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Abstract

TV viewership data available at the individual set-top box level has enabled new methods
for estimating the demographics of shows’ audiences, but it is impossible to tell with certainty
which household members are watching TV in multi-person households. We address this problem
through four main contributions. First, we develop a novel method for estimating the likelihood
that each individual in a multi-person household is watching. Second, we derive a set of tasks
at which models must succeed in order to demonstrate that they have solved the core problem,
since there are no ground-truth labels. Third, we evaluate our new method as well as two current
state-of-the-art heuristic methods. Fourth, we conduct some example analyses of viewership in
the context of living with others. Our solution has implications for advertisers, researchers
who seek better understanding TV viewership, and anyone using data generated by shared
devices or accounts. A major TV provider is planning on deploying this method for use in
their TV ad-targeting system. No personally identifiable information (PII) was gathered or
used in conducting this study. To the extent any data was analyzed, it was anonymous and/or
aggregated data, consistent with the carrier’s privacy policy.
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1 Introduction

Television audience research has traditionally been conducted using data from Nielsen or other

competitors which use aggregate opt-in panel data to report various demographics’ viewership.

There are a few disadvantages to using such data: they require users to self-report viewership instead

of directly observing behavior; their panels are relatively small, leading to unreliable estimates

for either TV shows that are not commonly watched or demographic groups that are sparsely

populated or very specific; and they have historically been slow to measure media consumption

via novel channels such as on mobile devices (Steel 2014). Additionally, Nielsen in particular has

recently been found to have ratings errors (Carter and Steel 2014). Finally, panel-based data is

very expensive and TV providers now have an alternative data source that serves the same purpose.

More recently, ad networks and television providers are able to collect digital channel-change

data for each individual set-top box (STB). An STB is the device through which customers access

digital cable programming on their televisions. These data have the advantage of being available

at the individual STB level and therefore overcome some of the weaknesses inherent in panel-based

data (Nielsen and similar data providers collect data at the individual level but report aggregate

numbers to their users). Thus, state-of-the-art algorithms for understanding TV audiences utilize

STBs (Balakrishnan et al. 2012, Kitts and Au 2014, Spangler et al. 2003); however, it is not

currently possible for cable1 providers to understand which individual associated with an STB is

the one watching.

Standard practice in research and industry is to use all STBs in households that include at

least one member estimated to be of the target demographic for audience profiling, forecasting, and

media plan optimization (Balakrishnan et al. 2012, Kitts and Au 2014). That is, the assumption is

that everyone in the household is watching TV, all of the time that it is on. As we demonstrate later

on in this paper, this practice results in an inaccurate picture of what various demographics watch.

Not knowing who is watching in the multi-person households is a core problem that diminishes

stakeholders’ trust in using individual STB data rather than panel-based data such as that provided

by Nielsen (Stack 2014), despite the disadvantages of using Nielsen or similar competitors’ data

described above. This is because Nielsen does collect information on the viewing behavior of

1We use the term “cable” loosely here; our work pertains to television viewing sources with the characteristic that
it is possible to measure what is being watched at what time.
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individuals within households.

To the best of our knowledge, this is the first paper to develop a solution that increases the

quality of the STB data by estimating the probability that each member of the household is

watching. We present a novel framework for modeling that first uses single-person households,

then adjusts the result to the specifics of individual multi-person households. We also formalize

two state-of-the-art heuristics to use as baselines.

The heuristic estimators we use as the basis for comparison may seem simple, especially when

compared to the highly sophisticated and complex models developed and used in online advertising.

The sophistication of ad targeting on TV has lagged behind that of online advertising, where the

vast amount of highly granular data enables nearly instantaneous and highly specific individual

action and measurement. In contrast, television advertising schedules are often decided months in

advance (most of the time even before the show schedule is set), and there has, until now, been little

transparency into the behaviors of individuals within households. This is particularly troubling

because televisions (unlike laptops or phones) tend to be shared by multiple family members.

Additionally, people frequently watch TV in groups (Morrison and Krugman 2001).

Because it is not currently possible to separate the viewership of individuals within STBs (and

therefore establish ground truth), evaluating the performance of any model for this problem is

non-trivial. Therefore, we derive a set of three tasks related to the core problem for which we do

have ground truth. Any model that can be said to succeed at estimating which person is watching

TV must necessarily have high performance on all three tasks; this evaluation framework enables

us to rule out unsatisfactory solutions and compare among models. The novel model we develop is

the only one we test that has acceptable performance on all three tasks, and in fact it dominates

the two state-of-the-art heuristic estimators at all tasks.

A final goal of this work is to contribute to the understanding of television viewership in a social

context. Watching TV is understood to be a social activity (Morrison and Krugman 2001), and

recommender systems for groups of people (as opposed to individuals) is an active research topic

(Chaney et al. 2014). Thus, we use our model to investigate three questions: (1) whose tastes are

the most likely to dominate viewership in households, (2) how individuals living in multi-person

households differ from otherwise-similar individuals who live alone, and (3) which channels are

most likely to be watched by all household members versus only one household member.
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The rest of the paper is organized as follows. The next section formally describes a mathematical

formulation of the predictive problem along with the notation and terminology that we use going

forward. It also describes the models we develop for prediction: the two current state-of-the-art

heuristic estimators, and the new model we develop. Section 3 describes some properties that

successful models should possess, and shows a set of metrics that capture those properties. We

use that set of metrics for evaluating the models we have developed in this work. Next, Section 4

describes our experimental procedure and some promising results. Section 5 demonstrates a few

example analyses that could be facilitated using the resulting model. Section 6 ties our new model

to existing methods used for predictive modeling of television viewership, as well as the machine

learning literature that it relates most closely to. We conclude in Section 7 with a discussion of

further applications of this particular model, the broader implications of this type of modeling

beyond the TV advertising world, and some intriguing future directions.

2 Modeling Framework

2.1 Problem Statement and Notation

We assume two major data components are available for each STB i: first, the number of seconds

that it was tuned to channel c in some time period. The second data component is demographic

information for each individual within a household that contains STB i. This information will help

us to distinguish among the members of the household. Our specific data were provided by a major

IPTV entertainment provider and contain anonymized viewership information for individual STBs

as well as demographic features for the customers in those STBs.2

The higher-level goal is to predict the likelihood that each person associated with an STB

watches a TV “segment” (a show, a channel, etc.). We formalize the question as: given a channel

c, an STB i, and a person ij associated with STB i who has demographic feature vector xij , what

is the probability that ij watches c for more than 30 minutes per week3 on average during the time

period of interest?

Let bc,i denote the event that STB i watches channel c for more than 30 minutes per week on

2No personally identifiable information (PII) was gathered or used in conducting this study. To the extent any
data was analyzed, it was anonymous and aggregated data.

