers.
Improved quality can be achieved by knowing about the diffusion
process of information posted online, which is the focus of [17].

Social media researchers have also worked on behavioral mis-
conduct between users. In particular, cyberbullying, which falls on
spectrum of harassment and takes place in the online world, has
drawn attention in recent years [7, 33]. The solutions typically in-
volve learning a machine learning model, trained on a large set of
online labeled data. Despite the common goal, harassment is only
one of the types of misconduct that we are targeting. Furthermore,
and though we cannot preclude cyberbullying, the professional en-
vironment we operate in drastically reduces the possibility of such
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phenomena. The fact that in our domain the amount of labelled
data that are available is small, compared to what these authors
gathered in their research, is partial testament to the rarity of such
incidents in the corporate world.

3 A MULTI-FACETED APPROACH

Before diving into the specifics of our design and system, we pro-
vide some context. As already mentioned, we target misconduct of
employees working in a financial environment. This ranges from
(sexual) harassment to leaking sensitive data to attempts at market
manipulation or insider trading. In simple terms, we are interested
in detecting any inappropriate behavior for which the institution
needs to take corrective action.

To that end, our system ingests and systematically analyzes digi-
tal communications between employees, who are knowingly under
surveillance. Such communications come in several formats, includ-
ing email, instant messaging and chats through finance-specific
terminals. Some of these communications come in near real-time
and are full of abbreviations and slang (chat terminals), as they
are used among traders and brokers to make and close deals (for
example). Others can be more conversational or instructional /
informational, with (more) normal language. In addition to the con-
tent, each communication comes with associated metadata, such
as timestamp, communication channel and thread it belongs to
(or chat room, for example). Participating individuals and their
roles (sender, direct recipient, bce recipient) are also specified. The
system also has access to information from the Human Resources
directory, such as an employee’s job title and role, work division,
(re)hire date(s), position in the org chart, and so on.

We also have a small amount—relative to total volume—of com-
munications that have been reviewed in the past by analysts after
our system or an existing, rule-based system has flagged them as
being suspicious. The reviewers may have closed them out as being
non-suspicious or passed them along for additional action, after re-
viewing the communication and other supplementary information
to which they have access. We augment this data with additional
data and evidence structures that we have designed and which we
present next. Later we discuss how we use the evidence.

3.1 Knowledge Engineering

Financial institutions operate within a regulatory framework. To
comply with surveillance and supervisory regulations, they rely on
the domain knowledge of traders and analysts. Existing systems
encode some of this domain knowledge in rules using a syntax
akin to regular expressions. In one of the most broadly used exist-
ing systems, each incoming message is tested against the entire
set of expressions, and as long as it reaches a minimum “score”,
which almost always means that it matches a minimum number
of rules—typically 2 or 3—it is presented to an analyst for further
investigation.

Rule-based systems have a long history of development and
use [6]. For text documents in particular, building rule-based sys-
tems via encoding domain knowledge via dictionaries has been
standard practice for years. Much of the appeal of rule-based sys-
tems is that they are easy to implement, to extend, and (in principle)
to explain to a non-technical audience. However, rules crafted by
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humans often have disappointing accuracy due to people’s inability
to assess large-scale statistical consequences. (How often, when
looking for an email that you know is there, has your own email
search query returned massive numbers of unexpected false posi-
tives?) We return to this below.

Moreover, the rule-based approach becomes increasingly costly
over time, as maintaining or modifying existing knowledge bases
is an arduous task, e.g., avoiding duplicate entries, dealing with the
interactions among rules, updating rules as one gathers statistics on
their efficacy, and updating the overall model as the world changes.
This effect is magnified in an enterprise setting, where multiple—
often disagreeing—stakeholder perspectives need to be taken into
account and encoded.

Another well-known problem is that for most rule-based systems
a rule needs to match exactly. The slightest spelling deviation will
cause the match to fail and, in our application, the communication
will go through the system without raising any flags. This is a major
shortcoming, and the “solution” of including spelling variations
in the expressions increases the maintenance costs dramatically.
Furthermore, the addition of more words often increases the false
positive rate of alerted communications.

