
Small Disjuncts in Action: Learning to Diagnose Errors in theLocal Loop of the Telephone NetworkAndrea Pohoreckyj DanylukNYNEX Science & Technology, Inc.500 Westchester AvenueWhite Plains, NY 10604danyluk@nynexst.com Foster John ProvostComputer Science DepartmentUniversity of PittsburghPittsburgh, PA 15260foster@cs.pitt.eduAbstractLearning general rules is a basic goal of manyconcept learning systems. In a 1989 paper,Holte, Acker, and Porter pointed out thatthis bias toward generality had resulted ina problem with small disjuncts. The prob-lem they discussed was that small disjunctshad high rates of misclassi�cation, and thatit was di�cult to eliminate the error-pronesmall disjuncts without a�ecting the perfor-mance of other disjuncts. We describe a realdomain based on NYNEX MAX, an expertsystem that diagnoses the local loop in a tele-phone network. We demonstrate with twoinductive learning systems that a range ofdisjunct sizes is important for this domaindespite the relatively high error rates of thesmall disjuncts. We conclude that the needfor smaller disjuncts is a major reason that itis di�cult to learn from errorful data in thisdomain.1 INTRODUCTIONLearning general rules is a basic goal of many learningsystems [Mitchell, 1980]. Inductive learning systemsoften make use of a bias that prefers large disjuncts tosmall disjuncts, where a large (small) disjunct is onethat correctly classi�es many (few) training examples.1Many believe in the notion that it is better to capturegeneralities than to have a knowledge base of speci�ccases from which you cannot extrapolate.2 There area number of reasons for this belief. Large disjunctstend to have fewer conditions on their applicability.They are therefore simpler and more comprehensible,1We will refer to large disjuncts as \general" and smalldisjuncts as \speci�c".2A notable exception is case-based reasoning, wherespeci�c instances are stored. But there the general knowl-edge is in the matching function. Learning this is not atrivial problem.

which also makes them more acceptable to expertswho might be required to evaluate them. A relatedreason is Occam's razor{that is, the belief that giventwo results with similar accuracies on training data,the description with fewer conditions is more elegant(and will be more predictive on future data). Complexsmall disjuncts could be over�tting the training data,which would make them less applicable to future un-seen cases. More practical considerations include thefact that having many small disjuncts may decreasethe e�ciency of a system, both in terms of space andthe time it takes to consider a disjunct for each newinput. In dealing with real application domains whereone must anticipate errors in the data, it is undesir-able to capture speci�c \odd" cases, as they may bethe random or systematic errors in the domain.Holte, et al., pointed out that the bias toward largedisjuncts focuses attention away from small disjuncts,which deserve equal attention for many reasons [Holte,et al., 1989]. Many concepts include rare or excep-tional cases and it is desirable for induced de�nitionsto cover these cases. Second, small disjuncts collec-tively may match a large percentage of the examplesthat satisfy a de�nition. The problem with small dis-juncts, as pointed out by Holte, et al., is that theyare much more error prone than large disjuncts. Thiswork was followed up by Quinlan [Quinlan, 1991].According to Holte, et al., \The net e�ect of elimi-nating all small disjuncts is hard to predict..." Theyassume that small disjuncts are necessary for high ac-curacy and discuss methods for decreasing their errorrates. We provide support for their basic assumptionsby showing that in one novel, real-world domain, smalldisjuncts are necessary for high accuracy. More gen-erally, we will show that a range of disjunct sizes isnecessary for this domain.3 We demonstrate the needfor a range of sizes using two very di�erent learningsystems: c4.5 and RL.In the next section we introduce the MAX expert sys-tem, which performs diagnosis of telephone troubles.3That is, it is necessary given the description language.