3We have observed that the results described in this paper are qualitatively similar if this threshold is varied.
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average. Similarly, yc,ij is the binary label for individual j within STB i representing the event

that individual ij watches channel c for more than 30 minutes per week on average. The bc,i labels

are observed in the training data; the yc,ij are what we are trying to predict, but are not observed

for multi-person households. Each method that we develop will result in two estimates:

1. Estimates of P(yc,ij ) for each individual j associated with multi-person STB i. This is the

quantity that we would like to estimate in this paper.

2. An estimate for P(bc,i), the label of household i. Although we directly observe this quantity

on historical data, the estimate is useful in evaluation.

An important assumption is that if an STB is tuned to a channel, then at least one person

associated with the STB must be watching it, and if the TV is off then nobody is watching. The

event bc,i is equivalent to the union of the events yc,i1 , yc,i2 , . . .. This means that the probability

that STB i watched channel c is the probability that individual 1 or individual 2 or individual

3, etc. watched. Specifically, we will utilize the approximation given in Equation 1, which simply

states that the probability that STB i watches channel c is equal to the probability that any of the

individuals within i watch channel c:

P(bc,i) = P(yc,i1 ∪ yc,i2 ∪ . . .) (1)

A key challenge of this problem is that there are no ground truth labels for who is actually

watching. Therefore, we have derived a set of three tasks that (A) are related to the core problem

of interest—models that fail at these tasks are unacceptable, and doing better at any of these tasks

implies doing better at the core problem, and (B) are possible to evaluate using elements of the

training data. As part of our business understanding, via discussions with stakeholders, we have

determined that successful models should (i) have high predictive performance on a held-out set

of weeks, (ii) should match some benchmark demographic distributions, and (iii) should produce

reasonable estimates for the total possible audience of viewers. Section 3 goes into more detail on

these tasks, how we evaluate whether models are successful at them, and how the tasks can be at

odds with each other.

NB: there is an important distinction between single-person and multi-person households.
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Multi-person households are the target of our analysis: the purpose of this research is to distinguish

among viewers in these households. Therefore, all evaluation is done on multi-person households

only. Because we know which person is watching in the single-person households, they are highly

useful, and so we use both multi-person and single-person STBs for training. Put another way, the

multi-person STBs constitute the focal training and test data; the single-person STBs function as

auxiliary training data, drawn from a related but different distribution.

2.2 Heuristic Estimators

This section formalizes two current industry state-of-the-art methods for estimating the demo-

graphic composition of television audiences (Spangler et al. 2003). We use these as baselines

against which to compare the model we have developed for this paper.

2.2.1 Whole Household Estimator

The first baseline strategy is to assign the STB’s viewership equally to all individuals within the

household. That is, for each person ij associated with each STB i:

yc,ij =


1 if bc,i = 1

0 if bc,i = 0

We use a very simple predictive model for generating estimates: we predict that STB i will watch

channel c in the test period if and only if it was tuned to c in the training period. This heuristic

is denoted as the Whole-Household Estimator (WHE). WHE is straightforward to compute. For

each channel c and (multi-person) STB i:

1. Estimate P(bc,i) = 1 if bc,i = 1 in the training period, otherwise P(bc,i) = 0.

2. Predict P(yc,ij ) to be P(bc,i) for each individual j who is associated with i.

WHE corresponds to the current state-of-the-art method for assigning viewership among peo-

ple associated with an STB (Balakrishnan et al. 2012, Kitts and Au 2014), and the reaction of

stakeholders to WHE’s estimates was the original motivation for this research. In the setting of

generating media plans (lists of recommended channels on which advertisers should place ads to
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maximize exposure to target demographic audiences), utilizing this heuristic results in non-intuitive

recommendations (and therefore it does not do well at task (ii) mentioned in Section 2.1 above).

This issue stems from multi-person households’ viewership.

For instance, households containing men in their 30’s and 40’s frequently also contain women

because such people are likely to be married. Men and women tend to have somewhat different

viewership preferences; however, because the viewership is assigned equally within households, men

can be credited with watching the channels that are likely instead being watched by their wives.

Thus, although very accurate along some dimensions, WHE’s recommendations are frequently

unacceptable to external stakeholders. Consider, as an example, an advertiser who wants to to

reach 30-45 year-old men. They would object to a recommendation to advertise on the Lifetime

network (which at one point had the slogan “television for women”). Moreover, they would reject

an analytical model that made such recommendations.

2.2.2 Single-Person Household Estimator

The second baseline heuristic is to estimate viewership based on the viewing behavior of only the

single-person STBs, and is designated going forward as the Single-Person Household Estimator

(SPHE). This method is our formalization of a standard heuristic alternative that “corrects” the

non-intuitive predictions that come from using WHE. End users frequently discard the multi-person

STBs in order to determine the channels which their desired demographic audience watches the

most. We formalize this idea by learning predictive models for P(yc,ij |xij ) for STBs that contain

only one individual, using the individual’s characteristics as features, and denote the function

learned for channel c as φc(xij ). We estimate:

P(yc,ij |xij ) = φc(xij ) (2)

Next, we predict the multi-person STBs’ individuals’ probabilities of watching using the result-

ing models. The prediction of STB i’s probability of viewing is then computed as the probability of

any one individual watching. Assuming that the individuals watch independently, we then estimate

P(bc,i) as the product across the Ni individuals associated with STB i:
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P(bc,i) = 1−
Ni∏
j=1

(1− φc(xij )) (3)

Equation 3 represents the probability that within STB i, person 1 watches OR person 2 watches,

etc.

Computationally, the single-person modeling is a relatively standard prediction task, so we

have many options for how to approach it. Engineering good features using the demographic traits

available is one part. Also, standard modeling decisions apply, such as whether to use nonlinear

or linear models, and how much and what type of regularization to use. These parameters can

be tuned using cross-validation across single-person households. The quality of the single-person

models is key to success using this method.

We thus build L2-regularized logistic regression models to predict P(bc,ij |xij ) via learning a

function φc for each channel c using all of the single-person STBs. The choice of model type here

and standard parameters are optimized by comparing the AUC using 3-fold cross validation over

the training data. Note that both WHE and SPHE treat all channels’ viewerships independently.

While SPHE may produce estimates that are apparently more intuitive based on the demo-

graphics, there are problems with it. First, SPHE ignores demographic groups which are inher-

ently associated with multiple people in a household, such as “housewives.” Equally as important,

it ignores differences in behavior that may arise when individuals live together. This could be due

to inherent differences in the demographic or taste characteristics of people who live with others

rather than alone (for instance, men and women who are married may be more conservative than

other people of their age who live alone). In addition, living together alters viewing patterns such

that people who watch TV together make different choices. For example, it has been empirically

demonstrated that husbands are more likely to influence wives’ television viewership choices than

vice versa (Yang et al. 2006).

2.3 The Mixed Estimator

The development of the following method is our first main contribution, which draws upon the

strengths of the two baseline methods above. That is, this method utilizes the single-person house-

holds’ probabilities of watching the various channels, as does SPHE, but also leverages within-
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qc,ij bc,i

yc,ij

βi

N

Ni C

Figure 1: A graphical representation of the Mixed Estimator model.

household information, as does WHE. We will denote this model going forward as the Mixed

Estimator (ME). A graphical representation of ME is shown in Figure 1.