Last but not least, all phrases in the rule-base may carry the same
weight, regardless of the actual likelihood of malfeasance when they
match, or the rule weights do not truly correlate with likelihood of
malfeasance. The main reasons that the rules (effectively) carry the
same weight are (i) that the expressions are designed by humans
without the aid of labeled training data, (ii) the system does not
have an effective (probabilistic) score-combining capability, (iii) the
systems do not collect statistics on their effectiveness, and (iv) even
if they did gather such statistics, the systems do not have a machine-
learning component to update the scoring accordingly. Manually
assigning weights to thousands of phrases involves a huge human-
resource overhead, but the problem is much more fundamental
than that. While humans are good at generating ideas of what
might indicate malfeasance, they are quite poor at estimating the
actual likelihood of malfeasance for a given rule and in particular
at anticipating the unintended consequences (i.e., false-positive
matches) of a rule.

Rules as Background Knowledge for Machine Learning: Rule-
based systems certainly have these shortcomings. However, we
should be careful not to throw out the baby with the bathwater. The
hundreds (or more) of rules in the system exist because of the good-
faith efforts of domain experts (in our case, analysts and traders)
to tailor the systems to detect malfeasance. Thus, the expressions
encode valuable domain knowledge developed over years. In a
domain such as this with few positive instances, it would be a tall
order for a machine learning system on its own to rediscover all
the useful knowledge encoded in the rule base. Even with the aid
of knowledge engineers, such knowledge would be difficult for a
data science team to obtain from scratch without substantial effort.

Our approach is to use the rule base as prior knowledge on
which the machine learning can build. The notion of extracting the
knowledge of a rule-based system for use in a machine learning
system is not new [12], but we approach the problem differently
than the prior work. Our approach is to code each rule as a feature
generator. This will allow us both to create a high-fidelity replica
of the existing system, in cases where user acceptance requires
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continuity with prior operations [12], but also to integrate the
background knowledge from the rule base with arbitrary additional
features, in arbitrary machine learning models.

Based on this approach, our first improvement is to learn weights
for each rule from our ground truth dataset. In addition, we have
introduced a tool that acts as a comprehensive rule-evaluation
dashboard. The tool provides information for both old and new
rules alike, offering a testbed for trying out new phrases prior to
actually adding them to a rule-based system (either traditional or
as features for machine learning).

The main focus is:

e The weight of the rule, learned from ground truth data. This
can be, for example, the logistic regression [10] coefficient.

e The rule’s success rate statistics [32], also collected from the
ground truth information.

e An estimate of the number of messages that the rule will
match, collected via statistics on the messages that we have.

The first two values provide quantitative evidence on the effec-
tiveness of the rule. The third acts as a proxy for the amount of
work that will be added (reduced) from the inclusion (exclusion)
of the rule. (NB: This ignores rule overlap.) Furthermore, given the
extremely low base rate of positive instances in the domain, this
also acts as a reasonable estimate of the rule’s false positive rate.
Sub-Rule Suggestions: Finally, one of our major advances is a
novel technique to aid users in updating existing rules. The cur-
rent approach to rule updating is based primarily on intuition, as
with creating new rules. Once written, rules are vetted by expert
examination, deployed and evaluated over a (very) long period of
time. There are two main ways rules fail: i) they are too specific,
matching too few (often zero) communications, ii) they are too gen-
eral, matching too many communications. In addition to generating
rule-matching statistics, we introduce a technique to recommend
contextually similar phrases that can substitute for parts of the
original rule. To provide this functionality, after parsing and tok-
enizing the rules, we utilize distributed neural network embeddings
(cf., [26]) to suggest contextually similar phrases that could aug-
ment the original version and present these suggestions to the user.
We learn the embeddings from a large sample of (many months of)
communications data. Our sample contains communications from
all channels, i.e., chats, emails, etc.

By looping humans in this process, the rule is screened before
moving forward: the embeddings propose contextual alternatives,
but not necessarily direct substitutes or synonyms. Therefore, the
user can tweak a suggestion prior to accepting it, while filtering
out meaningless ones. Importantly, this technique is both data-
driven, relying on massive data on real communications, and expert-
filtered. As language use evolves over time, new embeddings are
learned from incoming data, and our suggestions are able to follow
the linguistic patterns and trends of the continuously changing
environment.

