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Abstract

Learning generalrules is a basic goal of many
concept learning systems. In a 1989 paper,
Holte, Acker, and Porter pointed out that
this bias toward generality had resulted in
a problem with small disjuncts. The prob-
lem they discussed was that small disjuncts
had high rates of misclassification, and that
it was difficult to eliminate the error-prone
small disjuncts without affecting the perfor-
mance of other disjuncts. We describe a real
domain based on NYNEX MAX, an expert
system that diagnoses the local loop in a tele-
phone network. We demonstrate with two
inductive learning systems that a range of
disjunct sizes is important for this domain
despite the relatively high error rates of the
small disjuncts. We conclude that the need
for smaller disjuncts is a major reason that it
is difficult to learn from errorful data in this
domain.

1 INTRODUCTION

Learning general rules is a basic goal of many learning
systems [Mitchell, 1980]. Inductive learning systems
often make use of a bias that prefers large disjuncts to
small disjuncts, where a large (small) disjunct is one
that correctly classifies many (few) training examples.
Many believe in the notion that it 1s better to capture
generalities than to have a knowledge base of specific
cases from which you cannot extrapolate.? There are
a number of reasons for this belief. Large disjuncts
tend to have fewer conditions on their applicability.
They are therefore simpler and more comprehensible,

!'We will refer to large disjuncts as “general” and small
disjuncts as “specific”.

2A mnotable exception is case-based reasoning, where
specific instances are stored. But there the general knowl-
edge is in the matching function. Learning this is not a
trivial problem.
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which also makes them more acceptable to experts
who might be required to evaluate them. A related
reason is Occam’s razor—that is, the belief that given
two results with similar accuracies on training data,
the description with fewer conditions is more elegant
(and will be more predictive on future data). Complex
small disjuncts could be overfitting the training data,
which would make them less applicable to future un-
seen cases. More practical considerations include the
fact that having many small disjuncts may decrease
the efficiency of a system, both in terms of space and
the time it takes to consider a disjunct for each new
input. In dealing with real application domains where
one must anticipate errors in the data, it is undesir-
able to capture specific “odd” cases, as they may be
the random or systematic errors in the domain.

Holte, et al., pointed out that the bias toward large
disjuncts focuses attention away from small disjuncts,
which deserve equal attention for many reasons [Holte,
et al., 1989]. Many concepts include rare or excep-
tional cases and it is desirable for induced definitions
to cover these cases. Second, small disjuncts collec-
tively may match a large percentage of the examples
that satisfy a definition. The problem with small dis-
juncts, as pointed out by Holte, et al., is that they
are much more error prone than large disjuncts. This
work was followed up by Quinlan [Quinlan, 1991].

According to Holte, et al., “The net effect of elimi-
nating all small disjuncts is hard to predict...” They
assume that small disjuncts are necessary for high ac-
curacy and discuss methods for decreasing their error
rates. We provide support for their basic assumptions
by showing that in one novel, real-world domain, small
disjuncts are necessary for high accuracy. More gen-
erally, we will show that a range of disjunct sizes is
necessary for this domain.? We demonstrate the need
for a range of sizes using two very different learning
systems: ¢4.5 and RL.

In the next section we introduce the MAX expert sys-
tem, which performs diagnosis of telephone troubles.

*That is, it is necessary given the description langnage.



We then introduce the learning task for the MAX do-
main. In subsequent sections we give results of test
runs with c¢4.5 and RL. We will demonstrate that a
range of digjuncts are important for this domain de-
spite the relatively high error rates of the small dis-
juncts. We will conclude with a brief discussion of the
impact of noise in such a domain and posit that the
need for smaller disjuncts 1s a major reason that it is
difficult to learn from errorful data in this domain.

2 THE NYNEX MAX DOMAIN

MAX is an expert system that was developed by
NYNEX Science and Technology, Inc.* for the high
level diagnosis of customer-reported telephone prob-
lems. Specifically, MAX concentrates on the local loop,
the final segment of the telephone network which con-
nects the customer to the central office. The learn-
ing task for this domain is to create the knowledge
base inductively from trouble cases and their resolu-
tions. Section 2.1 describes the expert system in more
detail®, and Section 2.2 discusses the learning task.

2.1 THE MAX EXPERT SYSTEM

When customers have problems with their phone ser-
vice, they call 611 to report the trouble. A phone
company representative takes a report of the problem
(the trouble) and also initiates electrical tests on the
line (a mechanized loop test, or MLT).% The represen-
tative sends the information from the trouble report
and the MLT to a maintenance administrator, who
evaluates the trouble and determines how the company
should take care of (how to dispatch) the trouble. The
maintenance administrator also gets information from
a screening decision unit, a primitive rule-based sys-
tem for diagnosing problems based on a two-character
vercode—a summary of the MLT results. In general,
the vercode alone does not provide sufficient informa-
tion for an optimal decision.

