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Abstract

We present a preliminary analysis of the fun-
damental viability of meta-learning, revisit-
ing the No Free Lunch (NFL) theorem. The
analysis shows that given some simple and
very basic assumptions, the NFL theorem
is of little relevance to research in Machine
Learning. We augment the basic NFL frame-
work to illustrate that the notion of an Ulti-
mate Learning Algorithm is well defined. We
show that, although cross-validation still is
not a viable way to construct general-purpose
learning algorithms, meta-learning offers a
natural alternative. We still have to pay for
our lunch, but the cost is reasonable: the nec-
essary fundamental assumptions are ones we
all make anyway.

1. Introduction

Originally introduced to the Neural Network Commu-
nity, the No Free Lunch (NFL) theorem (Wolpert &
Macready, 1995; Wolpert, 2001) was contextualized
and brought to the attention of the Machine Learn-
ing community in the form of a Law of Conservation
for Generalization Performance (LCG): When taken
across all learning tasks, the generalization perfor-
mance of any learner sums to 0 (Schaffer, 1994). The
dramatic presentation of the LCG at the 1994 Inter-
national Conference on Machine Learning provoked
strong reactions, and an email discussion subsequently
was launched by Pazzani in the Machine Learning List
to engage the community in thoughtful consideration
and feedback. That discussion went on fairly consis-

Appearing in Proceedings of the ICML-2005 Workshop on
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tently for about three months, involving many promi-
nent Machine Learning researchers of the time (see
(ML-List, 1994), Numbers 19-27). Although much in-
sight arises from this thread of semi-formal email ex-
changes, we know of no attempt to distill it into a
coherent whole, readily accessible to the community
at large. With time, the NFL theorem has almost be-
come fossilized. It is cited for different purposes, but
it often seems to be poorly understood.

As some researchers have begun to explore meta-
learning as a means of designing robust learning sys-
tems, others have been quick to point to the NFL the-
orem as the sure show-stopper. We revisit the NFL
theorem, building on the Machine Learning List ’s dis-
cussion. We show that given some simple and very
fundamental assumptions, it is of little relevance to
research in Machine Learning.

We make explicit these assumptions, which underlie
Machine Learning research. We show that, although
cross-validation still is not a viable way to a construct
“general-purpose” learning algorithm,1 meta-learning
offers a natural alternative. Moreover, we argue that,
to be consistent as machine learning researchers, we
should prefer meta-learning over manual construction
of general-purpose learning algorithms. Lastly, we dis-
cuss how the necessary fundamental assumptions are
assumptions we all make anyway.

2. NFL Revisited

As a simple illustration of the NFL theorem, consider
the simple space, F , of binary functions defined over
B

3 = {0, 1}3, and assume that the instances of set
Tr = {000, 001, . . . , 101} are observed, whilst the in-
stances of set Te = B

3−Tr = {110, 111} constitute the

1An algorithm designed to apply beyond a specific task
or tasks, but without a specific, non-trivial characterization
of the class(es) of task to which it should be applied.



Inputs f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 . . .

0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

0 0 1 0 0 0 0 0 0 0 0 0 0 . . .

Training 0 1 0 0 0 0 0 0 0 0 0 0 0 . . .

Set 0 1 1 0 0 0 0 0 0 0 0 0 0 . . .

1 0 0 0 0 0 0 0 0 0 0 1 1 . . .

1 0 1 0 0 0 0 1 1 1 1 0 0 . . .

Test 1 1 0 0 0 1 1 0 0 1 1 0 0 . . .

Set 1 1 1 0 1 0 1 0 1 0 1 0 1 . . .

Figure 1. Sample Train/Test Setting for Binary Functions over 3 Boolean Variables

off-training set (OTS) test set, as depicted in Figure 1.
The NFL theorem, or LCG, in this setting shows that,
averaged across all functions, f1, f2, . . . , f256 ∈ F (i.e.,
all labelings of instances), the behavior on Te of any
learner trained on Tr is that of a random guesser.2

A quick examination of Figure 1 makes this result intu-
itive and obvious. Consider functions f1 through f4 in
Figure 1. For all 4 functions, Tr is the same. Hence,
provided any deterministic learner L, the model in-
duced by L from Tr is the same in all 4 cases. It follows
immediately that, since the associated Te’s span all
possible labelings of the OTS instances, for any OTS
instance any model will be correct for half the func-
tions and incorrect for the other half. Indeed, every
classifier will have accuracies of 100%, 50%, 50%, and
0% across the four functions. The argument is easily
repeated across all such subsets of 4 functions, giving
the overall result.3