βi is a vector of parameters specific to STB i. Let qc,i be a vector of scores that are believed

to correlate with the yc,ij , which we will explain in greater detail below. We start by proposing a

probabilistic process by which the STB labels bc,i and individual labels yc,ij are generated:

For each STB i:

1. Draw βi ∼ N (0,
1

2k
Ik).

2. For each of the C channels c:

(a) Draw bc,i ∼ Bernoulli(pci), where

pc,i =
1

1 + exp−βi · qc,i
(4)

(b) Draw yc,ij from P(yc,ij |bc,i, qc,ij ), a Bernoulli distribution conditioned on the STB label

(defined below in Equations 11-13).
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In this generative process, only the bc,i are observed in the training data. The qc,ij can be

thought of as a sort of “prior” for the individual binary labels yc,ij and can be populated using any

data source that the user believes to be correlated with the (unobserved) label yc,ij for a particular

person. One possibility includes ratings from Nielsen or another aggregate (external) data source;

here, in order to not require external data (which can be expensive or difficult to obtain) we utilize

the probabilities learned from the single-person STBs. That is, use φc as defined in Equation 2:

qc,ij = φc(xij ) (5)

The STB-level parameters βi are learned separately for each STB i using logistic regression,

such that the Logistic likelihood function is maximized:

βi = argmin
β

∏
c

(pc,i)
bci (1− pc,i)1−bc,i (6)

pc,i =
1

1 + exp(−β · qc,i)
(7)

Next, the model estimates P(yc,ij |bi). These values correspond to the individual-level proba-

bilities, and are not labeled in the training data. We use the assumption given in Equation 1 to

constrain our estimates: if bc,i = 1, then there must be at least one j such that yc,ij = 1; otherwise,

all yc,ij = 0. We have additionally assumed that the yc,ij ’s are conditionally independent given bc,i,

so we have:

∏
j

P(yc,ij = 0|bc,i = 1) = 0 (8)

⇒ P(yc,ik = 1|bc,i = 1) = 1, for some k (9)

Thus, there must be at least one individual ik in STB i that is watching the TV whenever it

is tuned to channel c. To decide which individual that is, the model uses both the scores qc,ij and

the parameters βi learned in Equation 6. In logistic regression, exp(βij ) represents the increase

10
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in the odds that bc,i = 1 when the predictor qc,ij increases by one unit (all other predictors being

equal). Therefore, a rough interpretation of these coefficients is that they represent the degree to

which each individual ij ’s viewership patterns match those of STB i as a whole. Equation 6, then,

mixes the qc,ij by reweighting them proportionally to the weights βij . The degree to which bc,i is

influenced by each qc,ij is proportional to both expβij and qc,ij . We define the relevance rc,ij of

each individual ij for channel c as

rc,ij = exp (βij )pc,ij (10)

The relevances determine the individual conditional probabilities P(yc,ij = 1|bc,i). Let k be

chosen such that rc,ik ≥ rc,ij for all j 6= k. We constrain:

P(yc,ik = 1|bi = 1) = 1 (11)

P(yc,ij = 1|bi = 1) =
rc,ij
rc,ik

, for j 6= k (12)

P(yc,ij = 1|bi = 0) = 0, for all j (13)

Defining the individual conditional probabilities in this way is satisfying for two reasons. First,

it guarantees that when STB i is tuned to channel c, there is at least one individual ik who is

watching, and similarly that when STB i is not tuned to channel c, no individuals are watching.

Second, it preserves the relative values of the rc,ij among the individuals for each channel.

The final step is to estimate each P(yc,ij ) (the marginal individual probabilities). Our assump-

tions entail that P(bc,i = 1|yc,ij = 1) = 1 (the TV is guaranteed to be tuned to channel c if any

individual is watching channel c). Bayes’ rule yields:

P(yc,ij = 1) = P(yc,ij = 1|bc,i = 1)P(bc,i = 1) (14)

We utilize the estimates for bci as defined above in WHE: P(bci = 1) = 1 if bi was tuned to

channel c for at least 30 minutes per week in the training period, otherwise P(bci = 1) = 0.

Note the assumption implicitly embedded in our model. Rather than assume that each individ-

ual watches independently of all others as in SPHE, we assume instead that each individual watches
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independently of others given the STB label. In section 2.2.2, we showed concrete interpretations

of situations that would cause individuals to watch differently when they live with others, rather

than alone. Also note that this model allows for more nuanced estimates. Namely, it is simple to

compute joint marginal probabilities: the probability that multiple individuals are watching at the

same time. This inference will be helpful later on, when we conduct some preliminary analyses of

social viewership facilitated by this model.

2.4 An Example

To see the difference in predictions that each of these methods makes, consider an example STB in

a hypothetical household containing two members: an adult man and an adult woman. We know

the bc,i values for this STB; among the other channels, assume that the STB did watch the Oprah

Winfrey Network (OWN), which is highly associated with female viewers in the single-person STBs;

the National Football League channel (NFL), similarly highly associated with male viewers in the

single-person STBs; but did not watch Animal Planet, which is roughly equally likely to be watched

by females and males.4 Tables 1 and 2 show the predictions that each model might make for the

members of this household.

Because WHE makes equal predictions for all household members, it makes the (probably

incorrect) estimate that the man watches OWN and the woman watches NFL. The SPHE relies

on scores learned in the single-person household but does not adjust them to match what the

specific focal multi-person household has actually watched; therefore, SPHE estimates that both

household members will watch Animal Planet with non-zero probability, even though the household

has historically never watched Animal Planet. It is therefore clear that ME is the only model that

makes acceptable estimates: they account for the specific household’s viewership patterns yet still

differentiates among the household members.

3 Evaluation

Evaluation is not straightforward for this problem, due to the lack of ground-truth labels for which

person is watching in the multi-person households. We have derived several properties that models

4See Appendix A for descriptions of the channels in our data set and the demographic groups that they are
typically associated with.
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Table 1: Viewership estimates for a woman residing in the hypothetical household.

yc,ij
Channel Actual bc,i WHE SPHE ME

OWN 1 1 .2 1
NFL 1 1 .05 .2
Animal Planet 0 0 .1 0

Table 2: Viewership estimates for a man residing in the hypothetical household.

yc,ij
Channel Actual bc,i WHE SPHE ME

OWN 1 1 .01 .025
NFL 1 1 .4 1
Animal Planet 0 0 .15 0

must necessarily possess if they are to be considered successful. These properties are all related to

the core problem of understanding which person is watching TV; however, unlike the core problem,

we have ground-truth labels that can be used to evaluate performance on these tasks.

