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Abstract
We describe a guilt-by-association system that can be used to rank networked entities by their suspiciousness. We

demonstrate the algorithm on a suite of data sets generated by a terrorist-world simulator developed to support a DoD
program. Each data set consists of thousands of entities andsome known links between them. The system ranks
truly malicious entities highly, even if only relatively few are known to be malicious ex ante. When used as a tool
for identifying promising data-gathering opportunities,the system focuses on gathering more information about the
most suspicious entities and thereby increases the densityof linkage in appropriate parts of the network. We assess
performance under conditions of noisy prior knowledge of maliciousness. Although the levels of performance reported
here would not support direct action on all data sets, the results do recommend the consideration of network-scoring
techniques as a new source of evidence for decision making. For example, the system can operate on networks far
larger and more complex than could be processed by a human analyst. This is a follow-up study to a prior paper;
although there is a considerable amount of overlap, here we focus on more data sets and improve the evaluation by
identifying entities with high scores simply as an artifactof the data acquisition process.
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Suspicion scoring of networked entities based on guilt-by-association, collective inference,
and focused data access

Sofus A. Macskassy and Foster Provost

1 Introduction
This paper studies suspicion scoring in networked data: ranking entities by their estimated likelihood of being mali-
cious. Various applications, ranging from law enforcementand counterterrorism to commercial fraud detection, can
benefit from accurate rankings of entities by suspicion. We address suspicion scoring in networks of people (entities),
linked by communications, meetings, or other associations(e.g., being in the same vicinity at the same time). Our
system makes use of the simple-yet-ubiquitous principle ofhomophily (Blau, 1977; McPherson et al., 2001); social
science research has shown repeatedly that a person is more likely to associate with people who share similar interests
or characteristics.

Suspicion scoring based on networked data has been used successfully, although typically in an ad hoc manner, for
commercial fraud detection. The “dialed digits” monitors discussed by Fawcett and Provost score an account highly
if it calls the same numbers called by known fraudulent accounts (Fawcett & Provost, 1997); the “communities of
interest” of Cortes et al. explicitly represent the networkneighborhoods around telephone accounts as a basis for
suspicion scoring (Cortes et al., 2001). We extend such methods by propagating suspicion through the association
network, and conducting suspicion-based acquisition of additional data.

Homophily is the basis of a very simple guilt-by-association technique: estimate suspicion level by counting
malicious associates. One problem with using this simple homophily-based guilt-by-association technique in large
networks is that prior knowledge of maliciousness may be sparse. For many entities, no associates will be known to be
either malicious or benign. However, if the association graph is well connected, then following linkages of associations
is likely eventually to lead to at least one entity who is known or is strongly suspected to be malicious. Based on this
idea, we overcome the problem of sparse knowledge by propagating suspicion scores through the association network
until all suspicion scores stabilize. In particular, we usean adaptation of a relaxation labeling method which has been
shown to yield good performance for hypertext classification (Chakrabarti et al., 1998).

Relaxation labeling works well if the association graph is well-connected. For intelligence data, one must con-
sider the difference between the true association network and the network ofknownassociations. The true association
network may be known only partially. We address this partially via suspicion-based data acquisition, using current
suspicion scores to acquire additional connections to improve the suspicion propagation. In a realistic setting, ac-
quiring association links (involving accessing databasesof other organizations, obtaining subpoenas for transaction
records, surveillance, interviews, phone taps, etc.) is costly in terms of money, resources, legal issues, and public
perception. We attempt to minimize costs by acquiring such “secondary data” only for the entities with the highest
estimated suspiciousness. This heuristic works well in thedata we have studied.

2 Guilt-by-association, Collective inference, and data acquisition
Our scoring algorithm consists of three main components listed in Table 1. The first two components are part of
a network learning toolkit called NetKit-SRL (Macskassy & Provost, 2004). This open-source toolkit, written in
Java 1.5, is publicly available and contains methods for learning patterns more complicated than simple guilt-by-
association. The third component is a data acquisition wrapper which uses this toolkit in its inner loop.

1. A relational classifierwhich generates a suspicion score for a particular entity,pi, given the known associ-
ations ofpi and the strengths of those association links.

2. A collective inferencetechnique to propagate scores throughout the network.
3. An adaptive technique foracquiring datato increase the density of connections in the network.

Table 1: Guilt-by-association main components.