It then becomes apparent that the NFL theorem
in essence simply restates Hume’s famous conclusion
about induction having no rational basis:

there can be no demonstrative arguments to
prove, that those instances, of which we have
had no experience, resemble those, of which
we have had experience....Thus not only our
reason fails us in the discovery of the ulti-
mate connexion of causes and effects, but
even after experience has inform’d us of their

2Note here that generalization performance consists of
two components: expected performance over instances that
have already been encountered and expected performance
over instances that have not yet been encountered (i.e.,
OTS). The former is not trivial, since previously encoun-
tered instances are not guaranteed to have the same label
as in the training set—so there still is an important statis-
tical estimation task. However, we restrict attention here
to the OTS performance as that is the focus of the NFL
theorem.

3A similar intuitive argument is presented in (Duda
et al., 2001).

constant conjunction, ’tis impossible for us
to satisfy ourselves by our reason, why we
shou’d extend that experience beyond those
particular instances, which have fallen un-
der our observation. We suppose, but are
never able to prove, that there must be a
resemblance betwixt those objects, of which
we have had experience, and those which lie
beyond the reach of our discovery. (Hume,
1740)

All other things being equal, given that all one has
seen is Tr and its labeling, there is no rational reason
to prefer one labeling of Te over another.

At this point, we bring up an important misconcep-
tion about the NFL theorem, which although previ-
ously addressed continues to prevail in the community.
The above line of argument seems to hang on the as-
sumption that all functions are equally likely, i.e., uni-
formly distributed. Technically, this is not true. Schaf-
fer’s LCG formulation involves a summation, which
says nothing about the distribution of functions. As
pointed out by Gordon and Spears (ML-List, 1994),
although the result clearly holds under the uniform
distribution, there are other non-uniform distributions
that satisfy the LCG.4 The crucial and most powerful
contribution of the NFL theorem is pointing out that
whenever a learning algorithm performs well on some
function, as measured by OTS generalization, it must
perform poorly on some other(s).

In his justification for the use of OTS generalization
in the NFL theorem, Wolpert claims, among other
things, that OTS generalization is the truly interest-
ing measure, i.e., what we really want to know is how

4Wolpert’s (Wolpert, 2001) formulation of the NFL the-
orem for supervised learning does specify uniform averag-
ing over all functions. The NFL theorem for general search
has been “sharpened,” specifying necessary and sufficient
conditions for its applicability (Schumacher et al., 2001;
Igel & Toussaint, 2004).



well our algorithm performs beyond what it has seen
(Wolpert, 2001). Practically speaking, even granting
that it is worthwhile to separate OTS cases from cases
previously encountered, expected OTS generalization
is the true quantity of interest—emphasizing that some
OTS cases may be more likely to be encountered than
others. Following this same line of argument at the
meta-level, we claim that the real interesting mea-
sure at the meta-level is expected generalization perfor-
mance, i.e., how well our algorithm is likely to perform
on functions beyond those it has already experienced,
given the particular distribution from which the func-
tions we will encounter are drawn. As suggested by
Jenkins and aptly demonstrated by Holte (ML-List,
1994), the NFL theorem says nothing about such ex-
pected generalization performance. Hence, although
interesting in its own right, the NFL theorem is in this
sense irrelevant to Machine Learning research.

3. The Basic Assumption(s) of Machine
Learning

It is clear that effective general-purpose learning sys-
tems exist. Daily human experience provides ir-
refutable evidence that humans can learn. As Hunter
states (ML-List, 1994):

...human performance [is] a clear existence
proof that it is possible to exhibit useful
generalization performance in the extremely
broad class of complex and difficult learning
problems that tend to appear in our world.
(emphasis added).

This argument is implicit in the basic assumption of
inductive learning, which although widely accepted, is
rarely, if ever, explicitly stated.

Definition 1. The weak assumption of Machine
Learning is that the process that presents us with learn-
ing problems, call it Ω, induces a non-uniform proba-
bility distribution, pΩ, over the fi’s.