We then introduce the learning task for the MAX do-main. In subsequent sections we give results of testruns with c4.5 and RL. We will demonstrate that arange of disjuncts are important for this domain de-spite the relatively high error rates of the small dis-juncts. We will conclude with a brief discussion of theimpact of noise in such a domain and posit that theneed for smaller disjuncts is a major reason that it isdi�cult to learn from errorful data in this domain.2 THE NYNEX MAX DOMAINMAX is an expert system that was developed byNYNEX Science and Technology, Inc.4 for the highlevel diagnosis of customer-reported telephone prob-lems. Speci�cally, MAX concentrates on the local loop,the �nal segment of the telephone network which con-nects the customer to the central o�ce. The learn-ing task for this domain is to create the knowledgebase inductively from trouble cases and their resolu-tions. Section 2.1 describes the expert system in moredetail5, and Section 2.2 discusses the learning task.2.1 THE MAX EXPERT SYSTEMWhen customers have problems with their phone ser-vice, they call 611 to report the trouble. A phonecompany representative takes a report of the problem(the trouble) and also initiates electrical tests on theline (a mechanized loop test, or MLT).6 The represen-tative sends the information from the trouble reportand the MLT to a maintenance administrator, whoevaluates the trouble and determines how the companyshould take care of (how to dispatch) the trouble. Themaintenance administrator also gets information froma screening decision unit, a primitive rule-based sys-tem for diagnosing problems based on a two-charactervercode|a summary of the MLT results. In general,the vercode alone does not provide su�cient informa-tion for an optimal decision.MAX (Maintenance Administrator eXpert) plays therole of a Maintenance Administrator, i.e., it uses theMLT test results, together with other information, tomake a screening diagnosis. The only exception is thatMAX has the option of referring certain problems to ahuman maintenance administrator. MAX diagnoses aproblem based on the following information: results ofthe MLT, including the vercode, knowledge about thecustomer's line, and general knowledge about equip-ment.MAX is currently running for over 55 maintenance cen-ters. Some of its bene�ts are: minimal change to the4NYNEX is the parent company of New York Telephoneand New England Telephone.5Some of the text in this section is paraphrased from[Rabinowitz, et al., 1991].6MLT was developed by AT&T.

maintenance center's work ow; consistency; speed; re-duction of erroneous dispatches over the screening de-cision unit (see [Rabinowitz, et al., 1991] for details).Some of MAX's limitations are: it is running for manydiverse sites, with parameters used to customize theknowledge base for a given site (and the parametersare di�cult to set); and the knowledge base must beupdated periodically due to changing conditions.2.2 THE MAX LEARNING TASKDue to the volume of troubles handled by MAX,even a small improvement in its accuracy is extremelyvaluable|each dispatch typically involves at least onehour of time by a highly trained worker. It is interest-ing to consider whether machine learning techniquescan be useful to help in automating modi�cations tothe knowledge base. The process of tuning and up-dating the MAX system is very tedious and time in-tensive, and must be done to account for di�erencesthat exist between sites, as well as for changes thatoccur over time. One direction we have been investi-gating is the possibility of creating inductively a MAXknowledge base from current data about troubles andresolutions.7The features used by MAX for diagnosis are essen-tially the features used to describe the examples forlearning, with only minor di�erences. The attributesare largely resistances and voltages. In all, there are14 attributes, 12 of them numeric. In most (approx-imately 90%) cases, one or more features are missingfrom the examples.The classes to be learned are the �ve possible dispatchdiagnoses for MAX: (i) dispatch to the cable; (ii) dis-patch to the customer premise; (iii) dispatch to thecentral o�ce; (iv) request further testing; (v) send toa human. For the experiments described in this paper,the criterion used to evaluate the learned concept de-scription was predictive accuracy. The relative cost oferrors varies, however, and current work is addressingthat issue. The classi�cations used in the following ex-periments are the diagnoses given by MAX. Trainingon MAX's classi�cations provides us with (a) a consis-tent data set; and (b) a data set that is analogous to aset of cases provided by a maintenance center expert.RL and c4.5 were trained on data from one mainte-nance center at a time as there may be variations inMAX's diagnoses from site to site. All results reportedare from a single site. Comparable results have beenobtained for other locations.7Other approaches are also being investigated, includ-ing modi�cation of the existing knowledge base [Pazzani,1993].



Figure 1: Number of Disjuncts for Varying Disjunct Sizes. Most disjuncts are small. Histogram plots numberof disjuncts in concept description learned by c4.5 for varying disjunct sizes. The disjunct size is the number ofexamples covered, based on 500 training examples. Each bar is the average over ten runs with randomly selectedtraining and test sets.3 C4.5 RESULTSSeveral experiments were performed using c4.5 [Quin-lan, 1992]. In all cases, c4.5 was run with its defaultparameter settings. The gain ratio criterion was usedto select tests. All results reported are before pruning,though the di�erences between the results before andafter pruning are negligible.For the �rst set of runs we used a set of 5845 examples.These were troubles that had been diagnosed by MAXin one maintenance center in one month. For each runof c4.5, a random subset of n examples was selectedfrom this set as a training set. The maximum valueof n in this set of runs was 5000. For each run, a ran-domly selected set of 845 examples was used as the testset. The training and test sets were non-overlapping.Accuracy on the test set was quite high when trainingwith as few as 500 examples (89.05%, with s.d. 1.0),and after training on 5000 examples it reached 97%(s.d. .56). Results were averaged over ten sets of runs.It is important to mention that we studied the ex-amples that c4.5 was unable to classify correctly aftertraining on 5000 examples. We found that in 60% ofthe cases c4.5's classi�cation was actually better thanMAX's. In this study, we presented to an expert thetroubles that c4.5 had misclassi�ed. We also gave theexpert the MAX answer and the c4.5 answer, thoughwe did not tell him which was which. The order of thetwo choices was also randomized. We asked the expertto select the diagnosis (dispatch) that he thought wasbetter. In approximately 60% of the cases, he selected

