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Beat the Machine: Challenging Humans to Find a Predictive Model’s
“Unknown Unknowns”

JOSHUA ATTENBERG, Etsy
PANOS IPEIROTIS and FOSTER PROVOST, New York University

We present techniques for gathering data that expose errors of automatic predictive models. In certain
common settings, traditional methods for evaluating predictive models tend to miss rare but important
errors—most importantly, cases for which the model is confident of its prediction (but wrong). In this article,
we present a system that, in a game-like setting, asks humans to identify cases that will cause the predictive
model-based system to fail. Such techniques are valuable in discovering problematic cases that may not
reveal themselves during the normal operation of the system and may include cases that are rare but
catastrophic. We describe the design of the system, including design iterations that did not quite work. In
particular, the system incentivizes humans to provide examples that are difficult for the model to handle by
providing a reward proportional to the magnitude of the predictive model’s error. The humans are asked to
“Beat the Machine” and find cases where the automatic model (“the Machine”) is wrong. Experiments show
that the humans using Beat the Machine identify more errors than do traditional techniques for discovering
errors in predictive models, and, indeed, they identify many more errors where the machine is (wrongly)
confident it is correct. Furthermore, those cases the humans identify seem to be not simply outliers, but
coherent areas missed completely by the model. Beat the Machine identifies the “unknown unknowns.” Beat
the Machine has been deployed at an industrial scale by several companies. The main impact has been that
firms are changing their perspective on and practice of evaluating predictive models.

“There are known knowns. These are things we know that we know. There are known unknowns. That is
to say, there are things that we know we don’t know. But there are also unknown unknowns. There are
things we don’t know we don’t know.”

–Donald Rumsfeld

Categories and Subject Descriptors: H.1.2 [User/Machine Systems]: Human factors, Human information
processing; I.2.11 [Distributed Artificial Intelligence]; I.2.6 [Learning]; K.3.2 [Knowledge Acquisi-
tion]; K.4.3 [Organizational Impacts Automation]; K.6.4 [System Management Quality Assurance];
K.6.1 [Project and People Management]: systems analysis and design, Systems development

General Terms: Algorithms, Design, Experimentation, Human Factors, Management, Measurement, Perfor-
mance, Reliability

Additional Key Words and Phrases: Crowdsourcing, incentives, system design, model assessment, risk iden-
tification, machine learning evaluation
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1. INTRODUCTION

This article discusses an important issue for researchers and practitioners to consider,
one that has received little if any attention in the literature but becomes quite apparent
when applying Machine Learning (ML) techniques in practice. How can we know about
the vulnerabilities of a model that we have created and that seems to perform well
according to standardized evaluation measures?1

Let’s consider an example that we will use throughout this article. We worked with
a firm to build systems for identifying web pages that contain instances of objection-
able content, such as “hate speech” (e.g., racist content, antisemitism, and so on). The
classification is based on models that take web pages as input and produce as output a
score that can be used to block certain pages in the advertising ecosystem (or, alterna-
tively, to produce reports on exposure). The firm would like to use the system to help
protect advertisers who (despite the best efforts of their advertising agents) sometimes
see their ads appearing adjacent to such objectionable content. The advertisers do not
want their brands to be associated with such content, and they definitely do not want
to support such content, explicitly or implicitly, with their ad dollars.

How does this firm assess the strengths and weaknesses of its predictive model
and decision system? Unfortunately for applying ML, there exists no representative,
benchmark “gold standard” corpus of hate speech, a trait common to many real-world
problems. Traditional evaluation and training methods make an implicit closed-world
assumption [Reiter 1977]. In logical systems, the closed-world assumption is that the
only answers to a query Q are those that are actually in the database. In the context of
predictive modeling, the closed-world assumption is that our labeled data are sufficient
to give us a satisfactory estimation of model performance. Effectively, ML methods
make the assumption that regularities that have no or insufficient representation
in the training data essentially do not exist. Unfortunately, such an assumption is
dangerously naive in applications with limited labeled training data, small disjuncts
[Weiss 2010], and/or possibly unknown selection biases. In these cases, we face the
following problem: The model often cannot estimate properly its own performance on
unseen data and is vulnerable to the problem of unknown unknowns.

We will elaborate throughout this article, but, in a nutshell, the problem is the
following: When building predictive models, we assume that the available data are
representative and therefore we can use them safely to train and evaluate our algo-
rithms. Furthermore, and crucially, we assume that the models can estimate properly
their own level of performance and report back accurate confidence metrics for different
parts of the space. Assuming that we can know how well our algorithms are perform-
ing, we can work to improve the models, and/or improve the performance in regions of
lower confidence in our predictions, and/or act based on this confidence. We have faith
in our training data, and we focus on what we can know—including knowing what we
don’t know (e.g., regions of uncertainty in our learned model’s behavior).