5

In other words, Machine Learning researchers and
practitioners, like statisticians, do not apply the prin-
ciple of indifference (Kneale, 1949), but instead as-
sume that some functions are, in reality, more likely
than others. Importantly, this weak assumption is suf-
ficient to claim that there exist some algorithms that
are better than others (as suggested by Jenkins (ML-
List, 1994)). We are unaware of anyone ever suggesting
that the weak assumption does not hold, yet the NFL

5To be exact, the definition should have the stronger
requirement that p

Ω does not satisfy the LCG. We ignore
this subtlety here.

theorem often is cited as proving that there can ex-
ist no general-purpose learning algorithms. There is a
subtle-but-important difference between whether such
an algorithm can exist, and whether we would know it
if we were to see it.

Researchers working on the design of general-purpose
algorithms make an even stronger assumption about
the world.

Definition 2. The strong assumption of Machine
Learning is that pΩ is explicitly or implicitly known,
at least to a useful approximation.

Indeed, each learning algorithm contains a bias, which
embodies this strong assumption. In some sense, the
assumed pΩ corresponds to the area of expertise of
the learning algorithm (Bensusan & Giraud-Carrier,
2000).

Having established the above, we now turn to the de-
finition of what one might call an Ultimate Learning
Algorithm (ULA). First, we note that:

Lemma 1. Knowing p(f), the probability of encoun-
tering an arbitary function f , is equivalent to knowing
p(c|e), the probability of class membership for an arbi-
trary example e.

Proof. Let n be the size of the input space and m the
size of the function space. Let c be the class mem-
bership of a given example e. By definition, for any
function fk:

p(fk) = p(c = fk(e1)|e1, . . . , c = fk(en)|en)
= Πn

i=1p(c = fk(ei)|ei)
= Πep(c = fk(e)|e)

Hence, if p(c|e) is known for all e, then clearly, so
is p(fk), and more generally p(f). Similarly, for any
ei, cj:

p(cj|ei) = p(f1(ei) = cj)p(f1) + . . . + p(fm(ei) = cj)p(fm)
=

∑m

k=1 p(fk(ei) = cj)p(fk)
=

∑
fk:fk(ei)=cj

p(fk)

Hence, if p(f) is known for all f , then clearly, so is
p(cj |ei), and subsequently p(c|e). �

Given a training set, a learning algorithm, L, induces
a model, M , which defines a class probability distrib-
ution, p, over the instance space.

Definition 3. An Ultimate Learning Algorithm,
ULA, is a learning algorithm that induces a model M⋆,
such that:

∀M ′ 6= M⋆ E(δ(p⋆, pΩ)) ≤ E(δ(p′, pΩ))

where the expectation is computed for a given train-
ing/test set partition of the instance space, over the



entire function space, and delta is some appropriate
distance measure.

Finding a ULA thus consists of finding a learning algo-
rithm whose induced models closely match our world’s
underlying distribution of functions. In the context of
the LCG and ultimate learning algorithms, we thus
concur with Hartley (ML-List, 1994) who was quick
to note that there are two relevant definitions of the
word “universal”6: (1) applicable independent of any
assumptions, and (2) applicable throughout the en-
tire universe. “The first is what most mathematicians
mean by universal, and by this definition the conserva-
tion law rules out any useful generalization. However
when asking about the real world it is the second defi-
nition that is important. What could happen in other
conceivable universes is of no possible interest to us.”7

We note however that the definition of ULA is not
in complete contradiction with the NFL theorem. In-
deed, in some kind of asymptotic way, ULA = Ω, so
that if Ω is such that pΩ is in fact uniform, then ULA
is a random guesser, as expected. We now turn to the
question of how to build a ULA.

4. How to Build an Ultimate Learning
Algorithm

In seeking to design a ULA, researchers have used two
approaches: cross-validation and manual algorithm
design. We show that the first is not viable. We sug-
gest that the second is a possibility, but argue that it
makes stronger assumptions than we might like, and
also is somewhat at odds with the philosophy of ma-
chine learning. We propose meta-learning as a viable
alternative.8

4.1. Cross-validation Model Selection

Cross-validation is regularly used as a mechanism to
select among competing learning algorithms, as il-

6Our choice of “ultimate” deliberately avoids this am-
biguity of the word “universal” and makes clear the con-
nection of a ULA to the weak assumption.