This section presents these properties, as well as describing how we measure success (or lack

thereof) on each one. These can be viewed as separate standards by which we will evaluate our

success. Each of the heuristic estimators performs well at one task; however, they both have poor

performance on at least one other task and can thus be ruled out as acceptable solutions. A

successful model must perform well on all three components.

3.1 Household-level Predictive Ability

The first goal that we would like to accomplish is to maximize the generalization accuracy of our

household-level predictions. We have defined bi as a binary variable—either the household watches

the channel or not. In our experimental set-up, each STB’s viewership is divided into a set of

training weeks and test weeks. The methods we describe in this paper produce a score for each

household which represents its estimated probability of watching. We therefore measure the AUC

(area under the ROC curve) for these scores, versus the actual value in the test period. AUC is

equivalent to the Mann-Whitney-Wilcoxon statistic, which measures the probability that a classifier

ranks any randomly chosen positive instance higher than any randomly chosen negative instance

(Provost and Fawcett 2001). We compute the average AUC across all channels for each model that

we evaluate.
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Note that while it is a proxy for the actual goal of the modeling, evaluating on STB-level

predictions does provide important information: one would expect better individual-person-level

estimates to yield better STB-level estimates. As we describe in Section 6 below, a typical setup

in similar problems is to train models on bags (collections of instances) in a set of training data,

while holding out some of the bags as a test set (Dong 2006). Instead of comparing predicted vs.

actual STB labels on a held-out set of STBs, our task is to compare on the same STBs, but on

held-out weeks of data.

3.2 Single-person Similarity

The second task that successful models must accomplish is to generate predictions that are relatively

similar to a benchmark demographic distribution. This benchmark is based on the relative amounts

that different groups of adults in single-person STBs watch each channel. The set of single-person

STBs is particularly useful here, because they provide a clean label—in these cases, we know which

household member is the one watching the television. It is important to note that just as with the

first evaluation task, this is a proxy for what we truly want to estimate. Models that do poorly

at this task can be ruled out. Ceteris paribus, improving similarity to the single-person household

benchmark gives evidence that we are doing a better job estimating individual probabilities.

For adults, we can divide the single-person population based on any set of demographic at-

tributes. We start by using gender as our example. To measure the relative amounts that women

and men, respectively, watch each channel, we compute the log odds ratio (LOR): the log of the

ratio of the odds of a woman watching a channel to the odds of a man watching that channel. We

also compute the log odds ratio for a different demographic binary variable: age 18-45 versus age

46+ (this could be extended to any feature that a user would like to differentiate upon). Denote

the log odds ratio for gender, for channel c as LORG,c, and the log odds ratio for channel c for age

as LORA,c.

The bars in Figure 2 show some channels ranked by metric LORG,c for gender (we have ignored

individuals without a female or male label, who make up a very small minority of the sample).

Positive bars (toward the bottom of the plot) represent channels where the log odds of a woman

watching are higher than those of a man watching. These channels include Oprah Winfrey Network,

Lifetime, and Lifetime Movie Network, all of which are channels that explicitly target women with
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Figure 2: The bars represent the log odds ratio for women vs. men watching channel c, LORG,c
for a few selected channels. The LOR produces an order that is roughly consistent with what one
might expect women or men to watch more. See Appendix A for descriptions of the channels and
demographic groups they are typically associated with.

their programming. Negative bars (at the top of the plot) represent channels where men in single-

person households are more likely to watch than women in single-person households. These channels

include CNBC (a business news channel), the Golf Channel, and NBC Sports.

Figure 3 shows channels ranked in decreasing order of LORA,c. Channels that younger adults are

more likely to watch include Nickelodeon, MTV, and Disney XD. VH1 broadcasts music and reality

show programming, and Disney XD and Nickelodeon are for children and teenagers. Channels that

older people are more likely to watch include Fox Business Network and Fox News (news networks)

and AMC (which broadcasts classic movies and “prestige” TV shows like “Mad Men”).

The purpose of this task is to ensure domain validity so that the predictions generated will

be acceptable to stakeholders. We utilize similarity to the single-person log odds ratios across

channels because one common practice is to only use the single-person households for demographic

estimation. This is because such predictions are viewed by stakeholders as being more intuitive

than those generated by WHE. In general, we will consider a model to be better if its aggregate

assignment to individuals within multi-person households tracks closely to the gender and age log

odds ratios as shown in Figures 2 and 3. Therefore, we compute the average relative difference to

these single-person benchmark amounts across all of the channels for each model.
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Figure 3: Similar to Figure 2, the bars represent the log odds ratio for younger vs. older people
watching channel c, ORA,c for select channels, in descending order. Again, the channels are in
an order that is roughly consistent with what one might expect older or younger people to watch
more. See Appendix A for descriptions of the channels and demographic groups they are typically
associated with.

NB: despite its utility for evaluation, we would expect the single-person STB distribution of

viewership by gender (or age) to differ from the true distribution of viewership in multi-person

STBs for the reasons mentioned in Section 2.2.2. However, this distribution is a useful proxy for

domain validation via external stakeholders.

3.3 Total Audience

The final task that successful models must perform correctly considers the total expected predicted

audience (across all demographic groups). While the actual audience in the test period is unob-

served, it is possible to calculate the maximal possible audience that each channel could attain (as

a reminder, Ni is the number of people associated with STB i):

MaxAudiencec =

N∑
i=1

Nibc,i (15)

The maximum audience totals (as a percent of total people in the sample) are shown in Figure

4 (ESPN, a sports channel, has disproportionately high viewership). Each model’s total expected

audience for each channel is given by:
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Figure 4: Each bar represents the total possible audience for each channel, and they are sorted in
decreasing order of popularity.

ExpectedAudiencec =

N∑
i=1

Ni∑
j=1

P(yc,ij = 1) (16)

Each model’s expected audience should certainly be less than the maximum possible audience

for channel c: it is not possible that people associated with STBs that weren’t tuned to channel c

during the test period would watch. Furthermore, even though it is technically possible, it would

not be reasonable to estimate that everyone in the audience watches TV all the time.

In summary, we want to develop models that will perform competitively on all of our evalu-

ation tasks: predictive performance, similarity to demographic benchmarks, and reasonable total

audience estimate. Pursuing only predictive performance may lead to incorrect attribution, since it

is a proxy for what we actually want to evaluate; however, pursuing only similarity to demographic

benchmarks may lead to misleading estimates for groups whose viewership differs significantly from

that found in single-person households. In either case, the total estimated audience should be

realistic—a successful model should not predict that more than the possible audience will watch

any channel (or, similarly, an unreasonably small audience).

It is also important to note that these tasks only utilize the STB viewership data. Relying

on external data would defeat some of the purposes of this research: it can be expensive and

unreliable. However, other external data may be collected or purchased to enhance the credibility
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of this evaluation suite. Exploring the value of external data for this predictive task would make

an interesting future research topic.

4 Experiments

This section describes the experimental set-up and shows the results of computing estimates of the

probability that each member of a multi-person household will watch each channel using the WHE,

SPHE, and ME models on our data. We measured each model’s performance under each evaluation

technique.