The problem is that, for various reasons, processes that produce training data can
completely miss important regions of the space. Consider our case of identifying hate
speech online: The category “hate speech” is relatively rare on the Web (fortunately)
and extremely varied—a “disjunctive concept” [Weiss 2010]. If a certain type of hate
speech is not included in the training data, the resultant learned classifier is likely to

1For example, using area-under-the-ROC-curve, estimated using cross-validation.
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(i) classify it as not-hate-speech and, worse, (ii) do so with high confidence. Such a case
is an unknown unknown—the classifier does not “know” this sort of hate speech, and it
doesn’t know that it doesn’t know it. So, the unknown unknowns belong to the regions
in the space where the model estimates the misclassification cost to be low whereas, in
reality, the misclassification cost is high.2

Standard model evaluations may completely miss such problems: For example, cross-
validated error rates and area-under-the-curve values for such models may look nearly
perfect. However, the scientist would be incorrect to report to the application stake-
holders that the models are essentially perfect. It is critical to emphasize that such
evaluations only consider the known unknowns. However, stakeholders of ML models
need to also consider the possible impact of the unknown unknowns—for example,
being blindsided by a client who discovers a completely unknown error or suffering an
embarassing PR disaster if the vulnerability of the model is exposed publicly by a third
party or competitor. Finding the unknown unknowns, in a predictive modeling context,
is the focus of our article.

We present a novel framework for thinking about errors of predictive models that
highlights the unknown unknowns (plenty of work has focused on the known un-
knowns). We then present a game-structured system called Beat the Machine (BTM)
that takes advantage of crowdsourcing to help us identify the unknown unknowns. The
system is fully implemented at industrial scale; we discuss several design iterations
that each presented hurdles to overcome and led to the current system. Finally, we
present experimental results demonstrating that on real problems (including finding
hate speech pages), explicitly focusing on finding unknown unknowns (with BTM) in-
deed finds instances (e.g., hate speech pages) that were completely missed by the prior
system, are systematic errors (rather than just isolated outliers), and are systemati-
cally different from the prior training data.

Our work builds on and extends our earlier work [Attenberg et al. 2011]. Compared
to the prior version, the present article also includes the following material:

—We formally define the notion of unknown unknowns using the concept of estimated
and actual misclassification costs. We also examine typical prediction settings where
our BTM approach is expected to be beneficial,

—We present a new design for the BTM system. This new design encourages workers
to find diverse errors in the model, as opposed to being rewarded for submitting
repeated instances of the same vulnerability.

—We describe the deployments of the BTM system in multiple industrial settings.

2. BACKGROUND AND SCOPE

Many businesses, government organizations, and nongovernmental organizations
(NGOs) make decisions based on estimations made by explicit or implicit models of
the world. Being based on models, the decisions are not perfect. Understanding the
imperfections of the models is important (i) in order to improve the models (where
possible), (ii) in order to prepare for decision-making errors, and, (iii) in some cases, in
order to properly hedge the risks. However, a crucial challenge is that, for complicated
decision-making scenarios, we often do not know where models of the world are imper-
fect and/or how the models’ imperfections will impinge on decision making. We don’t
know what we don’t know.

2We use the more general notion of misclassification cost rather than simply misclassification error, but
the reader can interpret this as error without missing the main idea. The reason to generalize to cost is
especially apparent for multiclass classification, where misclassification errors among different classes have
very different costs. Then we are most interested in avoiding specific sorts of unknown-unknown errors—
those that have high cost.
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We see the results of such failures of omniscience in grand catastrophes, from terror-
ist attacks to unexpected nuclear disasters; in mid-range failures, like cybersecurity
breaches; and in failures of operational models, such as predictive models for credit
scoring, fraud detection, document classification, and the like.

Specifically, our article considers applications where:

—Every decision-making case can be represented by a description and a target. We
have a (predictive) model that can give us an estimate or score for the target for
any case. We assume, for simplicity and without loss of generality, that the target is
binary; we also assume that the truth would not be in dispute if known.3

—We want to understand the inaccuracies of the model—specifically, the errors that it
makes, and especially whether there are systematic patterns in the errors in regions
of the space where the model is confident about its decisions and provides a very low
estimate for misclassification costs. For example, is there a particular sort of hate
speech that the model builders did not consider, and, therefore, the model misses it
while at the same time being confident about the reported decision?

—Finally, there are important classes or subclasses of cases that are very rare but
nevertheless very important.4 The rarity often is the very reason these cases were
overlooked in the design of the system. In our example, hate speech on the web
itself is quite rare (thankfully). Within hate speech, different subclasses are more or
less rare. Expressions of racial hatred are more common than expressions of hatred
toward dwarves or data miners (both real cases).

These problem characteristics combine to make it extremely difficult to discover
system/model imperfections. Just running the system, in vitro or in vivo, does not
uncover problems; because we do not observe the true value of the target, we cannot
compare the target to the model’s estimation or to the system’s decision.

We can invest in acquiring data to help us uncover inaccuracies [Provost and Fawcett
2013]. For example, we can task humans to score random or selected subsets of cases.
Unfortunately, such a practice has two major drawbacks. First, due to the rarity of the
class of interest (e.g., hate speech), it can be costly to find positive examples, especially
via random sampling of pages. For example, hate speech represents far less than
0.0001% of the population of (ad-supported) web pages, with unusual or distinct forms
of hate speech being far rarer still. Thus, we would have to invest in labeling more
than a million randomly selected web pages just to get one hate speech example, and,
as has been pointed out recently, often you need more than one label per page to get
high-quality labeling [Sheng et al. 2008; Raykar et al. 2009].