7Hartley goes even further to show that, given the size
(in terms of atoms) of the universe as we know it, it is
simply impossible to represent all possible functions of even
only about 200 attributes, so that the utility of the NFL
theorem is questionable. “If there exists an algorithm for
which the sum is sufficiently different from zero this would
be a universal generalization algorithm in any useful sense
of the phrase.”

8It remains rather surprising to us that throughout the
extended discussions of NFL theorem by machine-learning
researchers, a process of meta-learning does not seem ever
to have been mentioned.

lustrated in Figure 2. As pointed out by Wolpert
(Wolpert, 2001), however, cross-validation is also sub-
ject to the NFL theorem. This is easily seen again from
Figure 1. Since Tr does not change over f1 through f4,
cross-validation always selects the same best learner in
each case and the original NFL theorem applies. Here,

Figure 2. CV Meta-selector

we show further that a No Free Lunch result holds for
cross-validation, even under the weak assumption of
Machine Learning.

Theorem 1.
∑

i EGPCV (fi) = 0

where EGP is the expected OTS generalization per-
formance.

Proof. For simplicity, consider the setting of Figure
1. Let L be an unbiased set of deterministic learning
algorithms that a selector can choose from via cross-
validation. Given a training set, each l ∈ L gener-
ates only one f ∈ F . Since L is unbiased, it contains
an equal number of learners for each possible f ∈ F .
Consider any subset F ⊂ F of functions with identical
training set, T . Clearly, cross-validation has no basis
in T , other than random fluctuations, to choose one
f ∈ F over any other. Since L is unbiased, cross-
validation will pick each with equal probability, regard-
less of the prior distribution of f ∈ F . It follows
that the expected OTS generalization performance of
the CV meta-selector over F is 0. Repeating the argu-
ment over all such subsets F gives the result. �

It follows that cross-validation cannot generalize and
thus can not be used as a viable way of building an
ultimate learning algorithm.

4.2. Manual Algorithm Design

The traditional approach in Machine Learning re-
search is to design one’s own algorithm. This is gener-
ally motivated by the presence of one or more tasks



that one wishes to learn, and for which no exist-
ing algorithm seems to perform to the desired level.
The researcher then sets out to design—generally with
much (unreported) trial-and-error—a new learning al-
gorithm that performs well on the target tasks and
others that are available for evaluation. This approach
depends upon the strong assumption of machine learn-
ing, that pΩ is known well enough to be incorporated
by the algorithm’s inductive bias.

This expertise-driven, knowledge-based strategy re-
sults in implicit meta-learning (see below) by the re-
search community and is an essential part of the sci-
ence of Machine Learning. Historically, new algo-
rithms tend to be designed specifically to overcome
limitations of known algorithms as they are discovered
(e.g., new tasks arise for which no existing algorithm
seems to be suitable). In the process, the community’s
knowledge about learning increases.

4.3. Meta-learning

In the last decade, some researchers have attempted to
design better learning algorithms by applying “meta-
learning”—learning for model selection at the meta-
level (e.g., see (Rendell & Cho, 1990; Michie et al.,
1994; Pfahringer et al., 2000; van Someren, 2001; Vi-
lalta et al., 2004). As stated in (Vilalta et al., 2004),
“meta-learning differs from base-learning in the scope
of the level of adaptation; whereas learning at the base-
level is focused on accumulating experience on a spe-
cific learning task (e.g., credit rating, medical diag-
nosis, mine-rock discrimination, fraud detection, etc.),
learning at the meta-level is concerned with accumu-
lating experience on the performance of multiple ap-
plications of a learning system.... Briefly stated, the
field of meta-learning is focused on the relation be-
tween tasks or domains and learning strategies.”

Meta-learning, in the context of model selection, con-
sists of applying learning mechanisms to the problem
of mapping classification tasks to algorithms. Let L

be a set of learning algorithms for classification and T

be a set of classification tasks such that for each t ∈ T ,
bL(t) represents the algorithm in L that performs best
on t and c(t) denote the characterization of t by some
fixed mechanism. Then, meta-learning takes the set
{< c(t), bL(t) >: t ∈ T } as a training set and induces
a meta-model that, for each new classification task,
predicts the model from L that will perform best.

In our framework, meta-learning is cast as the task of
learning p̂Ω. It assumes that it is possible to gather
training data at the meta-level to learn p̂Ω, and use
that information to select among base-level learners,
as depicted in Figure 3.