3.2 Actor-Centric Evidence

As discussed at the outset, the business goal is not simply to clas-
sify events (such as individual electronic communications), but to
monitor for and investigate malfeasance. Treating the problem as
email classification leads to poor performance and user satisfaction,
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because it is not well aligned with the actual business goal. Our
system instead focuses on the problem of building and investigating
cases of potential malfeasance, that can incorporate a wide variety
of evidence.

One important source of evidence is information on the indi-
viduals involved. The system can include individuals in a case in
different ways, for example, because they were participants in a
flagged communication or trade (or are connected to such people,
as we will discuss later). We can think of the system as including
a dossier on every individual,? which contains a variety of infor-
mation that might be brought to bear to judge the suspiciousness
of a case. This information can include details on an individual’s
role and position in the organization, whether she is working on a
private deal (and involving what), her prior history of alerts and
escalations, aspects of her personality and psycho-emotional state,
etc. Let’s spend some time digging into this last category.

According to empirical research on white-collar crimes, some
dimensions of personality are more strongly associated with work-
place misconduct. In particular, for 3 of the 5 traits of the OCEAN
model [14, 18], conscientiousness, agreeableness and emotional stabil-
ity, how strongly one exhibits the trait (inversely) correlates with
likelihood of workplace misconduct [21]. The OCEAN model is
widely accepted as an accurate taxonomy of an individual’s per-
sonality, and has been validated several times across domains [4].
Similar research in behavioral psychology has shown that employ-
ees’ reactions are driven by a combination of their personality and
external circumstances. For instance, employees who are under
stress or feel mistreated appear to have a higher propensity to en-
gage in misconduct [13, 16]. However, the breaking point is different
for each individual and depends on personal characteristics.

Our system estimates a user’s psycho-emotional state by track-
ing a set of psychological and emotional categories &, extracted
from the individual’s communications over time.* Examples of
these categories are stress, sadness, anger and joy to name a few. It
is worth noting that researchers in the past have correlated such
categories with the way employees collect information within fi-
nancial firms [34]. Also, these psycho-emotional categories can
be manifestations of personality traits; for example, a particular
emotional response to a situation can be a facet of neuroticism. In
our context, communications that exhibit an abnormal degree of
emotional charge, conditioned on normal behavior of the user, may
be of interest to an analyst.

To estimate a user’s psycho-emotional state, we collect the mes-
sages My = {m{,mY,---} sent out by user (employee) u. We run
each message m}‘ through a custom psychometrics extractor, ex-
tending the approach in [30]. This yields an associative map per
message, linking a psychometric category e to the degree that it (the
category) is present in the message m} - for example, the fraction
of tokens in the message that belong to category e. Formally

PsyEval(m}') = {(e, s¢)le € E,s¢ € [0,1]}

We then approximate the user’s psychoemotional state by aggre-
gating (averaging, taking the max, etc.), for each category separately,

3 As well as other entities, like companies, but we will focus on employees here.
4Note that these indicators aggregate across many "events" (communications), similarly
to how in fraud-detection systems account-level information can give a more holistic
picture than looking only at individual transactions [15].
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Figure 1: Graphic representation of how psychometrics of
an individual are aggregated over time

the score of all their messages. To reduce computational costs and to
better track a user’s state, we discretize time into non-overlapping
intervals of size A. A message m, sent at time m(t), falls in the time
slot for which t < m(t) < t + A. The aggregation step focuses on
the messages of the most recent interval, thereby providing the
most recent approximation of the user’s psychoemotional state. The
overall psychoemotional state of a user is given by the respective
ue scores, one per tracked category e, computed as

2im;eM,, PsyEval(m;).se
Up =
¢ My

Figure 1 shows the process for a single user in a simplified setting.
The upper part contains the messages (rectangles) sent by a user via
several communications channels. Dotted lines illustrate time slots
and each message falls into exactly one, yet each slot may contain
an arbitrary number of messages. For simplicity in the example,
each message is associated entirely with a single category e, i.e.,
se(mj.) = 1. We use color coding to distinguish between different
categories. The resulting psychoemotional state of the user, for each
time slot, is shown in the lower part of the figure.