In practice, we often turn to particular techniques to identify cases that can help
to find the errors of our model. There has been a large amount of work studying
“active learning,” which attempts to find particularly informative examples [Settles
2012]. A large number of these strategies (uncertainty sampling, sampling near the
separating hyperplane, query-by-committee, query-by-bagging, and others) have one
thing in common: They are biased against looking for cases where the model is certain5

or for cases that are not expected to improve learning performance. The strategy makes
sense because these are not areas is where we would expect to find errors. Additionally,

3For our example, the description of the case would be the web page (its words, links, metadata, etc.). The
target would be whether or not it contains hate speech.
4The work also applies to applications where there are important classes or subclasses that are not rare in
the population but are rare or not represented at all in the training data due to sampling processes.
5An exception is active learning work looking at improving class probability estimation [Saar-Tsechansky and
Provost 2004], which could select cases where the model estimates a very high or low probability. However,
even there, cases will only be selected if there is uncertainty in the estimation of the probabilities—those
where the model or modeling procedure is certain of the probabilities will not be selected.
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there has been a long history of understanding that “near misses” are the cases to use
to best improve a model, both for ML [Winston 1970] and for human learning [VanLehn
1998].

Unfortunately, although helpful in understanding and improving modeling, for find-
ing unknown unknowns, these strategies look exactly where we don’t want to look.
These strategies explicitly deal with the “known unknowns.” The model is uncertain
about these examples—we “know” that we cannot estimate them well (i.e., we have low
confidence in the model’s output). These strategies explicitly eschew or, in some cases
probabilistically downweight, the cases that we are certain about, thereby reducing
the chance that we are going to find the unknown unknowns.

In what follows, we next discuss changes to how we need to view the evaluation of
classifiers if we want to move from a closed-world view of a predictive modeling problem
to an open-world view. Then we introduce a technique and system that uses human
workers to help find the unknown unknowns. Our BTM system combines a game-like
setup with incentives designed to elicit cases where the model is confident but wrong.
Specifically, BTM rewards workers who discover cases that cause the system to fail.
The reward increases with the magnitude of the failure. The setting makes the sys-
tem behave like a game, thus encouraging steady and accurate user participation. We
describe our experiences with the use of the BTM system in a setting for identifying
web pages with offensive content on the Internet. (In Section 6, we also describe how
we used the same system in a variety of other settings.) We show that the BTM set-
ting discovers error cases that are inherently different from the errors identified by a
random sampling process. In fact, the two types of errors are very different. The BTM
process identifies “big misses” and potential catastrophic failures, whereas traditional
model-based example selection identifies “near misses” that are more appropriate for
fine-tuning the system. The evidence shows that BTM does not just find individual
“oddball” outlier cases, but it also finds systematic big errors. In a sense, the BTM
process indeed gives us the opportunity to learn our unknown unknowns and warn us
about the failures that our current automatic model cannot (yet) identify by itself.

3. UNKNOWN UNKNOWNS

3.1. Expected and Actual Misclassification Cost

To provide a detailed discussion of unknown unknowns in the context of a predictive
model, it is first necessary to formalize the concepts we will be discussing. Let x repre-
sent an example belonging to some problem space X . In classification settings, x has a
“true” label ȳ from some set of possible labels Y . The classification task is to construct
some predictive model, f (x), that can estimate a label for each incoming example such
that the estimated label ŷ mirrors the (usually hidden) true label, ȳ, as closely as pos-
sible. There is a cost cij for a misclassification decision, when we classify an example
from the true category ȳ = yi into a category ŷ = yj . In this work, we are concerned
only with models that output a posterior probability estimate over the set of available
labels; that is, f (x) = p(y|x) = 〈p1, . . . , pn〉. Such models, through the probability es-
timates, effectively also report the estimated misclassification cost of each example:

ExpCost(x) =
∑

i, j

pi · pj · cij MinCost(x) = min j

∑

i

pi · cij. (1)

Such probabilities and costs can then be used to select a preferred label, for instance
by choosing the ŷ with the highest probability or, in the cost-sensitive setting, choosing
the label with the least expected cost [Elkan 2001]. Note that the focus on models that
produce probability estimates is without loss of generality—there exists a variety of
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Fig. 1. The decisions made by a predictive model can be broadly separated into four conceptual regions:
(i) The known knowns, which are the examples for which the model is mostly correct and also returns a low
expected misclassification cost (i.e., is also confident of being correct); (ii) the known unknowns, which are the
examples for which the model is often wrong but also anticipates these errors by returning a high expected
misclassification cost for these decisions; (iii) the unknown knowns, which are the examples for which the
model is often correct but returns high expected misclassification costs; and (iv) the unknown unknowns,
which are the examples for which the model is wrong but is wrongly confident that it is correct.

techniques for transforming “hard-labeling” models into probability estimators (see,
e.g., Domingos [1999]).

3.2. Known Knowns, Known Unknowns, Unknown Unknowns, and Unknown Knowns

Notice that Equation (1) provides estimates of the misclassification cost. The actual
misclassification cost can be different and depends on the accuracy of the model and
the generated posterior probability estimates. The difference between the estimated
and the actual misclassification costs gives rise to four different classification scenarios,
as depicted in Figure 1.

Along the diagonal, we have examples for which the estimates of the model in terms
of misclassification cost are in line with the actual misclassification costs. In the lower-
left corner we have those examples that the model can classify correctly and is confident
about the reported decisions. These are the known knowns. In the upper-right corner,
we have cases of known unknowns: These are the cases where the model fails often but
is also aware of the problem.

Definition 3.1 (Known Unknown). Let X ⊂ X be a region of the problem space and x
be a randomly chosen example from X. Let ExpCost(x) be the expected misclassification
cost of an example from X and Cost(x) be the actual misclassification cost of an example
from X. A known unknown is an example for which the actual misclassification cost
Cost(x) is high and the estimated misclassification cost ExpCost(x) is also high.

