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Abstract

We describe a guilt-by-association system that can be asethk networked entities by their suspiciousness. We
demonstrate the algorithm on a suite of data sets genergi@delrorist-world simulator developed to support a DoD
program. Each data set consists of thousands of entities@mé known links between them. The system ranks
truly malicious entities highly, even if only relatively\feare known to be malicious ex ante. When used as a tool
for identifying promising data-gathering opportunitiéise system focuses on gathering more information about the
most suspicious entities and thereby increases the desfditjkage in appropriate parts of the network. We assess
performance under conditions of noisy prior knowledge dfici@isness. Although the levels of performance reported
here would not support direct action on all data sets, thaltedo recommend the consideration of network-scoring
techniques as a new source of evidence for decision makiogexample, the system can operate on networks far
larger and more complex than could be processed by a humdystnahis is a follow-up study to a prior paper;
although there is a considerable amount of overlap, hereoagsfon more data sets and improve the evaluation by
identifying entities with high scores simply as an artifatthe data acquisition process.
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Suspicion scoring of networked entities based on guilt-bgssociation, collective inference,
and focused data access
Sofus A. Macskassy and Foster Provost

1 Introduction

This paper studies suspicion scoring in networked dat&imgrentities by their estimated likelihood of being mali-
cious. Various applications, ranging from law enforcenam counterterrorism to commercial fraud detection, can
benefit from accurate rankings of entities by suspicion. Adr@ss suspicion scoring in networks of people (entities),
linked by communications, meetings, or other associat{ergs, being in the same vicinity at the same time). Our
system makes use of the simple-yet-ubiquitous principleasfiophily (Blau, 1977; McPherson et al., 2001); social
science research has shown repeatedly that a person isiketydd associate with people who share similar interests
or characteristics.

Suspicion scoring based on networked data has been usazssfidly, although typically in an ad hoc manner, for
commercial fraud detection. The “dialed digits” monitoisalissed by Fawcett and Provost score an account highly
if it calls the same numbers called by known fraudulent ant®@Fawcett & Provost, 1997); the “communities of
interest” of Cortes et al. explicitly represent the netwasighborhoods around telephone accounts as a basis for
suspicion scoring (Cortes et al., 2001). We extend such aasthy propagating suspicion through the association
network, and conducting suspicion-based acquisition ditehal data.

Homophily is the basis of a very simple guilt-by-associattechnique: estimate suspicion level by counting
malicious associates. One problem with using this simphaduhily-based guilt-by-association technique in large
networks is that prior knowledge of maliciousness may besgpd-or many entities, no associates will be known to be
either malicious or benign. However, if the associatiorpbria well connected, then following linkages of associzio
is likely eventually to lead to at least one entity who is kmawv is strongly suspected to be malicious. Based on this
idea, we overcome the problem of sparse knowledge by préipggauspicion scores through the association network
until all suspicion scores stabilize. In particular, we aseadaptation of a relaxation labeling method which has been
shown to yield good performance for hypertext classificat©ohakrabarti et al., 1998).

Relaxation labeling works well if the association graph mElweonnected. For intelligence data, one must con-
sider the difference between the true association netwaitktze network oknownassociations. The true association
network may be known only partially. We address this pdytiala suspicion-based data acquisition, using current
suspicion scores to acquire additional connections to éngothe suspicion propagation. In a realistic setting, ac-
quiring association links (involving accessing databadesther organizations, obtaining subpoenas for transacti
records, surveillance, interviews, phone taps, etc.) #lgdn terms of money, resources, legal issues, and public
perception. We attempt to minimize costs by acquiring swsgtdndary data” only for the entities with the highest
estimated suspiciousness. This heuristic works well irdéta we have studied.

2 Guilt-by-association, Collective inference, and data ajuisition

Our scoring algorithm consists of three main componentsdign Table 1. The first two components are part of
a network learning toolkit called NetKit-SRL (Macskassy &ofkost, 2004). This open-source toolkit, written in
Java 1.5, is publicly available and contains methods famieg patterns more complicated than simple guilt-by-
association. The third component is a data acquisition pgaphich uses this toolkit in its inner loop.

1. Arelational classifiewhich generates a suspicion score for a particular eptifygiven the known assodi
ations ofp; and the strengths of those association links.

2. Acollective inferencéechnique to propagate scores throughout the network.

3. An adaptive technique facquiring datato increase the density of connections in the network.

Table 1: Guilt-by-association main components.