c4.5's dispatch.We next performed a set of test runs to determine theoccurrence of di�erent-sized disjuncts in the decisiontrees learned for this domain. We trained c4.5 tentimes on randomly selected sets of 500 examples. Fig-ure 1 shows a histogram of our results, averaged overthe 10 runs. The x-axis gives the size of a disjunct, i.e.,the number of training examples covered by a leaf. They-axis indicates the number of disjuncts, i.e., leaves, ofthat size. As shown in the �gure, a wide range of dis-juncts are learned by c4.5, and a signi�cant number ofthose are small disjuncts.We next performed a set of runs to evaluate the ac-curacy of di�erent-sized disjuncts. We performed 10runs in which we trained on 500 examples and testedon 2457. The training and test sets used in each runwere randomly selected and disjoint. Figure 2a showsthe number of test set examples classi�ed by disjunctsof varying sizes, while Figure 2b shows the number ofthose that were classi�ed erroneously.The results of our experiments indicate that c4.5 isable to learn good decision trees for the MAX domain.Our analysis indicates that both large and small dis-juncts appear in the trees learned, and that small dis-juncts occur with relatively high frequency. Our anal-ysis also con�rms Holte, et al.'s conclusion that smalldisjuncts are more prone to errors than are large dis-juncts. Experiments performed with RL indicate thatsmall disjuncts cover such a large percentage of in-stances in this domain that they are necessary in spiteof their error rates. Section 5 will discuss this in more



Figure 2: Number of Matches and Errors for Varying Disjunct Sizes. Smaller disjuncts are more error prone.detail.4 RL RESULTSThe RL learning system [Clearwater & Provost,1990], a descendent of Meta-DENDRAL [Buchanan &Mitchell, 1978], searches for a disjunctive set of con-junctive rules. These rules are intended to form theknowledge base for an evidence-gathering performancesystem (a system which combines the evidence fromseveral rules to make a classi�cation). Below we de-scribe RL briey, show that RL can learn a set of rulesthat classi�es troubles with high accuracy, and go onto study the contributions of large and small disjuncts.RL structures its hypothesis space in a general-to-
speci�c hierarchy rooted at the (syntactically) mostgeneral rule (every example is an element of the con-cept). Two types of specialization operators are used:(i) adding a conjunct, and (ii) specializing an exist-ing conjunct. These operations are performed basedon information provided in a partial domain model(PDM), which contains descriptions of the attributes,their types, and possible values and value hierarchiesfor each attribute. The PDM also contains other in-formation used to determine when a rule is satisfac-tory/too general/too speci�c, and/or to restrict thehypothesis space.The learning procedure keeps statistics on the varioustentative rules and compares these with the criteriaspeci�ed in the PDM. If a rule is too general, it is



Figure 3: Number of Disjuncts for Varying Disjunct Sizesspecialized. If too speci�c, it is discarded along withthe entire subtree rooted there. If satisfactory, it issaved. Several search methods are provided; a beamsearch was used for the results presented here. Theevaluation function for the beam search is speci�edin the PDM; we used the default function, which ratesnode r1 better than node r2 if the ratio of true positivesto false positives covered by r1 is greater than that ofr2 (in a tie, the rule with the larger coverage wins). Insummary, the search procedure is a beam search of thespace of syntactically de�ned rules, in which sectionsof the rule space are pruned if they are guaranteed notto yield results that will prove satisfactory with respectto the criteria of the PDM. For this domain we useda multiclass version of RL. Throughout this section,a simple evidence-gathering system will be used fortesting that classi�es examples based on the rule withthe highest certainty factor that matches the example(as in [Quinlan, 1987]).Via the partial domain model, users can specify dif-ferent biases in di�erent domains. We were concernedwith the e�ect of di�erent disjunct sizes, which arerepresented in RL's partial domain model by cover-age threshold levels (a rule is too general if it coversmore negative examples than the negative thresholdallows; a rule is too speci�c if it covers fewer examplesthan the positive threshold allows). In this domain,we knew that the data were very clean and that thereexisted special cases (that would appear infrequently).We therefore set RL's thresholds such that in order fora rule to be considered a \good" rule, it would haveto cover at least one positive example, while cover-ing no negative examples (a perfect rules only bias).With this bias, both large and small disjuncts wouldbe learned.