MAX (Maintenance Administrator eXpert) plays the
role of a Maintenance Administrator, i.e., it uses the
MLT test results, together with other information, to
make a screening diagnosis. The only exception is that
MAX has the option of referring certain problems to a
human maintenance administrator. MAX diagnoses a
problem based on the following information: results of
the MLT, including the vercode, knowledge about the
customer’s line, and general knowledge about equip-
ment.

MAX is currently running for over 55 maintenance cen-
ters. Some of its benefits are: minimal change to the

*NYNEX is the parent company of New York Telephone
and New England Telephone.

®Some of the text in this section is paraphrased from
[Rabinowitz, et al., 1991].

SMLT was developed by AT&T.

maintenance center’s work flow; consistency; speed; re-
duction of erroneous dispatches over the screening de-
cision unit (see [Rabinowitz, et al., 1991] for details).
Some of MAX’s limitations are: it is running for many
diverse sites, with parameters used to customize the
knowledge base for a given site (and the parameters
are difficult to set); and the knowledge base must be
updated periodically due to changing conditions.

2.2 THE MAX LEARNING TASK

Due to the volume of troubles handled by MAX,
even a small improvement in its accuracy is extremely
valuable—each dispatch typically involves at least one
hour of time by a highly trained worker. It is interest-
ing to consider whether machine learning techniques
can be useful to help in automating modifications to
the knowledge base. The process of tuning and up-
dating the MAX system is very tedious and time in-
tensive, and must be done to account for differences
that exist between sites, as well as for changes that
occur over time. One direction we have been investi-
gating 1s the possibility of creating inductively a MAX
knowledge base from current data about troubles and
resolutions.”

The features used by MAX for diagnosis are essen-
tially the features used to describe the examples for
learning, with only minor differences. The attributes
are largely resistances and voltages. In all, there are
14 attributes, 12 of them numeric. In most (approx-
imately 90%) cases, one or more features are missing
from the examples.

The classes to be learned are the five possible dispatch
diagnoses for MAX: (i) dispatch to the cable; (ii) dis-
patch to the customer premise; (iii) dispatch to the
central office; (iv) request further testing; (v) send to
a human. For the experiments described in this paper,
the criterion used to evaluate the learned concept de-
scription was predictive accuracy. The relative cost of
errors varies, however, and current work is addressing
that issue. The classifications used in the following ex-
periments are the diagnoses given by MAX. Training
on MAX’s classifications provides us with (a) a consis-
tent data set; and (b) a data set that is analogous to a
set of cases provided by a maintenance center expert.
RL and c4.5 were trained on data from one mainte-
nance center at a time as there may be variations in
MAX’s diagnoses from site to site. All results reported
are from a single site. Comparable results have been
obtained for other locations.

TOther approaches are also being investigated, includ-
ing modification of the existing knowledge base [Pazzani,
1993].



Figure 1: Number of Disjuncts for Varying Disjunct Sizes. Most disjuncts are small. Histogram plots number
of disjuncts in concept description learned by ¢4.5 for varying disjunct sizes. The disjunct size 1s the number of
examples covered, based on 500 training examples. Each bar is the average over ten runs with randomly selected

training and test sets.

3 C4.5 RESULTS

Several experiments were performed using ¢4.5 [Quin-
lan, 1992]. In all cases, c¢4.5 was run with its default
parameter settings. The gain ratio criterion was used
to select tests. All results reported are before pruning,
though the differences between the results before and
after pruning are negligible.

For the first set of runs we used a set of 5845 examples.
These were troubles that had been diagnosed by MAX
in one maintenance center in one month. For each run
of ¢4.5, a random subset of n examples was selected
from this set as a training set. The maximum value
of n in this set of runs was 5000. For each run, a ran-
domly selected set of 845 examples was used as the test
set. The training and test sets were non-overlapping.
Accuracy on the test set was quite high when training
with as few as 500 examples (89.05%, with s.d. 1.0),
and after training on 5000 examples it reached 97%
(s.d. .56). Results were averaged over ten sets of runs.