2.1 Relational Classifier

The relational classifier used in the study is a simple “retet! neighbor” model, based on the principle of homophily

and a first-order Markov assumption (Macskassy & Provogi32Macskassy & Provost, 2004). The model estimates
suspicion as the weighted sum of the suspicions of the imateedieighbors in the association network. Specifically,
the score of entity; is:

s(pi) = % XJ:V wjj - $(pj)s 1)
P;EN;

whereN; is the set of known associates of entityandw;_; is the strength of the association between entjijesnd
p;—in our application defined as the number of timesandp; have been known to interact. The scos&,), is



. Acquire information on all entities initially known to malicious.

. Generate suspicion scores for all entities with unknosanes.

. Get information on the top entities not yet queried:(= 50 for this paper).

. Generate new suspicion scores.

. Repeat steps 3 and 4 until some stopping criterion is mehig paper: either when all entities in the data
set have been queried against or when we have run atledstationsandhave queried against all entities
who are only connected to “known” malicious entitf®s.

gabhwNPEF

aThis is different from the original study in (Macskassy & Rost, 2005), where we always stopped after25&" iteration. We explain
the reason for this change in Section 3.1.

Table 2: Data Acquisition algorithm.

the current suspicion score of entjty (note the similarity of our method, paired with the updatmnethod described
below, to Hopfield Networks (Hopfield, 1982) and Boltzmannchiaes (Ackley et al., 1985)). For entities whose
status is known (benign or malicious), this is static—vizfor “malicious” and0 for “benign”. Z is the sum of
weightsw; ;,p; € N;, to keep all scores betweérand1.

2.2 Collective Inference

When only a few malicious entities are known, there will beghbors who (initially) have no value fof(p;). To deal

with this scenario, first recognize that if we had estimafed® unknown scores, then we could apply the relational
classifier to estimate(p;). Second, the scores pf andp; are clearly interrelated and estimating one will have an
influence on the other. We therefore estimate all unknowresceimultaneously or “collectively” (Jensen et al., 2004)
As it is not tractable to perform exact inference to estintiagefull joint probability distribution over a large networ

we use an approximation technique. In particular, we usedaptation of relaxation labeling, based on the work of
Chakrabarti et al. (1998). Relaxation labeling “freezés® turrent estimated scores and then updates all estimates
pseudo-simultaneously to generate new estimates. It doepeatedly until the estimates converge. Unfortunately,
this often leads to oscillation between two or more distgets of world-estimates. Therefore, we apply simulated
annealing to enforce convergence. More formally:

1
s(p) T = D s(p) O+ (1= D) 23wy s(p) @
p;EN;

wheret is the iteration step and® the temperature, with

o = ¢ (3)
D = 3.a® (4)

wherec is a starting constant anglis a decay constant. We use the valtiesd0.99 for c and 3, respectively, and
stop after100 iterations.

Relaxation labeling and other collective inference teghas require initial estimates to bootstrap the inference.
We initialize scores ta for initially “known” malicious entities (and freeze therapd0.01 for the rest. If we had had
knowledge of benign entities, we would have initializedd&mwzen) those scores ©

2.3 Data Acquisition

As discussed above, it may be possible (at a cost) to augmertssociation network incrementally. The strategy
used in this paper is shown in Table 2, which acquires additilmformation (associations and possibly unknown
associates) about the most suspicious entities.

3 Case Study

Using simulated data, we evaluate whether this method aaupe accurate rankings of entities by suspicion scoring.
Specifically: are the highest-scoring entities predontigamalicious? Our study is threefold, assessing: (1) the
initial rankings, (2) the improvement as we acquire morerimfation, and (3) how good the initial knowledge of
maliciousness must be (i.e., how much noise can be tolgrated

This study, while considering the same problems as theeeatiudy in this domain, differs in two aspects: (1)
in the original study, entities who had not yet been queriedewncluded in all evaluations. This is unrealistic as it
is unlikely that an action would be taken regarding someaferb all available information on that person had been
obtained (disregarding issues of timeliness). (2) Hereapent results on more data set§,(a superset of those used
in the initial report).



(a) using only primary data. (b) after querying all “knownalitious entities.
Figure 1:5057 linkage data. Red (shaded) dots are entities who amvikhto be malicious. We need to rank the white dots. The
oval in (a) are entities who either are not yet known or forahhive have no initial information (links). The graphs aregimg
10K edges drawn at random from (a) 77K possible edges andig) fossible edges.