4.1 Data

This section describes the details of the data setting in which we apply our framework. In particular,

we describe the data sources, the formulation of target variables and feature vectors, and the way

in which we set up a train/test split for evaluation.

Our data are from a major IPTV entertainment provider and contain anonymized, individual-

level viewership for a large U.S. state for a time period of six months. These data are generated by

about 215,000 Set-Top-Boxes (STBs), the device through which users access television program-

ming. The STBs are distributed across about 75,000 households. We have information about the

channel that each STB was tuned to, at what time, and for how long.5 We also have a separate

data set which contains demographic information regarding the individuals in each household. In

order to not bias our results against the SPHE, we filter the data to comprise households containing

only adults.6

There are a few assumptions that we make in order to shape the construction of training

and test sets from the viewership data. We are interested in computing viewership probabilities

in specific individual households, so first of all we assume that all households are present in our

sample for the entire time period. Second, we want to ignore any seasonal effects beyond the weekly

viewing patterns. This is somewhat necessary since our data only encompasses twenty-three weeks.

Therefore, while any household’s overall viewership may change over time in the data, in modeling

5There are several other data collection and processing issues laid out by Balakrishnan et al. (2012), from which
we draw our setting.

6We do see that the results are qualitatively similar if we include households containing children.
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we assume that individual probabilities of watching are constant with respect to time (this may be

a source of error in our models). We place the first 15 weeks of data into the training set, the next

four into a validation set which is used for tuning of various parameters, and leave the remaining

4 weeks as a test set.

The second component of the set-up is formulation of viewership per household and channel as

a target variable. As mentioned above, we use binary labels, setting bc,i to 1 if the channel was

watched more than 30 minutes per week on average over all of the weeks and 0 otherwise.7 There

are 47 channels in our data.8

4.2 Results: Predictive Ability

Figure 8 summarizes AUCs across channels resulting from WHE, SPHE, and ME. WHE, which

amounts to using the bi value from the training data as the prediction for the test data, has high

AUC values (average across channels is .77). This implies that households are relatively consistent

in their viewing patterns—knowing the probability that STB i will watch a channel in one time

period gives a lot of information on the probability that it will watch the channel in a different

time period.

SPHE performs substantially worse than WHE, with an average across the channels of .58. The

reason performance is so low for this model is that demographics alone simply are not a very good

predictor of individuals’ behaviors. There are so many channels that a person from a particular

demographic segment could watch, but each individual only chooses to watch certain channels.

This is why the ME is so important: it takes the SPHE which is based only on demographics and

then tunes it to the habits of each particular household.

The ME modeling formulation leads the STB-level bc,i predictions it generates to be identical

to those of WHE. Incorporating STB history improves upon the SPHE predictions dramatically.

Performing a t-test for difference in means shows that SPHE performs statistically significantly

7Separately, we also tested assigning 15 vs. 4 vs. 4 weeks randomly to the train/valid/test sets for each house-
hold, aggregating over STBs within each household so that we would be modeling using a complete picture of each
household’s viewership, and varied thresholds for binarizing the viewership. In all cases, the results were qualitatively
very similar to what we present below.

8The same modeling and evaluation techniques could be applied to more fine-grained targets than channels; for
instance, we could also divide into dayparts (ad insertions are typically purchased at a channel-daypart level). A
daypart is a chunk of time within a week used for purchasing ad insertions, for instance, “Monday between 6PM and
midnight.”

19



Clark, Paiement, and Provost: Who’s Watching TV
Working paper CBA-16-02

Figure 5: AUC for multi-person households in test weeks for WHE (predictions for all individuals
are the household label in training weeks), SPHE (predictions for individuals are based on similar
individuals’ labels in single-person households), and ME. WHE and SPHE of course have excellent
performance using this metric, but SPHE performs very poorly.

worse than both ME and WHE (p < .01).

Based on the above metric (household-level predictive ability), one might ask if we could just

use WHE; however, note that WHE does not actually make any estimates that differentiate who

is watching, which is the task that we have set out to accomplish!

4.3 Results: Demographic Benchmarks

Figure ?? plots the various models’ log odds ratios using predictions from the various models as

described in Section 3.2. In these figures, each point represents an estimate for one channel. The x-

axis represents LOR computed for actual viewership in sinlge-person STBs among women vs. men

and, separately, older vs. younger adults. The y-axis values are the odds-ratio values computed

from the various models. The closer the models’ estimates are to the single-person values, the

better (so the y = x line is there as a visual guide). To summarize the performance of each model

on each demographic binary, we also measure the mean absolute percent error (MAPE) between

the model’s estimates and the single-person benchmark.

For gender, WHE assigns viewership roughly equally to each gender, across all channels, in

multi-person households. This is evident in Figure 6, where WHE looks relatively flat across all
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Figure 6: Actual single-person log odds ratios versus log odds ratios in multi-person households
estimated by various models for gender. SPHE and ME are much better at separating women and
men’s viewership.

Figure 7: Actual single-person log odds ratios versus log odds ratios in multi-person households
estimated by various models for age. All models perform similarly at separating younger from older
viewership when all households are evaluated.
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Figure 8: Actual single-person log odds ratios versus log odds ratios in multi-person households
estimated by various models for age (only including households containing at least one younger and
one older person). When only households containing a younger person AND an older person are
included, WHE’s weakness is revealed.

channels. This is because households with more than one adult are overwhelmingly more likely

to contain a man and a woman than any other configuration. The MAPE for WHE versus the

single-person estimates across all channels is 15.3%. SPHE and ME represent a vast improvement

in terms of differentiation between genders. Both of these models are much closer to the actual

single-person distribution of female-male viewership. The MAPEs for SPHE and ME, respectively,

are 8.2% and 7.5%. A t-test for difference of means shows that we cannot reject the null hypothesis

that SPHE and ME are not statistically significantly different in terms of their MAPEs, but that

ME is significantly better than WHE (p < .01).

With respect to age (log odds ratio of a young person watching versus an older person watching),

all of the estimators’ assignments correspond fairly closely to the single-person distribution, and all

are similar to one another (see Figure 7). WHE likely did a good job because adults are likely to

live with other adults of similar age. That is, the vast majority of households containing “young”

members contain only other young people, and vice versa.

If we filter, however, to only include households that contain at least one younger adult and at

least one older adult, as in Figure 8, we can see that again, WHE does not distinguish between

members of the two different groups. ME has MAPE 11.6%, SPHE has MAPE 12.8%, and WHE
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Figure 9: Total estimated audience as a percent of the possible audience for SPHE and ME (WHE
estimates all of the possible audience is watching, and so is represented by the dotted vertical line).
ME is the only model that provides reasonable estimates; SPHE estimates that many channels will
have a total audience that is greater than is possible. WHE yields a ratio of exactly 1 for every
channel; this is probably also not realistic.

has MAPE 22.6%. The difference between ME and SPHE is not significant at p = .01, but the

difference between SPHE and WHE (and between ME and WHE) is (p < .01).