It is important to stress two things. First, a user’s psychoemo-
tional state can be useful as evidence in a machine learning frame-
work, but the actual scores should not be interpreted as definitive
personality assessments. Analysis of the language used in elec-
tronic communications creates proxies for personality assessments
(as opposed to, say, using standardized personality questionnaires);
therefore, the generated scores come with a degree of uncertainty.
Second, we advise against making decisions based solely on psy-
choemotional evidence. The value of such information is to flesh
out a rich case, or in extreme cases to initiate an investigation.

Additional Actor-Centric Evidence Psychoemotional analysis
can be a useful tool for analysts to review evidence or initiate an
investigation. However, as discussed above, this is not the only
actor-based information of relevance. To help both the system and
the analysts make informed decisions regarding an employee’s
behavior, we collect as much data as possible at the actor-level, and
create other telling evidence structures—such as "prior escalation"
and "prior false positive" scores.
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3.3 Network Approach

Interaction networks have been used in the past to identify individ-
uals associated with suspicious activities in various domains [9, 15,
19, 22, 24, 29, 35-37]. Their common denominator is the reliance on
the structural properties of the network, rather than (or in addition
to) the properties (e.g., content) of the nodes. The empirical effec-
tiveness of these techniques for other malfeasance detection tasks
makes network analysis an important potential evidence source to
consider for this application.

Ideally we would know the strength of the socio-professional
relationships among all the employees, and then we could derive
information such as: how closely related are you to known bad
actors? Such guilt by association is the basis of the prior work refer-
enced above on using network analysis for malfeasance. In addition,
prior work has shown specifically that bad actors in financial in-
stitutions are closely connected in the social network [28]. As a
different use of the network analysis, we could augment the socio-
professional network among employees with other sorts of entities,
such as departments, companies, and even pseudo-entities such as
"private information". After such augmentation, we could derive
information such as "the individual who executed this suspicious
trade is how close to the company whose security was traded?" The
result could be a score, which then could be used as a feature in the
suspicion model. Alternatively, the result could be a (set of) path(s)
showing the strongest connections. For example, "Joe is strongly
connected to Jane who is strongly connected to Harry who has
been emailing the company in question."

Unfortunately, the actual strength of the socio-professional con-
nection between employees is not available.> The communication
network among employees could be used to proxy for the socio-
professional network. In this case, part of the analytical design
would entail deciding on how to estimate the strength of the rela-
tionship between two individuals from their communication pat-
terns. Obvious choices would be the number of communications,
or the total length of the communications. However, strength of
relationship does not necessarily correlate well with raw communi-
cation counts—especially communications via work communica-
tions systems. The closest friends may not communicate much or
at all via work systems.

Instead of using the communications network as a proxy for
the relationship network, we use the communications network as
a base data source from which to estimate the relationship net-
work. Specifically, we build a computational, generative model of
communications given (latent) relationship strength, and then fit
the model to an organization’s communications data. As we have
found in practice, the learned latent relationship strengths can
even reveal close friends who never communicate, because of how
they are embedded in the social network. (For example, it gives
strong relationship strength to traders who sit next to each other,
yet never communicate electronically.) In the empirical results, be-
low, we show that guilt-by-association is substantially stronger on
the learned latent relationship network than it is on the observed
communications network.

>One might think about mining proxies for this strength from online social network
systems; we take a different approach in this work.
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3.4 Explaining the Reasons for "Alerts"

When systems need to be deployed in production, for a variety of
reasons the decisions made by the system need to be explained to
stakeholders [25]. For example, managers need to sign off on the
deployment of the system, analysts can be more efficient and effec-
tive if they understand the reasons why an alert is generated, and
data scientists can debug the models/knowledge more effectively if
they understand why it made the decision(s) that it did.

When a case has enough evidence to present to an analyst, the
decision can be explained following the "evidence counterfactual”
framework [8, 25]. Specifically, the system can examine internally
the evidence present in the case and ask the question: what is a
minimal set of evidence, such that if it were not present, then the
case would not have been presented? The assumption is that the
different pieces of evidence can be interpreted (more or less) by ex-
amination: words or phrases in communications, a high stress score,
proximity in the network to bad actors, proximity to someone with
private information, and so on. Many of these pieces of evidence
considered in isolation would not generate sufficient suspicion to
create an alert presented to an analyst. Further, given an alert, some
evidence might be superfluous. The evidence counterfactual ex-
planations show minimum sets of evidence that were sufficient to
increase the case’s "suspicion score" above the alerting threshold.