3.1 Score-based Evaluation

Notice that the data acquisition methodology outlined ibl@&2 keeps querying for more data until all entities that
are only connected to the “known” malicious entitites haeerb queried against. The reason for this is due to a
scoring-issue that was identified during an evaluation efathiginal methodology (Macskassy & Provost, 2005).

The issue is this: consider the case where querying the “khewtities results in links td new entities. These
new entities are by construction linked only to the “knownalitious entities and they therefore all have the same
(maximal) suspicion score df. Figures 1(a)-(b) show this scenario on a small data setiallgj as shown in Fig-
ure 1(a), all singletons (in the large oval) are either noky®wn or have no information (links) associated with them.
After querying all “*known” entities, we have the graph shawirigure 1(b). All entities are now connected (the few
singletons present are due to the sub-sampling of edges)evaltl the singleton entities in 1(a) are now connected to
all the “known” malicious entities—these are shown in thescent of white dots, whereas the cluster of white dots in
the upper right contains the dots that were already condécti(a).

Continuing with the example scenario the system will noweath iteration, quer§0 randomly chosen entities
from this list of K newly connected entities. Although the system slowly chiway at thesd( entities, the data will
at the first couple of iterations still contain a large numiieentities who are still connected only to “known” entities
because of the initial supply. These will all have the sameimal score (by construction) and cannot be distinguished
by their score. This poses a serious problem for evaluatitearly before taking any other action it is appropriate
to obtain all available data on an entity who is suspiciousdnystruction. Moreover, truly malicious entities may be
unlikely to have the maximal score of because they will interact with some non-malicious esiti

As with the original study, the system is evaluated using mvairics. The first metric used is the Area Under the
ROC Curve (AUC), which is equivalent to the Mann-Whitneylsikon statistic and computes the probability that a
randomly selected malicious entity would be given a highisipgion score than a randomly selected benign entity.
Therefore, an AUC ofl.5 means that a scoring is no better than random guessing (tkimgas well shuffled); a value
of 1 indicates a perfect ranking—all the malicious entitiestygher scores than all the benign entities. We include
the “problematic” scores when evaluating the overall ragkierformance of the system using AUC. Thus, the AUC
results can be regarded as conservative, but do give arsassasof the overall ranking of all entities.

The second metric used is the fraction of the top-100 higbemsting entities that truly are malicious. This evaluates
the system under the assumption that an intelligence analifconsider the highest scoring entities for possible
further investigation. The analyst will have a processiagazity, for which we chose 100 cases. For this evaluation,
we disregard the maximal-by-construction scores, asfiggdtabove. Specifically, we remove entities for which the
secondary data has not been queried.

3.2 Data

There are many varieties of intelligence data—no singleganmon of classified and synthetic data will be compre-
hensive. The data we use for this paper were generated byitadleimulator as part of a DoD program to assess the
feasibility of large-scale information systems to helpniilfy terrorists. The synthetic data generated by this &ihou

are moderately sized examples of structured data repmegeetrorists and benign entities who are conducting &ctiv



World Parameters Primary Data
Data set Size | Number malicious| Size | True malicious| False malicious| Noise
5048 13756 2173 9601 226 0 | 0.000
5049 988 269 766 62 0 | 0.000
5055 9967 711 4916 166 0 | 0.000
5057 1011 274 497 101 0 | 0.000
5062 9897 2852 3745 500 0 | 0.000
5069 9907 2893 7374 520 0 | 0.000
5065 16046 7574 5907 1264 82 | 0.061
5066 16743 8002 5332 1284 173 | 0.119
5068 14209 5482 8352 1253 181 | 0.126
5058 100301 7350 | 40316 886 189 | 0.176
5063 9998 2823 4825 828 276 | 0.250
5067 9970 2860 7561 383 130 | 0.253
5046 13236 1484 | 4212 143 52 | 0.267
5053 1002 274 799 116 216 | 0.651
5056 1022 300 510 99 218 | 0.688
5052 986 278 763 82 210 | 0.719
5050 1008 316 692 103 336 | 0.765