4.4 Results: Expected Audience Estimates

Figure 9 summarizes for each model the ratio

ExpectedAudiencec
MaximumAudiencec

(17)

for each of the 47 channels in our data. Recall from Section 3.3 that we don’t know the true

ratio (since we don’t have ground truth labels for who is actually watching), but that this ratio

should be strictly less than 1.

The vertical dotted line represents a ratio of 1; note that this is the ratio that WHE would attain

(assuming the end users know the true STB label values bc,i in the test period). SPHE generates

predictions of unrealistically high total audience for nearly half of the channels. SPHE estimates

that 22 out of the 47 have a higher audience than is actually possible. Additionally, SPHE has a

few estimates that seem unreasonably low. On the other hand, ME provides much more realistic
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Table 3: Result summary

WHE SPHE ME WHE Best SPHE Best ME Best
AUC .77 (.06) .58 (.04) .77 (.06) X X
Gender Ratio .15 (.11) .08 (.06) .08 (.06) X X
Age Ratio .11 (.09) .14 (.09) .13 (.10) X X X
Gender Ratio (Pairs Only) .18 (.13) .08 (.05) .09 (.06) X X
Age Ratio (Pairs Only) .23 (.16) .13 (.09) .12 (.09) X X
Audience Ratio <1 Channel Count 0 25 47 X

audience estimates, ranging from 70-90% of the maximal possible audience. This highlights another

reason why ME is valuable: it is the only model that provides a realistic estimate of total audience

for each channel. It also illustrates a possible reason why the industry is reluctant to move away

from the audience estimates provided by WHE: it consistently overestimates the viewership (and

therefore the value of advertising) for any demographic group or channel.

4.5 Result Summary

In summary, WHE has high predictive power at the household level, but does not distinguish among

individuals within households; SPHE does assign different probabilities within households, but its

predictive power is low because it does not leverage the STB’s history of viewing. Neither WHE

nor SPHE provide reasonable predictions of what the total audience for each channel will be, when

compared to the maximal possible audience. ME incorporates the strengths of each of the two

baseline models and therefore is the only method in our experiments that succeeds at all of the

tasks.

Table 3 summarizes the mean and standard deviation (in brackets) for each model’s performance

on each of six tasks. WHE succeeds (by either having the best performance or being statistically

indistinguishable from the best) at only two tasks. SPHE succeeds at four tasks. Only ME shows

successful performance on all six tasks.

5 Social Analyses

An important benefit of doing this work is that it facilitates a deeper understanding of how people

watch television. This section describes a few examples of the sort of analysis that is possible if we

have estimates of which individuals are watching TV.
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Figure 10: In STBs containing at least one representative of each group, which person gets assigned
a higher coefficient?

5.1 Most Dominant Groups

Which demographic groups tend to be more dominant in households? One of the consequences of

the Mixed Estimator is that it provides a coefficient corresponding to each individual in the STB

through the vector βi. These coefficients can roughly be interpreted as the degree to which that

individual’s prior viewing probability (based on the single-person STBs) correlates with the STB’s

overall viewership.

Using the households that contain various pairs of types of people (men and women, or younger

people and older people), we count the number of STBs where a member of each group had the

higher coefficient value. Figure 10 summarizes the number of “wins” for each demographic group

in various types of pairs.

Interestingly, it appears that men’s tastes dominate women’s in households containing at least

one of each. This concurs with results showing that wives’ viewing patterns are more dependent on

their husbands’ than vice versa (Yang et al. 2006). Similarly, older people’s tastes tend to dominate

younger people’s tastes.
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Table 4: Differences for demographic groups in single-person households vs. when living with a
member of a different demographic group.

Watch Less Watch More

Women with men

VH1 NBC Sports
TV One Golf
BET Fox Business
Lifetime Movies Speed
Oprah Network National Geographic

Men with women

VH1 Fox Business
Style Fox News
E! NBC Sports
BET TV Land
Bravo Golf

Age 18-45 with age 46+

Disney AMC
Nickelodeon CNBC
Cartoon Network Syfy
MTV USA
E! Lifetime Movies

Age 46+ with age 18-45

Discovery Syfy
Fox Business Family
ESPN2 Lifetime
Fox News AMC
E! TV One

5.2 Living Partners’ Effects on Viewing

How does living with different types of people alter people’s viewing behaviors? We computed

individuals’ expected probabilities of watching in multi-person households using the ME estimates,

conditioned on various household set-ups, and compared a few groups.

Table 4 shows the effect that living with someone of another demographic group has on individ-

ual’s viewing probabilities. The first row shows the channels that women are most and least likely

to watch when they live with at least one man, versus what they watch when living in household

that do not contain a man. For instance, women who live with at least one man watch significantly

less VH1 than they do in female-only households, and significantly more NBC Sports.

From the first two sections of Table 4, it is apparent that when they live in households together,

both women and men watch less programming that is associated with celebrities, entertainment,

fashion, and African-American culture. Conversely, both men and women watch more sports-

oriented programming such as NBC Sports and the Golf Network, as well as more conservatively-

oriented news programming such as Fox News and Fox Business. Younger adults who live with
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Table 5: Which channels are most likely to be watched by all household members? Or alone?
Descriptions of these channels are given in Appendix A.

Likely to be watched by all Likely to be watched alone

Animal Planet Fox Business Network
Food Network Style
Biography Lifetime Movie Network
truTV VH1
Cartoon Network Lifetime

older adults seem to watch less of youth-oriented channels such as Nickelodeon and MTV, and

more movie channels. Older adults who live with younger adults watch less conservative news, and

more entertainment-oriented channels. These hypotheses would require a more thorough analysis

to fully understand, but show the intriguing directions that future research could take.

5.3 Group Viewing vs. Alone

We are interested in investigating both the social and individual dynamics of TV viewership. The

description of ME shows that it is possible to compute joint probabilities, and thus to compute the

probability that a person is watching TV alone, versus with other people.

We computed the joint probability of all household members watching versus the average prob-

ability of each household member watching alone. Table 7 describes the top 5 channels that are

likely to be watched by all household members, versus the ones that are the most likely to be

watched alone.

The channels that are most likely to be watched by all household members include Animal

Planet, Food Network, Biography, truTV, and Cartoon network. These channels all seem to show

content which is broadly palatable to people of all ages and genders, as well as being sufficiently

inoffensive that they could be watched in groups (parents and children could watch them together,

for instance). The channels most likely to be watched alone are Fox Business Network, Style,

Lifetime Movie Network, VH1, and Lifetime. These are among the most polarizing channels by

gender and age in the single-person households, and so it makes intuitive sense that they would be

watched alone.