Known unknowns as described in Definition 3.1 correspond to a commonly occurring
notion in ML. The X region corresponds to a region of high expected misclassification
cost, an area where the predictive model is unsure of itself and where mistakes are
likely. This concept has been exploited in a variety of contexts; for instance, when
applied to the problem of gathering labels for the purpose of model training, selecting
those examples within an ε-radius of the decision boundary corresponds to uncertainty
sampling, perhaps the most well-known active learning heuristic [Lewis and Gale
1994].
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In the context of classification, known unknowns are those cases for which errors are
expected based on the probability estimates of the classification. These are cases where
it may be less costly to “reject” than to make a risky label prediction. Classification
with a “reject option” is an extension of traditional classification in which, in addition
to labeling each example with some ŷ ∈ Y , a predictive system may additionally defer
prediction, either by ignoring an example entirely or perhaps sending the example to
a domain expert for manual evaluation [Chow 1957, 1970]. Given that such rejection
likely comes at some nontrivial cost q(x), the task of classification with a reject option
is then to balance the expected misclassification costs with the costs of rejection.

While it is important to understand the mistakes that a model is known to make
and to react in an appropriate manner, models in production often make mistakes
far from this area of predicted uncertainty. Consider the hate speech classification
system discussed earlier. While deployed in a production setting, this model is likely to
encounter examples with a high estimated misclassification cost.6 Those managing the
model can react to these borderline examples and perhaps build some rough estimate
of a model’s overall exposure to misclassification risk. However, for a variety of reasons,
the model may also encounter examples where it will assign a label with high confidence
and correspondingly low estimated cost and be wrong. Such examples are the unknown
unknowns.

Definition 3.2 (Unknown Unknown). Following Definition 3.1, an example x′ is an
unknown unknown if x′ is outside the region of model uncertainty and therefore has
low estimated misclassification cost ExpCost(x′), but the actual misclassification cost
Cost(x′) is in fact high. In other words, the example is misclassified, but the classifier
(wrongly) has a high certainty that it was correctly classified.

Definition 3.2 codifies the notion of an unknown unknown. Intuitively, these are ex-
amples for which the model is certain that it assigns the correct label—for instance,
examples that are distant from any decision boundary—yet are still labeled incor-
rectly. Although in the strict sense Definition 3.2 includes “random noise”—individual
examples that, for whatever reason, do not have the expected label7—the motivating
case is disjunctive subregions of the problem space [Weiss 2010]. These are small, yet
consistently labeled neighborhoods of examples isolated from the body of examples
of the same class. These “islands” of examples may be sufficiently rare in the relative
sense to avoid detection from random sampling processes used to generate training sets
[Attenberg and Provost 2010]. However, their nonnegligible absolute size and preva-
lence in many real-world problems makes them a genuine risk. Furthermore, very
often, the processes used to generate training sets in real applications are not random
sampling at all; they are biased based on pragmatic constraints [Perlich et al. 2014].
Such biased selection can then miss such islands completely.

Figure 2 presents a fairly typical classification scenario that might be impacted by
unknown unknowns. On the left, we see an inseparable two-class problem, with a linear
decision boundary that minimizes the prediction errors on this space. Above and below
this decision boundary, we see a region of uncertainty, ε-wide, where mistakes are
known to occur. This represents a typical post-training understanding of the problem
space: Data are gathered by some process, for instance, via active learning. An imperfect
model is trained; however, areas where mistakes occur are known, and expectations can
be managed. On the right, we see a typical scenario when such models are deployed in
the wild—rare disjunctive subregions of the problem space emerge. These are portions
of the problem space that escaped the initial sampling process used to generate the

6For instance, a encyclopedia entry discussing racial issues or a history of racism.
7For instance, due to erroneous labeling, signal degradation, or nonpathological difficulties in data collection.
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Fig. 2. A typical classification setting. On the the left, we see the decision boundary that minimizes the
prediction error of an inseparable training set. Additionally, we see the ε-radius around the classifier where
mistakes are thought to occur. On the right, we see the same classifier with the inclusion of small, disjunctive
“unknowns” presenting mistakes that occur well outside a model’s region of uncertainty.

training set. These unknown unknowns, although small in terms of their proportion
of the problem space, may still exist in large absolute numbers. However, because
they are unobserved during model construction, they have likely escaped any possible
contingency planning for dealing with their associated mistakes.

Finally, from Figure 1, we can see that there is one more type of example: the “un-
known knowns.” These are the cases where the model is incorrectly pessimistic: The
model reports low confidence and high estimated cost for the examples in these re-
gion(s). However, in reality, the model generates mostly correct predictions. Such cases
are typically easier to manage but may still cause problems with the stakeholders:
If the region generates many rejects (with an associated inspection and intervention
costs), then the model will be perceived as being overly cautious and potentially inef-
ficient. Despite the fact that it is a promising direction, identifying and dealing with
cases of unknown knowns is beyond the scope of the current article, and we leave their
study for future work.

3.3. Active Learning and Beat-the-Machine

A natural question that arises in this setting is the connection of the “known unknowns”
and “unknown unknowns” with active learning. From a 10,000-foot view, we could say
that approaches for active learning focus on the cases of “known unknowns.” Although
this is a well-known and established heuristic for active learning, it would be wrong
to pigeonhole the whole field of active learning using this characterization. There are
many active learning techniques that do not use this uncertainty heuristic and instead
examine regions that are likely to modify the decisions of the ML model, prefer to focus
on the dense regions of the space, and so on [Settles 2012]. In general, these other
active learning methods still tend to focus, albeit indirectly and not exclusively, on the
known unknowns.