2.1 Relational Classifier
The relational classifier used in the study is a simple “relational neighbor” model, based on the principle of homophily
and a first-order Markov assumption (Macskassy & Provost, 2003; Macskassy & Provost, 2004). The model estimates
suspicion as the weighted sum of the suspicions of the immediate neighbors in the association network. Specifically,
the score of entitypi is:

s(pi) =
1

Z

∑

pj∈Ni

wi,j · s(pj), (1)

whereNi is the set of known associates of entitypi andwi,j is the strength of the association between entitiespi and
pj—in our application defined as the number of timespi andpj have been known to interact. The score,s(pj), is
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1. Acquire information on all entities initially known to bemalicious.
2. Generate suspicion scores for all entities with unknown scores.
3. Get information on the topk entities not yet queried (k = 50 for this paper).
4. Generate new suspicion scores.
5. Repeat steps 3 and 4 until some stopping criterion is met (in this paper: either when all entities in the data

set have been queried against or when we have run at least25 iterationsandhave queried against all entities
who are only connected to “known” malicious entities.a)

aThis is different from the original study in (Macskassy & Provost, 2005), where we always stopped after the25
th iteration. We explain

the reason for this change in Section 3.1.

Table 2: Data Acquisition algorithm.

the current suspicion score of entitypj (note the similarity of our method, paired with the updatingmethod described
below, to Hopfield Networks (Hopfield, 1982) and Boltzmann machines (Ackley et al., 1985)). For entities whose
status is known (benign or malicious), this is static—viz.,1 for “malicious” and0 for “benign”. Z is the sum of
weightswi,j , pj ∈ Ni, to keep all scores between0 and1.

2.2 Collective Inference
When only a few malicious entities are known, there will be neighbors who (initially) have no value fors(pj). To deal
with this scenario, first recognize that if we had estimates of the unknown scores, then we could apply the relational
classifier to estimates(pi). Second, the scores ofpi andpj are clearly interrelated and estimating one will have an
influence on the other. We therefore estimate all unknown scores simultaneously or “collectively” (Jensen et al., 2004).
As it is not tractable to perform exact inference to estimatethe full joint probability distribution over a large network,
we use an approximation technique. In particular, we use an adaptation of relaxation labeling, based on the work of
Chakrabarti et al. (1998). Relaxation labeling “freezes” the current estimated scores and then updates all estimates
pseudo-simultaneously to generate new estimates. It does so repeatedly until the estimates converge. Unfortunately,
this often leads to oscillation between two or more distinctsets of world-estimates. Therefore, we apply simulated
annealing to enforce convergence. More formally:

s(pi)
(t+1) = α(t+1)

· s(pi)
(t) + (1 − α(t+1)) ·





1

Z

∑

pj∈Ni

wi,j · s(pj)
(t)



 , (2)

wheret is the iteration step andα(t) the temperature, with

α(0) = c (3)

α(t+1) = β · α(t), (4)

wherec is a starting constant andβ is a decay constant. We use the values1 and0.99 for c andβ, respectively, and
stop after100 iterations.

Relaxation labeling and other collective inference techniques require initial estimates to bootstrap the inference.
We initialize scores to1 for initially “known” malicious entities (and freeze them)and0.01 for the rest. If we had had
knowledge of benign entities, we would have initialized (and frozen) those scores to0.

2.3 Data Acquisition
As discussed above, it may be possible (at a cost) to augment the association network incrementally. The strategy
used in this paper is shown in Table 2, which acquires additional information (associations and possibly unknown
associates) about the most suspicious entities.

3 Case Study
Using simulated data, we evaluate whether this method can produce accurate rankings of entities by suspicion scoring.
Specifically: are the highest-scoring entities predominantly malicious? Our study is threefold, assessing: (1) the
initial rankings, (2) the improvement as we acquire more information, and (3) how good the initial knowledge of
maliciousness must be (i.e., how much noise can be tolerated).

This study, while considering the same problems as the earlier study in this domain, differs in two aspects: (1)
in the original study, entities who had not yet been queried were included in all evaluations. This is unrealistic as it
is unlikely that an action would be taken regarding someone before all available information on that person had been
obtained (disregarding issues of timeliness). (2) Here we report results on more data sets (17, a superset of those used
in the initial report).
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Pajek Pajek

(a) using only primary data. (b) after querying all “known” malicious entities.
Figure 1:5057 linkage data. Red (shaded) dots are entities who are “known” to be malicious. We need to rank the white dots. The
oval in (a) are entities who either are not yet known or for which we have no initial information (links). The graphs are showing
10K edges drawn at random from (a) 77K possible edges and (b) 142K possible edges.