Figure 3. Meta-learning Selector

Importantly, meta-learning assumes only a bias for
learning p̂Ω. There are important potential implica-
tions of this view. For example, once p̂Ω is learned,
one may wonder whether base-level learning can add
any value. Should the task of meta-learning be sim-
ply to learn p̂Ω (rather than a mapping from tasks to
learners)? We revisit this and other implications for
research in the penultimate section. Before that, let
us discuss whether the assumptions we have to make
are reasonable.

5. Assumptions and Limitations

We began by asserting that the NFL theorems are
in an important sense mostly irrelevant to machine
learning. Researchers designing or applying learning
algorithms intended to be useful across many tasks
must believe one (or both) of two things: (1) There
is something about a learning task, separate from the
available training data, that allows the selection of one
learning algorithm over another, or (2) one of the ba-
sic assumptions (described above) of machine learning
holds. Clearly, practicing researchers believe both. We
believe that for many problems, domain knowledge al-
lows the design of a representation, including impor-
tant features, such that the “general-purpose” learning
algorithms that have appeared to work well in the past
again will work well.

Researchers (and practitioners) also have general be-
liefs about Ω. In particular, we believe that our learn-
ing algorithms are unlikely to be faced with bizarre
functions. “Bizarre” could be defined by begging the
question: those functions for which the algorithms are
unlikely to work. So, we generally believe that it is
highly unlikely that linear regression will be just as
good as it is bad on practical problems with which we
will be faced. Beyond a simple circular argument, this
belief may be a confidence in a practitioner’s intuition



about the problems to choose. Domain knowledge may
restrict attempts to learn random, chaotic, or other-
wise bizarre functions.

Nonetheless, we also should be clear that even with
meta-learning our lunch is not free. NFL results ap-
ply at the meta-level just as they apply at the level of
particular learning tasks. We should consider carefully
what this means. Meta-learning departs from the set-
ting of the NFL theorems, in that it takes into account
prior observations from pΩ. However, although it is be-
yond the scope of this workshop paper, it is reasonable
to conjecture that there is a direct analog of the ba-
sic NFL theorem to the meta-level—showing that all
meta-learners have equivalent performance given some
(probably debatable) averaging across Ω’s.

We claim that the assumptions that must be made
for meta-learning are considerably more natural than
those that must be made for manual algorithm design.
In addition to the partially circular notions above, we
all also hold deep-rooted, intuitive notions of bizarre
functions. For example, (among many things) we be-
lieve that variables that never have exhibited any rele-
vance are more likely than not to continue to be irrele-
vant. After many years of experience, we would find it
bizarre for the date to play a role in whether crows are
black or whether gravity will be attractive or repul-
sive.9 Harkening back to Hume, there is no rational
reason for these beliefs, which of course is the “riddle”
of induction. However, implicit in Western thinking is
that if we were to make only one assumption, it would
have to be that induction is valid—that we can gen-
eralize from what we have seen to things we have yet
to encounter. This is the fundamental assumption of
science as we practice it. It also is fundamental to our
being able to live at ease in the world, not constantly
worrying for example that the next time we step on a
bridge it will not support our weight.

Moreover, we believe that this line of argument is
in sharp contrast to current views of the import of
the NFL theorems. The machine learning textbook
by Duda et al. (Duda et al., 2001) is exceptional
(unique?) in its inclusion of the NFL theorems. How-
ever, the position we take here is at odds with the con-
clusions they draw. For example, they say, “if we make
no prior assumptions about the nature of the classifi-
cation task, can we expect any classification method
to be superior or inferior overall? ... As summa-
rized in the No Free Lunch Theorem, the answer to

9Compare Goodman’s “grue” paradox and related dis-
cussions (Goodman, 1946; Goodman, 1983); one might at-
tribute the origin of the Y2K problem in part to the un-
naturalness of such a concept.

(this) and several related questions is ‘no”’ (emphasis
added). And later, “This ... stresses that it is the
assumptions about the learning domains that are rel-
evant” (emphasis in the original). Our stance is that
assumptions (or domain knowledge) about the nature
of the classification task in fact are not necessary to
yield good performance (although they may be quite
helpful). In fact, we assert that assumptions about
p(f) are not even necessary.