A better way to describe the difference of BTM (described in detail next) with active
learning is to focus on who is the agent directing the selection of the data for evaluation:

—In active learning, the choice of the data points that will be evaluated by human
“oracles” is directed by an algorithm. The algorithm, by definition, picks the data
points from a “closed-world” sample of potential training data. Hence, active learn-
ing adopts a “closed-world, machine-pushes-to-humans” model, where the algorithm
chooses the data points that will be evaluated by humans.

—In BTM, the choice of the data points to be evaluated by human oracles is done
by humans. The humans are not restricted in their search space and hence pick
data points from an “open-world” setting. Then, the algorithm decides whether
the submitted data points need to be investigated further. Hence, BTM adopts an
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“open- world, human-pushes-to-machine” model in which humans discover the data
points and then a machine filters the submissions and decides which data points
need to be further evaluated by humans.

4. BEAT THE MACHINE

Assessing the in-the-wild performance of any automated classification system can be
a challenge. Situations with class imbalance and rare disjunctive subconcepts such
as the hate speech classifier introduced in Section 1 make accurate assessment par-
ticularly difficult and lead to the existence of unknown unknowns. Traditionally, we
would sample from the output decisions and employ humans to verify the correctness
of the classifications. Using these judgments we can estimate the error rate in different
parts of the classification space. Unfortunately, given our problem characteristics, the
process can be woefully inefficient. First, if the classification decisions are relatively
accurate, then most of the results will be accurate, and, without intelligent sampling,
humans will encounter errors very infrequently. Second, if there is substantial class
imbalance, most of the encountered errors would be misclassifications of majority-class
examples into the minority. This is problematic because in significantly imbalanced
classification problems, errors on minority-class examples generally incur a far greater
misclassification cost—as in the case of hate speech. Third, if the problem space has
rare disjunctive subconcepts, identification may be particularly tricky—chances of oc-
currence may be 1 : 1,000,000 or even much less. In these situations, it can become
quite difficult to identify misclassifications of examples whose true class is the minority
class.

Example 4.1. Consider the case of identifying pages with hate speech content. If we
have a relatively accurate classifier, with 95% accuracy on each class, it becomes very
difficult to identify misclassified pages that contain hate speech. In a random sample,
most of the pages are correctly classified as benign. Even in the unrealistically generous
case that 0.1% of the pages on the Internet contain such objectionable content, to find
one “false negative” (the severe error: hate speech passing as benign), we will have to
inspect approximately 20,000 pages (and, in the process, we would incur around 1,000
false positives).

It is tempting to consider such problems inconsequential. However, when such a
system is used to filter billions of pages, such “relatively infrequent” errors become
frequent in absolute numbers. Furthermore, even one-off cases can cause significant
damage, for example, to the public image of a company that accidentally supports a site
containing such content through advertising. Unknown unknowns may be particularly
damaging because client’s expectations haven’t been properly managed, and careful
contingency plans are unlikely to exist.

Instead of passively waiting for such unknown errors to “emerge,” we can instead
actively seek to find them. BTM engages human intelligence, accessed through crowd-
sourcing, to identify these unknown unknown cases. In a sense, this is similar to “white
hat” hackers who are hired by companies to find vulnerabilities and break into their
own security systems. In our case, human workers are asked to submit pages that will
“beat” our classifier.

4.1. Beat the Machine Task Design

The BTM system has evolved over time. Here, we walk through several design it-
erations, showing the challenges that emerged with each new design and how these
challenges were addressed.

Design 1, Initial version: Let’s start with a straightforward idea: Ask humans
to find the unknown unknowns (i.e., the cases that “beat the machine”). Users submit
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URLs that they believe will be incorrectly classified by the current classification model.
To spur engagement, a user receives a nominal payment for just submitting the URLs,
and then she receives a significant bonus payment for every URL that was misclassified.
(In the implementation, the nominal payment was 1 cent per 5 URLs, and the payment
per misclassified URL was 20 cents.)

Of course there is an obvious problem: How could such a system tell that the URL
indeed beats the machine? The whole point is to find cases that the system does not
know that it gets wrong! To judge misclassification, we task another set of (trusted)
humans to classify these URLs. Then, to determine whether the URL beats the ma-
chine, we compare the classification of the trusted set of humans with the outcome of
the machine model.8

Unfortunately, this simple design was not as effective as we would have liked, for a
variety of reasons. The first, and most obvious, problem was the lack of interactivity.
The workers could easily submit URLs that would break the model, but then they had
to wait for other humans to inspect the results to assess whether they had succeeded.
This process can take from a few minutes to a few hours. The delay made the task
opaque to the players of the BTM game because they did not know if they were good
at “playing the game” or not. This led to short user engagement and high rates of
abandonment.

Design 2, Adding immediate classification feedback: To resolve (partially) the
lack of interactivity, we augmented the system to classify submitted URLs on the fly
and give immediate feedback to the humans about the classifier outcome. For example,
“The machine believes that this URL contains hate speech. Do you believe that this is
correct?” The BTM player can then decide whether the URL is indeed a misclassifica-
tion case and submit it for further consideration. Upon submission, the user receives
provisional bonus points that correspond to a cash reward. The bonus points become
permanent, and the worker is paid, immediately after the inspection and verification
of the submitted content by the human judges.