3.1 Score-based Evaluation
Notice that the data acquisition methodology outlined in Table 2 keeps querying for more data until all entities that
are only connected to the “known” malicious entitites have been queried against. The reason for this is due to a
scoring-issue that was identified during an evaluation of the original methodology (Macskassy & Provost, 2005).

The issue is this: consider the case where querying the “known” entities results in links toK new entities. These
new entities are by construction linked only to the “known” malicious entities and they therefore all have the same
(maximal) suspicion score of1. Figures 1(a)-(b) show this scenario on a small data set. Initially, as shown in Fig-
ure 1(a), all singletons (in the large oval) are either not yet known or have no information (links) associated with them.
After querying all “known” entities, we have the graph shownin Figure 1(b). All entities are now connected (the few
singletons present are due to the sub-sampling of edges), where all the singleton entities in 1(a) are now connected to
all the “known” malicious entities—these are shown in the crescent of white dots, whereas the cluster of white dots in
the upper right contains the dots that were already connected in 1(a).

Continuing with the example scenario the system will now, ateach iteration, query50 randomly chosen entities
from this list ofK newly connected entities. Although the system slowly chipsaway at theseK entities, the data will
at the first couple of iterations still contain a large numberof entities who are still connected only to “known” entities
because of the initial supply. These will all have the same maximal score (by construction) and cannot be distinguished
by their score. This poses a serious problem for evaluation:clearly before taking any other action it is appropriate
to obtain all available data on an entity who is suspicious byconstruction. Moreover, truly malicious entities may be
unlikely to have the maximal score of1, because they will interact with some non-malicious entities.

As with the original study, the system is evaluated using twometrics. The first metric used is the Area Under the
ROC Curve (AUC), which is equivalent to the Mann-Whitney-Wilcoxon statistic and computes the probability that a
randomly selected malicious entity would be given a higher suspicion score than a randomly selected benign entity.
Therefore, an AUC of0.5 means that a scoring is no better than random guessing (the ranking is well shuffled); a value
of 1 indicates a perfect ranking—all the malicious entities gethigher scores than all the benign entities. We include
the “problematic” scores when evaluating the overall ranking performance of the system using AUC. Thus, the AUC
results can be regarded as conservative, but do give an assessment of the overall ranking of all entities.

The second metric used is the fraction of the top-100 highest-scoring entities that truly are malicious. This evaluates
the system under the assumption that an intelligence analyst will consider the highest scoring entities for possible
further investigation. The analyst will have a processing capacity, for which we chose 100 cases. For this evaluation,
we disregard the maximal-by-construction scores, as justified above. Specifically, we remove entities for which the
secondary data has not been queried.

3.2 Data
There are many varieties of intelligence data—no single comparison of classified and synthetic data will be compre-
hensive. The data we use for this paper were generated by a flexible simulator as part of a DoD program to assess the
feasibility of large-scale information systems to help identify terrorists. The synthetic data generated by this simulator
are moderately sized examples of structured data representing terrorists and benign entities who are conducting activi-
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World Parameters Primary Data
Data set Size Number malicious Size True malicious False malicious Noise

5048 13756 2173 9601 226 0 0.000
5049 988 269 766 62 0 0.000
5055 9967 711 4916 166 0 0.000
5057 1011 274 497 101 0 0.000
5062 9897 2852 3745 500 0 0.000
5069 9907 2893 7374 520 0 0.000
5065 16046 7574 5907 1264 82 0.061
5066 16743 8002 5332 1284 173 0.119
5068 14209 5482 8352 1253 181 0.126
5058 100301 7350 40316 886 189 0.176
5063 9998 2823 4825 828 276 0.250
5067 9970 2860 7561 383 130 0.253
5046 13236 1484 4212 143 52 0.267
5053 1002 274 799 116 216 0.651
5056 1022 300 510 99 218 0.688
5052 986 278 763 82 210 0.719
5050 1008 316 692 103 336 0.765

Table 3:Characteristics of synthetic data sets, sorted and “grouped” by noise. In the World Parameters, Size refers to the number
of entities in the true synthetic world and Number maliciousrefers to the total number of truly malicious entities. In the Primary
Data, Size refers to the number of entities known initially;True malicious refers the number of entities tagged as “malicious” who
truly were malicious in the world and False malicious refersto the number of entities falsely tagged as “malicious”. Theerror rate
(Noise) of these labelings ranges from none (0) to very high as seen in the bottom group of data sets. Note that step 1 in Table 2
above must query the secondary database for information on all “false malicious” as well as all “true malicious” entities.