This method of explaining decisions was applied successfully
previously for malfeasance detection [22], as well as for finding
inappropriate content [25] and other applications [8, 27]. Note that
the problem of explaining the reasons for why a decision was made
is different from the problem of explaining a decision-making model,
as has been discussed in detail elsewhere [25].

3.5 Rare Positives and Unknown Unknowns

Our setting exhibits three related problem characteristics that tend
to vex Al systems, and especially machine learning systems.

(1) Positive instance are extremely rare—far rarer than most machine
learning research considers even when addressing "class imbalance."
A large financial institution might have a quarter of a million em-
ployees. Hopefully only a tiny fraction of them are bad actors! But
the "instances" considered by an Al system would be aggregations
of employee behavior. If we consider employee-days, then we might
have a hundred million or more instances a year, but only a tiny
fraction of them would exhibit malfeasance (we hope!). And if we
were to consider individual evidence scoring problems, such as
individual communications, then the base rate is infinitesimal.

(2) The problem is not "self-revealing," meaning that unlike many
machine learning problems, we cannot simply wait and get training
labels on historical cases (as would be the case, for example, with
credit-card fraud). A common solution is then to have humans
label data, but because of the prior challenge (extremely low base
rate), human labeling fails for the reasons that have been elaborated
previously in similar domains [2]. A machine learning researcher
might then turn to active learning, but alas active learning also fails,
as again has been discussed previously [3].

(3) The world changes, and the world even changes in direct re-
sponse to the models that are put in place [15]. Such non-stationarity
or concept drift is a challenge generally, but it is a particular chal-
lenge in non-self-revealing domains, because one cannot easily
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monitor for it. If the rate of catching bad guys goes down, is that be-
cause they have changed their behavior? Or is that because you’re
doing a really good job, and are deterring bad behavior?

These three challenges conspire not only to make the knowledge
engineering and machine learning difficult, they bring to the fore a
key problem for machine learning systems that has received scant
attention: the problem of Unknown Unknowns [1, 23]. Specifically,
it is very difficult to know what such a system is missing, especially
when it is confident that it is correct.®

Unfortunately, in this domain the Unknown Unknowns are ab-
solutely key. When regulators hand out billion-dollar fines, it’s not
because analysts didn’t get around to closing out the last false posi-
tives; it is because malfeasance was discovered that the regulators
deem the firm was not even looking for.

Our human-in-the-loop approach was designed with these chal-
lenges in mind. We provide a rich search interface so that investi-
gators can find cases of malfeasance efficiently and effectively on
their own, in essence providing "guided learning" [2] training data
to the system in the normal course of their activities. Furthermore,
it has been shown that when humans are challenged to "beat the
machine", i.e., to find cases of malfeasance that the machine misses
but is confident that it is correct, they reveal very different sorts of
cases than are otherwise found [1]. Beat the machine also is nat-
urally implemented once one integrates the human investigators
with the Al system.

4 EXPERIMENTAL RESULTS

Due to confidentiality and legal requirements, we cannot show
results on actual data from financial institutions, nor can we report
actual numbers of cases or base rates. However, the results we show
here, generated on data drawn from similar distributions, qualita-
tively match results from real data, and the plots are similar. The
conclusions we draw regarding the effectiveness of the techniques
hold on the real data as well as the simulated data.

Domain Knowledge and Machine Learning. Let’s first return
to knowledge engineering, and in particular getting leverage from
the existing rule-based systems. Given the time and monetary in-
vestments that have been put into these systems, it is interesting
to see whether they can be improved through our proposed frame-
work. We note that in such strictly regulated environments, like
finance and compliance, continuity with prior operations is funda-
mental. Implicitly, this means that any new system should be as
good as what is currently in place. Of course, this requirement is
not necessarily quantified through a single value.