It is important to mention that we studied the ex-
amples that c4.5 was unable to classify correctly after
training on 5000 examples. We found that in 60% of
the cases ¢4.5’s classification was actually better than
MAX’s. In this study, we presented to an expert the
troubles that c4.5 had misclassified. We also gave the
expert the MAX answer and the ¢4.5 answer, though
we did not tell him which was which. The order of the
two choices was also randomized. We asked the expert
to select the diagnosis (dispatch) that he thought was
better. In approximately 60% of the cases, he selected

c4.5’s dispatch.

We next performed a set of test runs to determine the
occurrence of different-sized disjuncts in the decision
trees learned for this domain. We trained c4.5 ten
times on randomly selected sets of 500 examples. Fig-
ure 1 shows a histogram of our results, averaged over
the 10 runs. The x-axis gives the size of a disjunct, 1.e.,
the number of training examples covered by a leaf. The
y-axis indicates the number of disjuncts, i.e., leaves, of
that size. As shown in the figure, a wide range of dis-
juncts are learned by c¢4.5, and a significant number of
those are small disjuncts.

We next performed a set of runs to evaluate the ac-
curacy of different-sized disjuncts. We performed 10
runs in which we trained on 500 examples and tested
on 2457. The training and test sets used in each run
were randomly selected and disjoint. Figure 2a shows
the number of test set examples classified by disjuncts
of varying sizes, while Figure 2b shows the number of
those that were classified erroneously.

The results of our experiments indicate that c4.5 is
able to learn good decision trees for the MAX domain.
Our analysis indicates that both large and small dis-
juncts appear in the trees learned, and that small dis-
juncts occur with relatively high frequency. Our anal-
ysis also confirms Holte, et al.’s conclusion that small
disjuncts are more prone to errors than are large dis-
juncts. Experiments performed with RL indicate that
small disjuncts cover such a large percentage of in-
stances in this domain that they are necessary in spite
of their error rates. Section b will discuss this in more



Figure 2: Number of Matches and Errors for Varying Disjunct Sizes. Smaller disjuncts are more error prone.

detail.

4 RL RESULTS

The RL learning system [Clearwater & Provost,
1990], a descendent of Meta-DENDRAL [Buchanan &
Mitchell, 1978], searches for a disjunctive set of con-
junctive rules. These rules are intended to form the
knowledge base for an evidence-gathering performance
system (a system which combines the evidence from
several rules to make a classification). Below we de-
scribe RL briefly, show that RL can learn a set of rules
that classifies troubles with high accuracy, and go on
to study the contributions of large and small disjuncts.

RL structures its hypothesis space in a general-to-

specific hierarchy rooted at the (syntactically) most
general rule (every example is an element of the con-
cept). Two types of specialization operators are used:
(i) adding a conjunct, and (ii) specializing an exist-
ing conjunct. These operations are performed based
on information provided in a partial domain model
(PDM), which contains descriptions of the attributes,
their types, and possible values and value hierarchies
for each attribute. The PDM also contains other in-
formation used to determine when a rule is satisfac-
tory/too general/too specific, and/or to restrict the
hypothesis space.

The learning procedure keeps statistics on the various
tentative rules and compares these with the criteria
specified in the PDM. If a rule is too general, it is



Figure 3: Number of Disjuncts for Varying Disjunct Sizes

specialized. If too specific, it is discarded along with
the entire subtree rooted there. If satisfactory, it is
saved. Several search methods are provided; a beam
search was used for the results presented here. The
evaluation function for the beam search is specified
in the PDM; we used the default function, which rates
node ry better than node r5 if the ratio of true positives
to false positives covered by ry is greater than that of
72 (in a tie, the rule with the larger coverage wins). In
summary, the search procedure is a beam search of the
space of syntactically defined rules, in which sections
of the rule space are pruned if they are guaranteed not
to yield results that will prove satisfactory with respect
to the criteria of the PDM. For this domain we used
a multiclass version of RL. Throughout this section,
a simple evidence-gathering system will be used for
testing that classifies examples based on the rule with
the highest certainty factor that matches the example
(as in [Quinlan, 1987]).

Via the partial domain model, users can specify dif-
ferent biases in different domains. We were concerned
with the effect of different disjunct sizes, which are
represented in RL’s partial domain model by cover-
age threshold levels (a rule is too general if it covers
more negative examples than the negative threshold
allows; a rule is too specific if it covers fewer examples
than the positive threshold allows). In this domain,
we knew that the data were very clean and that there
existed special cases (that would appear infrequently).
We therefore set RL’s thresholds such that in order for
a rule to be considered a “good” rule, it would have
to cover at least one positive example, while cover-
ing no negative examples (a perfect rules only bias).
With this bias, both large and small disjuncts would
be learned.