ties over an extended period of time. The data are contained wholly in a single data source (although costly secondary
access is simulated) and are self-consistent, neither of which is reliably true of classified data. However, the data do
replicate a range of noisy and poorly observed activities, and the entities are intentionally obscured to simulate lackof
knowledge, obfuscation, poor data-entry practices, multiple identities, etc. Nonetheless, we do not claim that the data
fully replicate the limitations of actual data collection,aggregation and enrichment that the intelligence community
routinely experiences. We use data sets generated for the purposes of DoD program evaluation. We do not create data
sets ourselves for this paper.

One run of the simulator generates three databases:
1. “primary” data that are known ex ante. These often are sparse and may contain partial (or no) information on

any particular entity or group;
2. “secondary” data consisting of information that only canbe acquired by querying (theoretically at a cost) to get

information on a particular entity;
3. “truth” data, for evaluation, consisting of what really happened in the world.
The first two databases together reflect what possibly can be observed. They are potentially corrupt and contain

only a subset of the complete truth. Further, the data never give hard evidence that an entity is benign, and therefore
we only “know” about some malicious entities—those who are known to belong to one or more terrorist groups.
Sometimes this knowledge is wrong. We evaluate the suspicion scoring on17 data sets, whose characteristics are
shown in Table 3.

3.3 Results
In order to address how noise affects performance, we group the data sets into three categories: no noise (5048, 5049,
5055, 5057, 5062, 5069), low to moderate noise (5046, 5058, 5063, 5065, 5066, 5067, 5068), and very high noise
(5050, 5052, 5053, 5056).

Figures 2(a)-(c) show, for each category, how the system performed throughout its data acquisition run. Figure 2(a)
shows a wide range of performances from perfect (5057) to just above AUC= 0.8 (5055). In all cases, we see that
performance increases as we gather more data (except for dips on both 5057 and 5048). We also see that guilt-by-
association is able to perform much better than random ranking (AUC = 0.5). Figure 2(b) shows the performance
of the suspicion scores on the moderate-noise data sets. Again, as we query the secondary data the performance
quickly improves to achieve AUC values in the range0.8−0.9, the only exception being 5046, which starts degrading
around iteration50. It is noteworthy that the system overcomes the initial noisy labels, showing that it is robust to
even moderate noise where1 out of 4 entities were mistakenly judged to be malicious. This is because “malicious”
entities in these data communicate just as much as “benign” entities, but to far fewer entities. Hence their associative
strength to other “malicious” entities is much stronger. Figure 2(c) shows the performance of the suspicion scoring on
the high-noise data. In this case, more than half of the entities tagged as “malicious” are actually benign. Initially we
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Figure 2: AUCs using active data acquisition. Notice the different scales between (a)-(b) and (c).

Iteration
Data 3 4 5 10 15 20 Last
5048 14 52 97 100 100 100 100
5049 22 37 70 100 100 100 100

No 5055 3 4 12 45 100 100 100
Noise 5057 19 21 63 100 100 100 100

5062 25 52 91 100 100 100 100
5069 25 60 95 100 100 100 100
5046 8 22 43 87 98 100 100
5058 6 29 51 97 96 94 91

Moderate 5063 21 21 38 77 80 80 99
Noise 5065 42 57 76 97 96 95 95

5066 44 58 72 98 94 94 95
5067 26 54 81 100 100 100 100
5068 32 49 62 97 96 97 98
5050 37 33 37 10 12 - 12

High 5052 27 43 34 8 7 - 7
Noise 5053 23 40 48 15 15 - 14

5056 28 27 42 16 28 - 32

Table 4:How many truly malicious entities were in the top 100 after iterations 3,4,5,10,15,20 and after the last iteration. We start
at iteration 3 because that is the first iteration in which we have scores for queried entities that were not initially “known”. Iteration
3 therefore only contains50 entities. Further, all high noise data sets were so small that they stopped at iteration16.

see high variability, but the scores deteriorate quickly, and all end up with ranking much worse than random (note the
different scales, vertical and horizontal), because the algorithm is actually propagating knowledge non-maliciousness.