So how do we pay for our lunch? We do need to
make hyper-assumptions about p(f), to enable meta-
learning. This corresponds to an inductive bias at the
meta-level. For example, we might have a hyper-bias
that says: prefer p(f)’s that give higher probability to
simpler functions; or, returning to the gravity example,
prefer p(f)’s that give higher probability to concepts
that do not change abruptly over time.10

There seems to be ground in nature to believe that
such hyper-assumptions are reasonable. Building on
Goodman’s notion of predicate entrenchment, Russell
identified what he calls high-level regularities in na-
ture, i.e., meta-rules that lead us to perform induction
at the base level this way rather than that way (Rus-
sell, 1986). Hence, there is a bias favoring some p(f)’s
rather than others.

6. Extensions and Research
Implications

Various extensions and implications for meta-learning
research follow from this preliminary analysis. We
mention several here.

• Meta-learning’s assumption of a bias for learn-
ing pΩ clearly falls between the Weak Assumption
and the Strong Assumption of Machine Learning.
We need to introduce a Not-so-weak Assumption,
that is in line with the discussion in the previous
section.

• Our purpose in learning a classifier is to produce
as good an estimation of p(c|e) as possible. Con-
sider Lemma 1 again. It says that knowing p(c|e)
and pΩ(f) are equivalent. Therefore, we should
carefully consider why meta-learning for model
selection is done as it is currently done: learn-
ing to select a base-level learning algorithm that
then will be run on the training data to induce a
model, that then will be applied to the test data.

Is there value in doing the base-level learning?
Perhaps we should prove Lemma 2: If we know

10This is why we all favor green over grue in Goodman’s
analysis of Hume’s riddle of induction.



pΩ(f), Tr only rules out certain f ’s. By Lemma
1, inference is just MAP classification based on
pΩ(f), yielding p(c|e) over the remaining f ’s. By
knowing pΩ(f), we know all the p(f)’s (Lemma
1). We claim that seeing the training set will not
change the relative probabilities of the remaining
f ’s. We then might follow up with a Theorem:
Once we know pΩ(f), base-level ”learning” adds
no value.

And a corollary to the above is: In principle, there
is no need for meta-learning to tell us which al-
gorithm to use. Meta-learning should just learn
pΩ(f) and apply it directly, using Tr as prescribed
by Lemmas 1 and 2. This has at least two impli-
cations for research in meta-learning:

1. An important direction for meta-learning re-
searchers to explore is the direct learning of
pΩ(f).

2. It may be that the problem of learning pΩ(f)
is just too complex, and that using existing
learning algorithms as ”gravitational” cen-
ters is an appropriate heuristic.

• There is a potentially interesting relationship be-
tween our framework and active learning. As per
Lemma 2, given a learned p̂Ω(f), we should choose
the MAP function or classification. However, “if I
could see just one more training example...,” the
probabilities could be affected, helping to narrow
down on the target function. This brings to mind
active learning methods, like query by committee
(Seung et al., 1992). The set of functions still con-
sistent with the training data is the version space.
Any OTS example for which we obtain the label
will split the version space in half (in the binary
case). But, splitting the version space in half may
not be the best tack. One would like to choose
the example with the best expected improvement,
with respect to the target function.

• Meta-learning, as it is typically practiced, relies
on similarity among learning domains (or train-
ing sets). The Ugly Duckling Theorem (Watan-
abe, 1985) states that even the seemingly simple
concept of similarity requires (usually unstated)
assumptions. It seems important also to clar-
ify precisely the assumptions that meta-learning
researchers make regarding meta-attributes and
useful comparisons between learning domains.

7. Conclusion

Machine learning researchers make basic assumptions
that circumvent the No Free Lunch theorem and ren-

der it mostly irrelevant to research in Machine Learn-
ing. There are various versions of these assumptions
that vary in strength and justify different ways of con-
ducting machine learning research. The most reason-
able assumptions argue for meta-learning as the proper
strategy for machine learning researchers to take, and
certainly using learning to build learning programs is
more consistent than using manual knowledge engi-
neering to build learning programs. However, meta-
learning researchers would be well advised to consider
carefully whether and why the common strategies they
pursue are best, and whether alternative strategies
(such as direct learning of pΩ) are better. Our goal
in initiating this analysis was to provoke discussion
at this workshop. Analyzing carefully the fundamen-
tal underpinnings of meta-learning certainly requires
more and deeper thought.
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