Across ten runs with random subsets of 500 training
examples and 2457 test examples, the rule sets learned
by RL averaged 86.5% accuracy (with a s.d. of 1.0).
On a separate set of ten runs, where the rule sets
were pruned (in a manner similar to that in [Quin-
lan, 1987]), the average accuracy was 87.8% (with a
s.d. of 1.4). These results are comparable with those
of c4.5. In similar runs, c4.5 averaged 88.9% accuracy

(with a s.d. of 0.9).

Figure 3 shows that in the concept descriptions learned
by RL, small disjuncts are abundant (Figure 3 is analo-
gous to Figure 1). As observed with c¢4.5, RL’s smaller
disjuncts are more error prone than its larger disjuncts
(see Figure 4, analogous to Figure 2). Disjuncts’ er-
ror rates generally decrease with increased size. (Asin
Figures 1 and 2, data indicate averages over ten runs
with randomly selected training sets of 500 examples
and test sets of 2457.)

5 GENERALITY VS. ACCURACY

In order to test the hypothesis that learning small dis-
juncts was necessary for learning high-accuracy con-
cept descriptions, we conducted a series of RL runs
with different minimum levels of generality. The min-
imum level of generality was enforced by the thresh-
old on the positive coverage of learned rules. A pos-
itive threshold of p restricts RL from learning rules
that cover less than p% of the positive examples of
each class. In all cases, the rules were not allowed to
cover any negative examples. Figure b depicts the rela-
tionship between the level of generality and the corre-
sponding test-set accuracy. Each point in the figure is
an average over ten runs with randomly selected train-



Figure 4: Number of Matches and Errors for Varying Disjunct Sizes

ing sets of 500 examples, and test sets of 2457. Error
bars indicate 95% confidence intervals using Student’s
t.

Figure 5 shows a (decreasing) linear relationship be-
tween the minimum size of the learned disjuncts and
the accuracy of the corresponding concept description
(a line can be fit to the data with R=0.99). This indi-
cates that (with respect to the rule-based description
language) there are special cases in the MAX data that
appear very infrequently, but are important parts of
the concept description. This is consistent with our
prior domain knowledge, and the assumptions of pre-
vious investigators. In fact, the linear relationship in-
dicates that disjuncts of all sizes are integral parts of
the learned concept descriptions.

6 DISCUSSION: DISJUNCT SIZES
AND NOISE

The results of this study suggest that the incorporation
of good mechanisms for learning small disjuncts is one
reason for the widespread success of ¢4.5 (though the
version we used did not include improvements outlined
by Quinlan in [Quinlan, 1991]). Our initial success
with ¢4.5, as well as our ability to choose different
inductive biases in RL, led us to examine the features
of our learning systems that allowed us to learn the
knowledge base. It confirmed the need for a range of
disjunct sizes, especially the important role played by
small disjuncts.

Though c¢4.5 and RL were able to learn good knowl-



Figure 5: Minimum Disjunct Size Versus Accuracy. Increasing the generality required of rules learned by RL
decreases the corresponding test-set accuracy. Graph plots the accuracy of concept descriptions leaned by RL
when a minimum level of generality was enforced. The minimum level of generality is a requirement that a
learned rule must cover at least a certain percentage of the examples of the corresponding concept. Each point
is an average over ten runs, error bars are 95% confidence intervals based on Student’s t.

edge bases for MAX| neither system was able to learn
a good knowledge base when trained on noisy data.
The difficulties stem from two major sources. First,
it 1s difficult to distinguish between noise and true
exceptions. In the MAX domain approximately half
of the example coverage comes from small disjuncts
(exception-type rules covering fewer than 10 training
examples), all of which can be significantly affected by
the presence of noise. Second, in the MAX domain,
errors in measurement and classification often occur
systematically rather than randomly. Thus it is dif-
ficult to distinguish between erroneous consistencies
and correct ones.

We performed a set of runs in which we trained on
troubles analyzed by MAX, but rather than using
the MAX diagnosis as the classification for a trouble,
we used the diagnosis as determined by the techni-
cian who actually solved the trouble in the field. We
then tested on other troubles as diagnosed by the field
techs. There are a number of sources of errors in this
data, and many of the errors differ from the type of
noise that one generally expects. They include elec-
tronic faults in data collection and reporting devices
and noise in transmission lines. Additional sources of
error include:

e Errors in repair: The trouble may not have been
repaired correctly. Or a problem may have been
solved, but there may in fact have been multiple
troubles that should have been attended to.

e Errors in translation of codes: The people who

solve the troubles indicate their diagnosis using a
different set of codes than those used to dispatch
the troubles. There i1s not an exact one-to-one
correspondence between the two sets of classifi-
cations. Thus translating one coding scheme to
another will introduce errors, some due to pure
mistranslation and others due to inherent ambi-
guities.

e Errors in coding: The codes used to indicate the
trouble found are complicated and errors in cod-
ing will occur naturally. A repair person might
also deliberately miscode a diagnosis.