Similarly, we re-analyzed the results from Section 4.4 and found the channels watched by the

highest percentage of individuals in each STB, given that the STB was tuned to those channels. The
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highest-scoring channels on this metric included Animal Planet, truTV, TV Land, Food Network,

and Bio. The lowest-scoring channels include VH1, Style, Lifetime Movies, Lifetime, and Fox

Business Network. Thus (unsurprisingly), the two metrics were nearly in agreement on top and

bottom-scoring channels.

One application for this type of work may be in recommender systems. A well-explored problem

in that field is that of making recommendations to groups rather than to individuals (Jameson 2004).

One challenge is that of understanding groups’ preferences (Masthoff 2004), (Masthoff 2011). This

analysis helps by estimating household members’ implicit preferences, taking into account the

household-level preferences.

6 Related Work

6.1 TV Audience Prediction

There is a long history of using Nielsen or other panel data to make inferences about television

audiences. Example uses of such data include forecasting when audiences will watch (Liu 2010,

Meyer and Hyndman 2006, Rust et al. 1992, Weber 2002); optimizing ad placement to maximize

the desired audience (Abe 1996, Currim and Shoemaker 1990, Horen 1980, Rust and Eechambadi

1989); and understanding viewers’ behaviors as social phenomena (Chaney et al. 2014, Yang et al.

2006).

Modern algorithms for understanding viewing behaviors rely on data from STB devices (Bal-

akrishnan et al. 2012, Kitts and Au 2014) or DVRs (Spangler et al. 2003). Of course, with the

rise of viewership on streaming devices and the increase in social media data, there are inference

methods using these newer forms of technology (Hill and Benton 2012b,a).

6.2 Multi-Instance Learning

Our problem is closely related to the subfield of machine learning called Multi-Instance Learning

(MIL). In MIL, individual instances are grouped into “bags.” There are different feature vectors

associated with each instance, but the instances themselves are unlabeled. Instead, the bags are

labeled (Dietterich et al. 1997). In the framework for our problem of interest, households constitute

the bags which are made up of individual viewers.
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Many algorithms have been developed for solving the basic MIL problem. These include proba-

bilistic approaches such as Diverse Density (Maron and Lozano-Pérez 1998) and Multiple Instance

Logistic Regression (Xu and Frank 2004), algorithms similar to kNN that leverage similarity among

instances such as Citation kNN (Wang and Zucker 2000), and heuristics that convert multi-instance

problems into single-instance problems (Dong 2006). There are also other, more complicated al-

gorithms for MIL problems related to ours; for instance, algorithms that are specifically designed

to yield predictions for the individual instances that make up the bags (Liu et al. 2012), and algo-

rithms that break the assumption that instance labels within bags are independently drawn (Zhou

et al. 2009). Further, there are substantial differences between our setting and that typically found

in MIL problems: bags are normally larger and less numerous than the STBs we have, and there

is systematic heterogeneity in the demographic constitution of STBs.

However, although our problem is related to MIL, there are a few key differences that necessitate

slightly different modeling. First, the setting is different: existing research assumes that predictions

will need to generalize across bags. That is, the use case will be to predict the labels of bags not

appearing in the training set. Our goal, instead, is to make predictions for the same STBs, but

during a different time period. This additional structure allows us to use within-STB information

for modeling. We have developed a method that is intended to generalize out-of-time, rather than

across bags. Second, while we do evaluate STB-level predictions, we are actually more interested

in making inferences about individual instances. Unfortunately, evaluation of the small subset

of MIL algorithms that are designed for making individual inferences such as done by Liu et al.

(2012) is usually facilitated by using either labeled or simulated data. In Section 3 we developed

an alternative metric for evaluation that sidesteps the need for individual instance labels. Thus,

existing MIL techniques are designed for a different setting, and should not be expected to be the

best designs for our setting.

6.3 Domain Adaptation

A third way that our problem differs from many application areas in multi-instance learning is the

presence of a special class of STBs: those containing only one instance. The domains frequently

given as examples in MIL research do not refer to bags containing only one instance. Single-person

households, however, are common. Further, these single-person households are quite informative
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in that we know which household member is watching: in most cases, it is the sole resident. Thus,

we can view the set of single-person households as a relatively cleanly labeled set of data. However,

there are differences in viewing behavior between even demographically similar individuals living

alone versus with other people (Mora 2010). This is an instance of a domain adaptation or transfer

learning problem. We extend our understanding of behavior within single-person households to

individuals within multi-person households.

Domain Adaptation refers to learning models using data from one domain with the intention

of applying the resultant models to a separate but related domain (Daume III and Marcu 2006).

One situation in which domain adaptation is advantageous is when labeled data do not exist in the

target domain, but there do exist labeled data in a related domain (known as the “source” domain,

or sometimes “out-of-domain” data). We can consider the target domain here to be the universe of

multi-person households, for which we do not have labels of which person is watching. Therefore,

the source domain here would be the single-person households.

Transfer learning is very closely related to domain adaptation and has been used previously

to accomplish multi-instance learning. In (Raykar et al. 2008), the authors develop a generative

solution for transferring knowledge across domains. In (Zhang and Si 2009), the authors formulate

Multi-Instance Transfer Learning (MITL) as a non-convex optimization problem and develop a

procedure for solving it. Finally, the authors of (Kotzias et al. 2014) develop an objective function

for propagating labels among similar instances and enforcing a multi-instance relationship for the

bags in the sentence/review sentiment problem.

The research in the existing literature assumes that the bags in the source domain will be

labeled, but the instances are not. Our work differs in that we assume the existence of this special

class of bags where we know the labels of the instances—the single-person households. Further,

the methods developed in the existing literature don’t leverage individual bags’ histories to develop

bag-specific models, as we have.

7 Discussion and Conclusions

This paper has described a novel method that combines modeling from a proxy population (single-

person households) with adaptation to the target population to compute estimates of individual
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viewing probabilities within multi-person households, when the ground truth is never observed.

The method succeeds by leveraging the proxy population of STBs which only contain one person

to distinguish viewership patterns among types of individuals as well as using STB history to

improve predictive performance.

This method is very fast because the estimation for each household depends only on a logistic

regression with a few dozen data points. The most time-consuming part is learning the single-

person probability estimates; however, this part of the process can be done once and then updated

infrequently. It does not take much time to learn the individual STB-level logistic regression models

either when new STBs enter the sample, or as time passes for the existing STBs.

There are at least three key applications for being able to accurately estimate the probability

of individuals within a household watching a particular show or channel. The first is “media plan-

ning,” by which we mean here the practice of providing a set of recommended channels/times for

paid ad insertions. Estimates of individuals’ viewing can be aggregated and used in media planning.

Second, there are other users for these predictions, such as the content providers (for use in alter-

native analytics, such as designing new programming to appeal to their current audience). Third,

viewership probability estimates may eventually be useful for addressable targeting, which means

individually targeting households to receive ads. Addressable targeting has long been promised by

ad networks and has even been implemented by some (Vranica 2010); however, widespread adoption

is still pending (Perlberg 2014).