Unfortunately, this design still did not provide the proper incentives. Players typi-
cally found it much easier to locate pages from the majority class misclassified into the
minority (e.g., pages without any hate speech content that are misclassified as contain-
ing hate speech). So, instead of locating the desired, high-cost errors, we received the
type of errors that can be found more easily by observing the positive classifications.
Recall that, due to the class imbalance, most of the observed errors are good pages
being classified as containing hate speech. As described earlier, we are particularly
interested in finding pages that contain hate speech but are incorrectly classified as
benign. And especially, among these, the unknown unknowns. Furthermore, we expe-
rienced a significant number of cheating attempts in which users submitted random
URLs and insisted that the classification of the content should be different from the
model’s classification, even though the classifier was indeed correct.

Design 3, Segmenting the task by class: To deal with these problems, we split the
task into two subtasks: (a) Seek pages that contain offensive content but are classified
as benign and (b) seek pages with benign content that are classified as offensive. This
segmentation simplifies the overall design and makes the task easier for participants to
understand. Moreover, it allows us to quickly reject submissions that are of no interest.
For example, if we are asking for misclassified hate speech pages, we can quickly reject
pages that our classifier unambiguously classifies as hate speech. (In Designs 1 and
2, users had the incentive to mark these as “non–hate-speech” hoping that the human

8To avoid certain issues of gaming, the BTM workers are recruited through Amazon Mechanical Turk, and
the trusted human judges are recruited and trained through oDesk for the fully automated system. For the
experimental evaluation, we used student interns using a separate system.
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Fig. 3. A screen-shot of the BTM interface on Mechanical Turk.

judge would accept their judgments.) Figure 3 shows the intentionally simple task
interface.

Design 4, Expanding the incentives: In this design, we improve the incentive
structure by rewarding differently those users who discover “big mistakes” (the un-
known unknowns) and those who discover the “small mistakes” (the known unknowns).
Instead of giving a constant bonus to the player for a misclassified URL, we reward
misclassifications proportionally to the estimated cost, which we infer through the
returned probability distribution for the example label. For examples that have high
estimated cost, the reward is small: This was a known unknown. On the other hand, if
the model is very confident in its decision (i.e., estimated cost close to 0), but the deci-
sion is incorrect, then the BTM system gives the highest possible bonus to the worker.9
If the the estimated misclassification cost is higher, then the reward is proportionally
smaller. We also reward players who provide examples for which the model is correct
but uncertain: If the model predicted that the page is 60% likely to contain hate speech,
and the page indeed contained hate speech, the user receives a small bonus.

Design 5, Encouraging diversity: Design 4 has most of the incentives in place for
users to try to discover unknown unknowns. The key problem is what happens after the
discovery of the first unknown unknowns. Users are typically able to understand the
cause of the failure and then keep submitting cases that are similar to the previously
submitted successes. For example, for the web classification task, users realized that
the classifier was trained with English web sites, and therefore adult or hate speech
sites written in languages other than English (Japanese, German, Arabic, etc.) are
effectively unknown unknowns.10 Users realize the vulnerability and then keep sub-
mitting similar sites, retrieving high rewards for very little effort. However, once we
receive the first few submissions of such unknown unknowns, the similar submissions
are only technically unknown unknowns. In reality, they become effectively “known”
unknowns to the stakeholders, although for the classification system and BTM, they
remain unknown unknowns.

9For the experiments, the highest bonus per URL was worth 1,000 points, or 20 cents.
10Since most of the terms in non-English web sites were not in the training data, the classifier had very few
features to work with and effectively classified these sites into the majority class.
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To avoid this issue, we altered the setting to include one additional binary classifier:
This extra classifier receives the proposed URL from the user (a “probe”) and decides
whether the submitted probe is similar to a previously submitted probe. This classifier
is trained using the previously submitted probes. If the classifier determines that the
probe is similar to a previously submitted successful probe, the user receives a smaller
reward compared to the case of submitting a “new” unknown unknown.

5. EXPERIMENTAL STUDIES

In Section 3, we defined unknown unknowns, and in Section 4 we described a gamified
structure that incentivizes humans to identify such unknown unknowns in a predictive
model.

To provide an experimental evaluation of BTM, we asked two questions:

—Does BTM identify errors efficiently?
—Does BTM identify isolated examples of unknown unknowns, or does it identify

systematic unknown-unknown regions in the space?

For our experiments, we used the BTM system to challenge two classification sys-
tems, one for detecting pages with hate speech and one for detecting pages with adult
content. We ran the systems with the configuration details of Design 4, described in the
previous section (0.2 cents for the base task, 20 cents maximum payment for a URL
that generates an error). In both cases, we challenged the workers to find errors in the
minority class (the high-severity errors).

Comparison with stratified random examination: In application domains with
highly unbalanced datasets, the standard procedure for quality assurance of models
such as these is stratified random examination of model predictions. Examining a uni-
form random sample of the output is particularly uninformative because the classifiers
are quite accurate and the distributions are quite unbalanced, and so the vast majority
of cases are correctly classified and not objectionable. Therefore, standard procedure is
to have human workers examine a random sample stratified into bins by the model’s
confidence score. Following the standard procedure, in our evaluation, each bin con-
tained the same number of URLs; specifically, the range of expected misclassification
costs was divided into k equal-width bins. A set of N URLs for testing was sampled
randomly, with N

k from each bin. This stratification is used because it generally finds
more errors—it oversamples the URLs for which the models have low confidence (and
are likely to be wrong).11 However, the discovered errors are likely to be “known un-
knowns,” in contrast to the errors that we expect BTM to discover.