Table 3:Characteristics of synthetic data sets, sorted and “gitipenoise. In the World Parameters, Size refers to the numbe
of entities in the true synthetic world and Number malicioefers to the total number of truly malicious entities. e fArimary
Data, Size refers to the number of entities known initiallgge malicious refers the number of entities tagged as ‘timals” who
truly were malicious in the world and False malicious referthe number of entities falsely tagged as “malicious”. E€h®er rate
(Noise) of these labelings ranges from none (0) to very highesen in the bottom group of data sets. Note that step 1 ire Babl
above must query the secondary database for informatiotl tialae malicious” as well as all “true malicious” entise

ties over an extended period of time. The data are contaihediyin a single data source (although costly secondary
access is simulated) and are self-consistent, neither whw reliably true of classified data. However, the data do
replicate a range of noisy and poorly observed activitied,the entities are intentionally obscured to simulate tzfck
knowledge, obfuscation, poor data-entry practices, plelidentities, etc. Nonetheless, we do not claim that tha da
fully replicate the limitations of actual data collecticggregation and enrichment that the intelligence communit
routinely experiences. We use data sets generated for thegms of DoD program evaluation. We do not create data
sets ourselves for this paper.

One run of the simulator generates three databases:

1. “primary” data that are known ex ante. These often aresgpand may contain partial (or no) information on

any particular entity or group;

2. “secondary” data consisting of information that only &@nacquired by querying (theoretically at a cost) to get

information on a particular entity;

3. “truth” data, for evaluation, consisting of what reallggpened in the world.

The first two databases together reflect what possibly carbbereed. They are potentially corrupt and contain
only a subset of the complete truth. Further, the data ndavert@rd evidence that an entity is benign, and therefore
we only “know” about some malicious entities—those who amewn to belong to one or more terrorist groups.
Sometimes this knowledge is wrong. We evaluate the susp&goring onl7 data sets, whose characteristics are
shown in Table 3.

3.3 Results

In order to address how noise affects performance, we glmigdta sets into three categories: no noise (5048, 5049,
5055, 5057, 5062, 5069), low to moderate noise (5046, 5088355065, 5066, 5067, 5068), and very high noise
(5050, 5052, 5053, 5056).

Figures 2(a)-(c) show, for each category, how the systefoeed throughout its data acquisition run. Figure 2(a)
shows a wide range of performances from perfect (5057) togjogve AUC= 0.8 (5055). In all cases, we see that
performance increases as we gather more data (except ®odipoth 5057 and 5048). We also see that guilt-by-
association is able to perform much better than random mandUC = 0.5). Figure 2(b) shows the performance
of the suspicion scores on the moderate-noise data setsin,Aagwe query the secondary data the performance
quickly improves to achieve AUC values in the rariigg— 0.9, the only exception being 5046, which starts degrading
around iteratiorb0. It is noteworthy that the system overcomes the initial ndébels, showing that it is robust to
even moderate noise wheteout of 4 entities were mistakenly judged to be malicious. This isabse “malicious”
entities in these data communicate just as much as “benigfitfes, but to far fewer entities. Hence their associative
strength to other “malicious” entities is much strongegufe 2(c) shows the performance of the suspicion scoring on
the high-noise data. In this case, more than half of theiestiagged as “malicious” are actually benign. Initially we
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Figure 2: AUCs using active data acquisition. Notice théedént scales between (a)-(b) and (c).
Iteration

Data| 3 4 5 10 15 20 Last
5048 | 14 52 97 100 100 100 100
5049 |22 37 70 100 100 100 100
No 5055 3 4 12 45 100 100 100
Noise 505719 21 63 100 100 100 100
5062 | 25 52 91 100 100 100 100
5069 | 25 60 95 100 100 100 100
5046 | 8 22 43 87 98 100 100
5058 6 29 51 97 96 94 91
Moderate| 5063 | 21 21 38 77 80 80 99
Noise 506542 57 76 97 96 95 95
5066 | 44 58 72 98 94 94 95
5067 | 26 54 81 100 100 100 100
5068 |32 49 62 97 96 97 98

5050 | 37 33 37 10 12 - 12
High 5052 | 27 43 34 8 7 - 7
Noise 5053 | 23 40 48 15 15 - 14
5056 | 28 27 42 16 28 - 32

Table 4:How many truly malicious entities were in the top 100 afterations 3,4,5,10,15,20 and after the last iteration. \Ak st
at iteration 3 because that is the first iteration in which weehscores for queried entities that were not initially ‘md. Iteration
3 therefore only containg) entities. Further, all high noise data sets were so smaltliles stopped at iteratiolt.

see high variability, but the scores deteriorate quickiyg all end up with ranking much worse than random (note the
different scales, vertical and horizontal), because teréhm is actually propagating knowledge non-malicicess

Figure 2 only tells part of the story. For an analyst, knowihgt the system can achieve an AUC(O09 does
not necessarily mean that the system is useful. Althouglsyktem, in general, will rank suspicious entities higher,
when considering 0000 entities, the tod 00 could potentially be primarily benign with the ned@0 being primarily
malicious. Albeit unusual, this would achieve a relativieigh AUC, but not be very useful for analysts who only have
time to look at a select few entities.