Many of these types of errors may occur systemati-
cally. This is especially true in the case of deliberate
miscodings. We have no exact estimates of the number
of errors occurring in the MAX data, where the trouble
diagnoses are those actually given by the technicians.
When trained and tested on this data, however, nei-
ther ¢4.5 nor RL was able to achieve accuracy above
60% even after training on 1000 examples.

Noise i1s a fundamental problem that has been ad-
dressed in many systems. The MAX domain has
pointed out new issues to consider, however. In a do-
main where small digjuncts play a critical role in the
overall performance of a system, it is imperative to find
a mechanism to distinguish true exceptions from noise.
Furthermore, in a domain such as ours, it 1s important
to be able to distinguish between general rules that
are correct, and erroneous trends. In order to achieve
greater accuracy in MAX we will almost certainly re-



quire a good model of probable errors (more robust
than the one we currently have) to perform intelligent
instance selection.

7 CONCLUSIONS

Learning general rules is a fundamental goal of a num-
ber of learning systems. For a variety of reasons,
ranging from comprehensibility to efficiency, many sys-
tems are biased to concentrate on general rules rather
than on special cases. Holte, et al., first identified
the fact that this bias drew attention away from an-
other important problem, that of ensuring the accu-
racy of small digjuncts. We have described one do-
main, the NYNEX MAX domain, in which learning
large disjuncts alone is not sufficient. However, learn-
ing a range of disjuncts is. Two learning systems, c4.5
and RL, were able to learn very accurate rules. c4.5 in-
corporated criteria for including both large and small
disjuncts into its bias. The RL work showed that while
learning a combination of large and small disjuncts was
sufficient for learning concept descriptions with high
accuracy, learning only large disjuncts was not. We
have shown this to be true even though the error rate
of disjuncts increases as the size decreases.

We agree with previous authors that the quality of
both large and small disjuncts is important to the per-
formance of a learning system. We show MAX to be
a domain in which both are essential. We believe that
there are other domains in the real world that require
the ability to learn both generalities and special cases.
This must be a capability of learning systems, if they
are to succeed in these areas. Balancing the tradeoffs
between true special cases and anomalies due to errors
is still a great—and crucial—challenge. This is espe-
cially true since errors may be systematic as well as
random.

References

Buchanan, B. & Mitchell, T. (1978). Model-directed
Learning of Production Rules. In D. A. Waterman &
F. Hayes-Roth (ed.), Pattern Directed Inference Sys-
tems, p. 297-312. New York: Academic Press.

Clearwater, S. & Provost, F. (1990). RL4: A Tool
for Knowledge-Based Induction. In Proceedings of the
Second International IEEE Conference on Tools for
Artificial Intelligence, p. 24-30. IEEE C.S. Press.

Holte, R. C., Acker, L. E. & Porter, B. W. (1989).
Concept Learning and the Problem of Small Disjuncts.
In Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, p. 813-818. San
Mateo, CA: Morgan Kaufmann.

Mitchell, T. M. (1980). The Need for Biases in Learn-
ing Generalizations. Technical Report CBM-TR-117,
Rutgers University.

Pazzani, M. J. (1993). Finding accurate frontiers: A
new approach to analytic learning. In Proceedings of
the National Conference of Artificial Intelligence. San
Mateo, CA: Morgan Kaufmann.

Quinlan, J. (1987). Generating Production Rules from
Decision Trees. In Proceedings of the Tenth Interna-

tional Joint Conference on Artificial Intelligence, p.
304-307. San Mateo, CA: Morgan Kaufmann.

Quinlan, J. R. (1991). TImproved Estimates for the
Accuracy of Small Disjuncts. Machine Learning, 6(1),
p. 93-98.

Quinlan, J. R. (1992). C4.5: Programs for Machine
Learning. San Mateo, CA: Morgan Kaufmann.

Rabinowitz, H., Flamholz, J., Wolin, E. & Euchner,
J. (1991) NYNEX MAX: A Telephone Trouble Screen-
ing Expert. In R. Smith & C. Scott (ed.), Innovative
Applications of Artificial Intelligence 3, p. 213-230.
Menlo Park, CA: AAAT Press.