We compared the stratified sampling quality assurance procedure with BTM to ex-
amine whether the hypothesis that they discover different types of errors is true. It
is important not to see this as a bake-off. Although we will compare identified error
rates, it is important to emphasize that the two procedures are complementary and not
competing: They are designed to assess different quantities, as we explain later.

In our experiment with BTM, we asked users to find pages that contain objectionable
content but would be classified as benign by the classifier.12 We collected 500 URLs for
each of the tasks, and each URL had a nonzero probability assigned by the classifier of

11It also allows the management and data science teams to estimate the calibration of the scoring system by
examining the percentages of positive and negative instances in each bin.
12The underlying classifiers were models built using logistic regression, trained in each case with a dataset
of approximately 20,000 manually classified URLs. For these experiments, the pages were featurized based
on the text and metadata of the page using standard text-classification methods, with different name spaces
for different page segments (e.g., title, body, metadata).
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Fig. 4. Distributions of the magnitude of the identified errors by BTM and by stratified random sampling.
Each bar indicates the percentage of successfully identified errors that reside in the associated score range.

being benign. For the adult content task, a total of 25 BTM workers participated, and,
for the hate speech task, a total of 28 BTM workers participated.

For the adult classifier, the human workers in the stratified examination identified
errors in 16% of the inspected cases—orders of magnitude higher than the error rate
of the classifier when evaluated with examples selected via nonstratified random sam-
pling. In contrast, using BTM, more than 25% of the submitted cases exhibited an error.
The corresponding statistics for hate speech favored BTM even more strongly: Work-
ers identified errors in only 9% of the inspections for stratified examination. Workers
identified errors in 27% of the inspected URLs with BTM. On the surface, these results
seem to indicate that the BTM process is more efficient than the standard quality assur-
ance procedure in identifying problematic cases. However, note that we could increase
the “efficiency” of the non-BTM procedure by simply sampling a larger proportion from
the low-confidence predictions. Unfortunately, this would directly reduce the number
of unknown unknowns discovered. At the extreme, the largest number of errors would
be found by sampling only in the low-confidence region, and none of the errors found
would be unknown unknowns.

Comparing the severity of errors: Figures 4(a) and 4(b) show the distribution
of errors identified for the hate speech and adult content tasks, respectively. The blue
bars show the mistakes identified by BTM; the red bars show the mistakes identified by
the stratified evaluation. The number ranges on the horizontal axis show the severity
of the errors in four buckets—how badly the classifier misjudged its classification. The
severities range from the least severe on the left (zero is no error), to maximum severity
on the right: 1,000 means that the classifier was certain of one class, and the actual
class was the other. The unknown unknowns are on the far right of each graph.

A consistent behavior is observed for both categories: A significantly larger proportion
of the BTM errors found are severe misses—the unknown unknowns. Within the errors
identified by BTM, 25% were cases of high severity; here, the model estimated that it
was making the correct decision (classifying the objectionable content as benign, with
low expected misclassification cost), but in reality the decision was incorrect.

In sum, BTM identifies a larger number of problematic predictions than the stratified
testing. Out of these predictions, BTM also identifies a much larger number of unknown
unknowns. These cases would be missed in practice, and, without an unpleasant event
(possibly a catastrophe), the model users would never know that they had missed them.
In contrast, and by now as expected, most of the identified errors for the stratified
examination were misses that occur near the decision boundary.

Isolated outliers or systematic regularities? A natural question to ask is if the
cases found by BTM seem to be isolated outliers or whether they seem to be regularities.
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Fig. 5. Learning curves generated by the models first using cross-validation (BTM only and student only)
and then each trained on one dataset (BTM, student) and tested on the other. Specifically, in the latter case,
the student-classified stratified random sampling data were used as test cases for models trained using the
BTM-identified cases (BTM on students), and vice versa (students on BTM).

We framed this question pragmatically, based on the assumption that regularities can
be modeled.13

Following this reasoning, we ran the following experiment. We attempted to learn
a model that would classify positive and negative examples from among the BTM-
identified cases. Internal consistency in the identified errors would suggest that these
cases are not outliers, but rather that they constitute parts of the space where the
model fails systematically (potentially without being aware of the failures). Figure 5
shows the results of this process.

First consider the “btm only” learning curve and the “student only” learning curve,
showing 10-fold cross-validated areas under the ROC curve (AUC). The “btm only”
curve shows the performance of models built and tested using the error cases identified
by the BTM process. The “student only” curve shows the performance of models built
and tested using examples gathered through stratified examination (the pages selected
by stratified examination were inspected by students for this experiment, hence the
name). Importantly, the results show that the quality of both models is fairly high. This
illustrates that there is consistency and internal coherence in these sets of identifed
errors. The fact that the BTM model can reach high levels of accuracy indicates that
BTM indeed identifies systematic regions that contain unknown unknowns and not just
disparate outliers. However, note the difference between the quality that is achievable
by training with the two different datasets. The comparatively lower quality of the
stratified examination model illustrates that these pages are inherently more difficult
to learn from; this is consistent with our earlier discussion that the Discovery Via
Stratified Random Examination (DVSRE) focuses on the ambiguous cases (those that
the current model is uncertain about), whereas BTM discovers incorrectly classified
areas of the space that have been systematically ignored.