Nevertheless, keeping the number of false positive alerts at the
same, if not lower, levels as the current system is a solid starting
point. As alerted communications must be reviewed by humans,
more alerts mean more reviewers, thereby raising the actual busi-
ness cost of operating the system. Therefore, there is a clear, though
indirect, relation between the alerts raised by the system and the
actual cost of reviewing alerts. ’

6 Active learning can possibly address the known unknowns, if the low base rate can be
dealt with, but such methods actually actively steer attention away from the Unknown
Unknowns.

"The cost of reviewing and investigating a single serious alert is estimated at a few
hundred dollars.
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Figure 2: ROC curve when combining domain knowledge
with Machine Learning

Figure 2 shows the results of combining the domain knowledge
from the prior rule based system with machine learning trained on
case outcomes, computed with 10-fold cross validation, incorporat-
ing the improvements that we discussed in Section 3.1 The ROC
curve shown is generated a little differently from what we’re used
to, so let us explain. For these results we consider only the features
created from the prior rule base, so the machine-learned model will
only give a non-zero score to cases where the rule-based model
gave a non-zero score. Therefore, all the false negatives and true
negatives of the original system will also be false negatives and true
negatives (respectively) of this component of the new system. The
ROC curve shown is built on the population of cases for which the
existing system created an alert. The positives are the alerts from
the prior system that were deemed by experts to be interesting
enough to pursue further; the negatives were the alerts that were
deemed to be false alarms. So the ROC curve shows how well the
new system can score (rank) the prior binary alerts.

As we can see from the ROC curve, the machine learning method
does indeed learn to rank the truly interesting "cases" above the non-
interesting ones, with a substantial concentration at the top of the
ranked list. The current system "scores" each communication only
by possibly issuing a binary alert, and does not perform numeric
scoring or ranking by likelihood of malfeasance; thus for reference
we plot its expected behavior as the diagonal (blue) line, indicating
that one could achieve any (FP,TP) performance along the line
via uniform random sampling of alerts. The red line shows the
performance of our approach for combining domain knowledge
and machine learning.

Network Analysis. We now turn our attention to the network

analysis. Our interest here is to validate, whether the socio-professional

network can provide additional evidence that might increase or
decrease the suspicion of a case. Although network structures have
been used successfully to identify malfeasance in other domains, as
discussed above, it is unclear whether that will be the case for our
domain as well. Our preliminary results, shown in Figure 3, answer
this question in the affirmative.

As already explained in Section 3.3, we do not have direct knowl-
edge of the strength of the socio-professional relationships between
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employees. We estimate relationship strength in two ways. First we
use the amount of communication between employees as a proxy
for the strength of their relationship. Let’s call this local proxim-
ity, as it is based on the pairwise communications. Shortcomings
of local proximity include: it only considers direct, observed com-
munications, and the amount of direct communication does not
necessarily represent relationship strength.

The second approach, which we described in detail above, is to
fit a model of latent relationship strength to the observed communi-
cation network, inferring the latent relationship strengths between
each pair of employees. Let’s call the resulting network the global
proximity network. In both networks each pair of nodes (employees)
is associated with a score, which is the estimated strength of their
socio-professional relationship. This score can be used in various
ways, such as to rank the neighbors of a focal node n, showing the
other employees with which n has the strongest relationships.

We can now ask: do bad or suspicious actors cluster on these
networks, similar to what has been observed in other malfeasance
detection applications? More specifically, do bad actors tend to be
more closely related to other bad actors? If so, does it matter which
sort of relationship network one uses?

To evaluate these questions we take historical "escalation” as
our approximate indication of bad behavior.2 We mark employees
(nodes) in the network as "positive" or "suspicious" if they have
had a case escalated in the past. Now we can generate an ROC
curve for each node in the graph-showing how the bad vs. good
neighbors are ranked by their proximity (relationship strength). We
can then average the ROC curves across multiple employees, which
we have done for our evaluation. Figure 3 shows the results for the
two different methods of estimating socio-professional relationship
strength. Let’s examine each in turn.

For the local proximity method, Figure 3a shows two lines: the
red line is the average of the ROC curves for which the node under
consideration, called an ego node, has been flagged as suspicious. To
generate that ROC curve we iterate over the nodes who have been
escalated and compute their individual ROC curves as described
above. We then collect all of them and average them, which returns
the red line. We do the same thing for "normal" employees, i.e.,
those who have never been escalated, to generate the green curve.