The model also has additional applications outside the world of advertising. Television viewing

was the most popular leisure activity in the US in 2015: the average American spends close to 3

hours per day watching TV, and on any given day, about 80% of the population watches at least

some TV (U.S. Bureau of Labor Statistics 2015). In Section 5, we demonstrated examples of the

type of analyses that could be done to facilitate a greater understanding of the way people watch

TV.

Attempting to individually target devices that are shared by multiple people is an issue that

is present to some extent in online settings as well and so has broad practical applications. For

instance, multiple individuals may share a web browser, so online advertisers may not serve ads

to the individual for whom they are meant. Further, online retailers make recommendations for

additional products to purchase based on what the user has purchased before. If several users
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share an account, disambiguating which one is doing the shopping could help to make better

recommendations. Another related application is in making recommendations for what to watch

for groups versus individuals (Chaney et al. 2014), (Jameson 2004), (Masthoff 2011), (Masthoff

2004).

A major limitation of this work is that it does not account for children in any way. Children are

an especially difficult demographic: there are no households that consist only of children. Also, most

available demographic data doesn’t contain information about children because of legal restrictions.

However, the framework that we have developed is sufficiently flexible that it can be modified to

incorporate children. A simple heuristic way to incorporate kids into these models is to use the

single-person probabilities for adults as they are in SPHE and ME, and incorporate a separately

learned probability for kids. Preliminary experiments using this method show promising results.

Another limitation is that the Mixed Estimator does not incorporate potentially important

information. For example, many households include more than one STB. The viewership of these

STBs will clearly not be independent. Future work will include developing a Bayesian model

that still has the same strengths as the ME heuristic, following the intuition that the single-

person probabilities can be viewed as a loose prior, but accounts for further dependencies. Another

desired property would be for the model to generalize well to previously unseen STBs, in addition

to generalizing out-of-time for the same set of STBs.

In conclusion, the key contributions of this paper are: (1) the development of a method which

leverages complementary strengths of existing heuristics; (2) the development of an evaluation suite

which allows us to compare performance in the absence of ground-truth labels; (3) the evaluation

of two state-of-the-art heuristic estimation methods for this problem as well as the novel method;

and (4) the facilitation of behavioral analysis of TV watching decisions. It is important to note

that we do not claim our new method is the best possible one; however, the developed framework

is highly flexible, computationally efficient, and is an improvement over currently-used methods.

Most importantly, this paper addresses a novel problem in television advertising that has not been

explored in prior literature and has broad practical implications.
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A Channel Descriptions

Table 6: Descriptions of 47 channels in our data set, summarized from individual Wikipedia pages (wik)
and other online sources (pgm).

Channel Description
A&E Reality series, documentaries
ABC Family Movies and series for and about families
AMC Classic movies, drama series (Mad Men, Breaking Bad)
Animal Planet Shows about animals
BET African-American music, entertainment, and news
Biography Stories about famous and historical people
Bravo Arts, entertainment, and pop culture
Cartoon Network Cartoons (for kids during the day, adults at night)
CNBC Business news
CNN News
Comedy Central Comedy news, animation, variety; stand-up
Country Music Television Country music reality and scripted series
Discovery Channel Non-fiction entertainment
Discovery Science Science programming
Disney XD Youth-oriented animated and live-action shows
E! Celebrities, entertainment, and Hollywood coverage
ESPN Sports
ESPN2 Live and original sports shows
Food Network Food shows: cooking, pop culture, and travel
Fox Business Network Business and financial news
Fox News Channel News
FX General entertainment, movies, NASCAR
HGTV Home building, decorating, gardening, and crafts
History Channel Shows about history
HLN Headline News
Lifetime Entertainment and information for and about women
Lifetime Movie Network Made-for TV and theatrical movies and mini-series for and about women
MSNBC News
MTV: Music Television Music and pop culture programming
National Geographic Channel Adventure, exploration, culture, and natural science programming
NBCS Live sports coverage programming about sports and outdoor
NFL Network National Football League and football coverage
Nickelodeon Kids’ programming
OWN Oprah Winfrey Network
Speed Channel Motor sports and automotive
Spike TV Horror, sci-fi, and fantasy
Style Network Personal style and fashion
Syfy Science fiction and fantasy
TBS Sitcoms, reality shows, movies
The Golf Channel 24-hour golf coverage
The Travel Channel Travel information and stories
TLC (The Learning Channel) Stories about real people and experiences
truTV Reality shows and true crime
TV Land Classic and recent TV series
TV One African-American lifestyle and entertainment
USA Network Comedic and scripted dramas
VH1 Music and pop culture series, movies, and reality shows
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Table 7: Channel Demographics, summarized from individual Wikipedia pages (wik) and other online
sources (pgm).

Channel Target Audience Notes Single Person Male %
A&E 49% male; age 25-54; affluent viewers 44%
ABC Family 18-49, young adults 42%
AMC 59% male; 25-54 47%
Animal Planet 50% male, median age 43; pet owners 46%
BET African-Americans age 12-54 34%
Biography 50% male, technologically advanced, age 18-54, 44%
Bravo 50% male, median age 45, LGBT 40%
Cartoon Network 70% kids and teens, 30% adults 18-49 43%
CNBC 60% male; age 25-54 42%
CNN 57% adults 25-54 59%
Comedy Central 66% male; age 18-34; upscale adults 44%
Country Music Television 66% male; median age 43.7 51%
Discovery Channel 50% male; age 18-49 51%
Discovery Science 50% male 56%
Disney XD Boys age 8-14 44%
E! 50% male; age 18-54 41%
ESPN 72% male; age 18-54 54%
ESPN2 79% male 52%
Food Network 35% male; age 25-54 42%
Fox Business Network 57%
Fox News Channel 60% male; age 25-54 49%
FX 51% male; age 18-49 47%
HGTV 30% male; age 25-54 38%
History Channel 75% male; age 25-64 49%
HLN Millenials 38%
Lifetime 23% male; age 18-49 35%
Lifetime Movie Network 28% male; age 18-49 34%
MSNBC 57% male; age 25-54 45%
MTV: Music Television age 12-34; median age 21 43%
National Geographic Channel 55% male; age 25-54 51%
NBCS 52%
NFL Network male-skewed 55%
Nickelodeon 70% kids age 2-11, 30% adults age 18-49 41%
OWN mainly women; age 25-54 35%
Speed Channel 82% male 55%
Spike TV 62% male; age 18-49 48%
Style Network 29% male; age 18-49 38%
Syfy 55% male; age 25-54 46%
TBS age 18-54; median age 36.5 47%
The Golf Channel 77% male 60%
The Travel Channel 55% male; median age 46.2 49%
TLC (The Learning Channel) 52% male 39%
truTV 44%
TV Land 45% male; age 25-54 38%
TV One 40% male; age 18-49 34%
USA Network 49% male; age 18-54 40%
VH1 42% male; median age 25.8 36%
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