We also can examine whether the two approaches (DVSRE and BTM) identify sets
of similar examples or whether each of them identifies something completely differ-
ent. For that, we tested the performance of BTM-trained models using the examples
from DVSRE (“student”) and vice versa. The results indicate that there is little cross-
consistency between the models. What we discover using BTM has little effective-
ness for classifying the error cases identified through DVSRE, and vice versa. This
finding indicates that BTM and DVSRE reveal errors in different parts of the space;

13So, therefore, we may miss regularities that fall outside the limits of the inductive bias of our modeling
procedures.
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importantly, BTM finds errors that are systematically different from those found by
DVSRE. BTM and DVSRE are different processes, capable of identifying different types
of errors. Each of these has its place in the evaluation and improvement of automatic
models. DVSRE identifies primarily cases where the model already knows that it is
not confident. The results show that even if the DVSRE were stratified only on the
“unknown” region, it still would not identify nearly as many unknown unknowns as
BTM.

6. IMPACT IN INDUSTRIAL DEPLOYMENTS

The BTM design has directly changed the way several companies view and practice the
evaluation of predictive systems. In our example domain for this article, Integral Ad
Science,14 a leading analytics company for online advertisers that does massive-scale
webpage classification in the online advertising space, has decided to move beyond
traditional system evaluation methods. Traditionally, deployment models had been
evaluated using cross-validation, expert model examination, and stratified case exam-
ination. Once a prediction system was deployed in practice, evaluation was based on
continual stratified examination from the production classification stream. Let’s call
this practice “passive testing.” According to the firm’s founding data science team, this
work convinced Integral Ad Science that BTM and other “active testing” practices are
vital to understand their predictive models’ performance and alert stakeholders about
areas of concern. The most convincing impact is that Integral Ad Science has invested
in the industrial development of BTM and is pursuing its use across classification tasks
(not just objectionable content).

BTM also has influenced the practice of deploying new ML algorithms within
oDesk,15 a firm that runs one of the most popular online labor marketplaces. Before
deploying an ML algorithm, the algorithm is first tested by asking users to identify
cases that are likely to “break” the algorithm. Consider the example of testing an al-
gorithm that automatically classifies posted jobs into categories. To test the system, a
set of contractors were hired and asked to submit job descriptions that a human would
legitimately and unambiguously classify into one category, but the automatic system
would classify into another. One of the interesting side effects of this practice is that
the contractors are typically capable of identifying earlier than the ML algorithm shifts
in the content of the typical job posting. For example, when a new technology appears,
the ML system may not have sufficient training data to identify that “Bootstrap” is a
web design term/skill and not a statistical sampling technique; contractors are able to
identify such cases without the need for a large sample sizes of training data. So, when
a new type of task starts emerging in the market (and it cannot be classified properly
by the current automated engine), the BTM system is likely to catch this trend early,
before it becomes a major issue of user dissatisfaction.

Finally, a BTM-like system has been deployed as part of an image tagging service
for Tagasauris.16 Before BTM, automatic systems together with humans were used to
tag images with keywords. Under the new BMT-style design, there is an extra phase
in which humans examine an image to “challenge” existing tags, with the goal that the
newly provided tag will be better and more relevant than the one currently assigned.
This design allows for higher quality keywords to be assigned to the images, thus
avoiding cases where only a set of generic, uninteresting keywords are assigned to an
image (either by algorithms or by humans).

14http://integralads.com./
15http://www.odesk.com/.
16http://www.tagasauris.com/.

ACM Journal of Data and Information Quality, Vol. 6, No. 1, Article 1, Publication date: March 2015.

http://integralads.com./
http://www.odesk.com/.
http://www.tagasauris.com/.


1:16 J. Attenberg et al.

In general, the main practical impact of the BTM system is the new approach for
testing and debugging automatic ML models. The technique of rewarding users for
locating vulnerabilities and bugs is common in security. However, there is a consid-
erable difference: When dealing with statistical models, merely locating an incorrect
classification decision is hardly an event worth rewarding or even recording. The BTM
system is designed to reward cases that help to identify and avoid failures that would
blindside the users of the predictive model.

7. CONCLUSION AND FUTURE WORK

We presented the problem of unknown unknowns in the setting of predictive modeling
and explored the design of the BTM process for directly integrating humans into testing
automatic decision models for severe, unknown vulnerabilities. Our results suggest
that BTM is especially good in identifying cases where the model fails while being
confident that it is correct. Several companies have implemented systems based on the
ideas of BTM, based directly on preliminary reports of this research.

Our experience suggests that researchers should devote more study to this sort of
system. Presumably, even though we have gone through several design iterations,
there is a lot to learn about how to design such systems to work well. As we discussed
in the deployment section, in addition to using BTM proper, companies already have
been using the ideas in ways slightly different from the exact design we’ve presented.
Furthermore, it is naturally interesting to ask how to best use knowledge of such
vulnerabilities to improve the automatic decisions models. To our knowledge, no work
has yet studied this. Our preliminary experiments indicate that building predictive
models in the BTM setting is a very complicated problem. For example, oversampling
cases where a model makes big mistakes can be catastrophic for learning (think simply
about oversampling outliers in a linear regression). On the other hand, techniques like
boosting [Schapire 1999] have a tremendous advantage by overweighting cases where
the current model is incorrect. The potential benefit of being able to simultaneously
explore a model’s unknowns and offer robust model improvement would be an exciting
advance.
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