Figure 2 only tells part of the story. For an analyst, knowingthat the system can achieve an AUC of0.9 does
not necessarily mean that the system is useful. Although thesystem, in general, will rank suspicious entities higher,
when considering10000 entities, the top100 could potentially be primarily benign with the next900 being primarily
malicious. Albeit unusual, this would achieve a relativelyhigh AUC, but not be very useful for analysts who only have
time to look at a select few entities.

Usually for rankings such as suspicion scorings, the density of entities of interest is highest at the very top of the
list, especially if the scores are estimated probabilitiesof membership in a class (e.g., malicious entity), and so thetop
of the list contains the entities with the highest estimatedprobabilities of being suspicious. For a given AUC value,
how dense one expects the top of a ranking to be depends primarily on the marginal probability of entities of interest
in the data (this and related issues are treated in detail elsewhere (Provost & Fawcett, 2001)). An AUC of0.9 may
have99 truly malicious entities in the top100 highest-suspicion entities, or it may have10. In either case, the system
may be useful to an analyst, depending on the application andhow the ranking will be used (e.g., as a primary basis
for action versus as an alternative source of evidence to augment existing practices2).

To illustrate the effectiveness of the scorings for these data sets for a particular threshold, we analyze the number
of truly malicious entities at the top of the suspicion rankings. If we look across the17 data sets, we can ask how many
truly malicious entities are among the top100 most suspicious.

Table 4 shows the results for the17 data sets, grouped by their noise level. The evaluation starts at Iteration 3
because Iterations 1 and 2 do not yet contain scores on entities that have been queried and are not part of the “known”
entities. Iteration 3 is therefore based only on the50 entities which have been queried after the initial queryingof all
“known” entitites. Iteration 4 contains100 queried entities and so on.

2For example, White and Fournelle (2005) show that an early version of our suspicion scores are an effective prefilter for their CADRE analysis
system for link discovery.
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The table shows quantitatively what Figure 2 was telling us:In the no-noise group, we get very high density already
at iteration 5, and perfection at iteration 10 (5055 taking longer to get there). By iteration 15 and on, the system is
100% accurate on all no-noise data sets. We see a similar behaviorfor the moderate data sets, where iteration 10
already has very good accuracy for most of the data sets (5063being the worst, with only77 out of 100 truly being
malicious), and nearly perfect accuracy on all data sets by the last iteration. Notice that we get100% accuracy on
5046 although its AUC was only around0.6 at this final iteration. Finally, we see in the very large noise group that
by the final iteration the system has very few malicious entities in the top100. Remember that the absolute numbers
(e.g., “precision” of80 out of 100) reflects the marginal probability of being malicious in a particular data set; the
ROC curve is independent of this probability, which is one reason why 5063 and 5046, although having very similar
ranking ability (AUC) at iteration20 have very different precision for a fixed threshold (Provost& Fawcett, 2001).

4 Limitations
The system we described here has notable limitations. We have assumed substantial prior knowledge: of entities, of
links between them, of maliciousness. We have shown some robustness to the knowledge of maliciousness, but have
not systematically explored robustness along other dimensions. Moreover, collecting the data to build such a network
is a considerable effort, and it would make sense to considernetwork construction in tandem with the system that
would make use of the network.

Relatedly, we have considered network-based suspicion scoring in isolation. In reality, network-based scoring
would be one source of evidence, combined for example with “profile”-based scoring. We conducted a preliminary
investigation into augmenting the scoring by setting initial priors based on uncertain-but-better-than-random knowl-
edge (as from a profiling system). We found that priors had little-to-no effect due to the algorithm’s dominance by
the scores propagated from the static labels (Macskassy & Provost, 2005). This is a problem which can affect many
collective inference techniques. In retrospect, it appears necessary to integrate closely the use of profiling information
with the network scoring (cf. (Macskassy & Provost, 2004)).This issue is likely to affect many collective inference
techniques and needs to receive more attention.

5 Final Remarks
We described and evaluated a guilt-by-association system for generating suspicion scores based on entities’ known
associates. The system is notable for several reasons. First, it is able to generate remarkably good rankings even when
very few entities are known to be malicious. Second, it can berelatively robust even to moderate noise in these prior
labels. Third, it works remarkably well considering that itonly uses prior labels and the network, but no profiling.
Finally, it can be used as a data gathering tool not only to perform focused data acquisition of suspicious entities, but
also to further improve its ranking—and in the process it often learns about suspicious entities that were not initially
in the database.
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