From the two ROC curves shown, we observe that local prox-
imity indeed tends to rank suspicious neighbors more highly for
suspicious egos, but this is due to the fact that suspicious neigh-
bors are further away from normal egos; for the suspicious egos,
suspicious neighbors are more-or-less randomly ranked by local
proximity (on average). This is a fairly negative result for using the
communications graph for this sort of network inference, as it seems
to show that there is little signal in being close to a prior bad actor.
However, the problem is with the choice of the communications
graph, not with using network inference.

If we instead use the latent socio-professional relationship graph
described above (global proximity), we see a very different result.

8In fact, a particular escalation may turn out to be benign. Therefore, we might more
accurately talk about whether suspicious behavior clusters on the network rather
than whether bad behavior clusters on the network. That said, the escalations very
often result in at least a reprimand or a talking-to, so as long as we are not associating
bad behavior exclusively with criminal behavior, but also with perhaps unintentional
rule-breaking, then using the term "bad actor" may be reasonable.
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Figure 3b shows the average ROC curves for normal and suspicious
nodes using the global proximity network. We see two things: (i) the
difference between the two lines is more pronounced, and (ii) the
ROC curve for suspicious nodes is higher than the uniform (ran-
dom) line—clearly in the positive portion of ROC space. In other
words, using global proximity, suspicious egos are substantially
closer to suspicious neighbors, while suspicious neighbors are ran-
domly scattered among the neighbors of normal egos. This provides
evidence to affirm that our generative network model may offer
additional information in finding cases of malfeasance.

5 DISCUSSION

We presented details of a multi-faceted system built for detecting
and investigating employee malfeasance. Such a system is crucial
for regulatory compliance for financial firms. It is likely that as
bad behavior by employees increasingly reflects on the firms that
employ them, industries beyond finance will turn to technological
solutions to help detect and hopefully deter bad behavior.

Our approach is a holistic, evidence-based approach, identifying
cases of malfeasance, as opposed to the traditional approach of
treating the problem as single-document classification. We system-
atically analyze broad data to add alternative perspectives, including
actor-level information, domain knowledge, and socio-professional
network analysis. We also present preliminary results of our im-
provements on integrating domain knowledge and machine learn-
ing, and we demonstrate the effectiveness of our generative model
for inferring (latent) socio-professional relationship strength.

Thinking about lessons learned, the difficulty of acquiring and
processing the required data is important to keep in mind as it
impacts not only time and cost management, but also the system’s
effectiveness. In data science we must not be misled by the relative
ease of gathering data that we see in ecommerce and adtech, where
the entire process takes place within modern, interconnected sys-
tems. Enterprise applications can involve disconnected processes
that are much more difficult to instrument for data gathering. Stake-
holders need to be willing to make the investments in data assets
needed to build more effective detection and investigation systems,
including evaluation platforms that allow experimentation with
different alternatives on the way to building an effective system.

Data acquisition is particularly vexing in "non-self-revealing”
problems such as this, where one normally does not know the
ground truth of cases that are not investigated. A key to dealing
with this lack of data is a divide-and-conquer approach: (i) look
to do well for the cases for which you have/can acquire ground
truth data (or appropriate proxies), and (ii) separately begin to
put in place methods for addressing the "unknowns" (both known
unknowns and unknown unknowns). Also, key to acceptance, use,
deployment, and debugging of systems for detecting malfeasance
is the ability to explain the decisions made by the system.

Finally, as such systems become used increasingly by firms to
monitor employee behavior, we (as a community) should add them
to the discussion of the ethical implications of the application of Al
and machine learning systems. The employees of financial firms are
well aware that their communications are being monitored, and that
the firms have a legal requirement to monitor employee behavior for
various sorts of malfeasance. As such systems proliferate into other
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Figure 3: Average ROC curve, among all individuals, for the two types of network proximity

sorts of firms, the firms should inform the employees clearly both of
the policies and laws, and also of the surveillance and monitoring
that is being undertaken. However, the ethical implications go
beyond issues of privacy and confidentiality. Systems that learn
from historical data can unknowingly build in various biases, that
can lead to discriminatory and other unwanted actions [11].
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