Usually for rankings such as suspicion scorings, the dgosientities of interest is highest at the very top of the
list, especially if the scores are estimated probabiltfemembership in a class (e.g., malicious entity), and sadpe
of the list contains the entities with the highest estimgisababilities of being suspicious. For a given AUC value,
how dense one expects the top of a ranking to be depends pyimathe marginal probability of entities of interest
in the data (this and related issues are treated in detailvBkre (Provost & Fawcett, 2001)). An AUC 00 may
have99 truly malicious entities in the top00 highest-suspicion entities, or it may hau@ In either case, the system
may be useful to an analyst, depending on the applicatiorhandthe ranking will be used (e.g., as a primary basis
for action versus as an alternative source of evidence tmangexisting practicés

To illustrate the effectiveness of the scorings for thega dats for a particular threshold, we analyze the number
of truly malicious entities at the top of the suspicion rangs. If we look across the7 data sets, we can ask how many
truly malicious entities are among the tof0 most suspicious.

Table 4 shows the results for th& data sets, grouped by their noise level. The evaluatiomsstarteration 3
because Iterations 1 and 2 do not yet contain scores onearttitat have been queried and are not part of the “known”
entities. Iteration 3 is therefore based only on 3heentities which have been queried after the initial queryghgll
“known” entitites. Iteration 4 containk)0 queried entities and so on.

2For example, White and Fournelle (2005) show that an earfsioe of our suspicion scores are an effective prefilterlieit CADRE analysis
system for link discovery.



The table shows quantitatively what Figure 2 was tellinglmshe no-noise group, we get very high density already
at iteration 5, and perfection at iteration 10 (5055 takimggler to get there). By iteration 15 and on, the system is
100% accurate on all no-noise data sets. We see a similar beHfavithe moderate data sets, where iteration 10
already has very good accuracy for most of the data sets (5€i68 the worst, with only'7 out of 100 truly being
malicious), and nearly perfect accuracy on all data setdhbydst iteration. Notice that we ge&B0% accuracy on
5046 although its AUC was only arourids at this final iteration. Finally, we see in the very large eajgoup that
by the final iteration the system has very few malicious &#iin the topl 00. Remember that the absolute numbers
(e.g., “precision” of80 out of 100) reflects the marginal probability of being malicious in atgalar data set; the
ROC curve is independent of this probability, which is ongsn why 5063 and 5046, although having very similar
ranking ability (AUC) at iteratior20 have very different precision for a fixed threshold (Prov&$tawcett, 2001).

4 Limitations

The system we described here has notable limitations. We &issumed substantial prior knowledge: of entities, of
links between them, of maliciousness. We have shown somsstiodiss to the knowledge of maliciousness, but have
not systematically explored robustness along other dimmeasMoreover, collecting the data to build such a network
is a considerable effort, and it would make sense to considvork construction in tandem with the system that
would make use of the network.

Relatedly, we have considered network-based suspiciofingcim isolation. In reality, network-based scoring
would be one source of evidence, combined for example witbfifle”-based scoring. We conducted a preliminary
investigation into augmenting the scoring by setting ahigiriors based on uncertain-but-better-than-random know
edge (as from a profiling system). We found that priors hdkttb-no effect due to the algorithm’s dominance by
the scores propagated from the static labels (Macskassy®oBr, 2005). This is a problem which can affect many
collective inference techniques. In retrospect, it appeacessary to integrate closely the use of profiling inféiona
with the network scoring (cf. (Macskassy & Provost, 200A)is issue is likely to affect many collective inference
techniques and needs to receive more attention.

5 Final Remarks

We described and evaluated a guilt-by-association systergenerating suspicion scores based on entities’ known
associates. The system is notable for several reasons.ifigsable to generate remarkably good rankings even when
very few entities are known to be malicious. Second, it carelsively robust even to moderate noise in these prior
labels. Third, it works remarkably well considering thaoitly uses prior labels and the network, but no profiling.
Finally, it can be used as a data gathering tool not only téopmrfocused data acquisition of suspicious entities, but
also to further improve its ranking—and in the process itofiearns about suspicious entities that were not initially
in the database.
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