Across ten runs with random subsets of 500 trainingexamples and 2457 test examples, the rule sets learnedby RL averaged 86.5% accuracy (with a s.d. of 1.0).On a separate set of ten runs, where the rule setswere pruned (in a manner similar to that in [Quin-lan, 1987]), the average accuracy was 87.8% (with as.d. of 1.4). These results are comparable with thoseof c4.5. In similar runs, c4.5 averaged 88.9% accuracy(with a s.d. of 0.9).Figure 3 shows that in the concept descriptions learnedby RL, small disjuncts are abundant (Figure 3 is analo-gous to Figure 1). As observed with c4.5, RL's smallerdisjuncts are more error prone than its larger disjuncts(see Figure 4, analogous to Figure 2). Disjuncts' er-ror rates generally decrease with increased size. (As inFigures 1 and 2, data indicate averages over ten runswith randomly selected training sets of 500 examplesand test sets of 2457.)5 GENERALITY VS. ACCURACYIn order to test the hypothesis that learning small dis-juncts was necessary for learning high-accuracy con-cept descriptions, we conducted a series of RL runswith di�erent minimum levels of generality. The min-imum level of generality was enforced by the thresh-old on the positive coverage of learned rules. A pos-itive threshold of p restricts RL from learning rulesthat cover less than p% of the positive examples ofeach class. In all cases, the rules were not allowed tocover any negative examples. Figure 5 depicts the rela-tionship between the level of generality and the corre-sponding test-set accuracy. Each point in the �gure isan average over ten runs with randomly selected train-



Figure 4: Number of Matches and Errors for Varying Disjunct Sizesing sets of 500 examples, and test sets of 2457. Errorbars indicate 95% con�dence intervals using Student'st.Figure 5 shows a (decreasing) linear relationship be-tween the minimum size of the learned disjuncts andthe accuracy of the corresponding concept description(a line can be �t to the data with R=0.99). This indi-cates that (with respect to the rule-based descriptionlanguage) there are special cases in the MAX data thatappear very infrequently, but are important parts ofthe concept description. This is consistent with ourprior domain knowledge, and the assumptions of pre-vious investigators. In fact, the linear relationship in-dicates that disjuncts of all sizes are integral parts ofthe learned concept descriptions.
6 DISCUSSION: DISJUNCT SIZESAND NOISEThe results of this study suggest that the incorporationof good mechanisms for learning small disjuncts is onereason for the widespread success of c4.5 (though theversion we used did not include improvements outlinedby Quinlan in [Quinlan, 1991]). Our initial successwith c4.5, as well as our ability to choose di�erentinductive biases in RL, led us to examine the featuresof our learning systems that allowed us to learn theknowledge base. It con�rmed the need for a range ofdisjunct sizes, especially the important role played bysmall disjuncts.Though c4.5 and RL were able to learn good knowl-



Figure 5: Minimum Disjunct Size Versus Accuracy. Increasing the generality required of rules learned by RLdecreases the corresponding test-set accuracy. Graph plots the accuracy of concept descriptions leaned by RLwhen a minimum level of generality was enforced. The minimum level of generality is a requirement that alearned rule must cover at least a certain percentage of the examples of the corresponding concept. Each pointis an average over ten runs, error bars are 95% con�dence intervals based on Student's t.edge bases for MAX, neither system was able to learna good knowledge base when trained on noisy data.The di�culties stem from two major sources. First,it is di�cult to distinguish between noise and trueexceptions. In the MAX domain approximately halfof the example coverage comes from small disjuncts(exception-type rules covering fewer than 10 trainingexamples), all of which can be signi�cantly a�ected bythe presence of noise. Second, in the MAX domain,errors in measurement and classi�cation often occursystematically rather than randomly. Thus it is dif-�cult to distinguish between erroneous consistenciesand correct ones.We performed a set of runs in which we trained ontroubles analyzed by MAX, but rather than usingthe MAX diagnosis as the classi�cation for a trouble,we used the diagnosis as determined by the techni-cian who actually solved the trouble in the �eld. Wethen tested on other troubles as diagnosed by the �eldtechs. There are a number of sources of errors in thisdata, and many of the errors di�er from the type ofnoise that one generally expects. They include elec-tronic faults in data collection and reporting devicesand noise in transmission lines. Additional sources oferror include:� Errors in repair: The trouble may not have beenrepaired correctly. Or a problem may have beensolved, but there may in fact have been multipletroubles that should have been attended to.� Errors in translation of codes: The people who

solve the troubles indicate their diagnosis using adi�erent set of codes than those used to dispatchthe troubles. There is not an exact one-to-onecorrespondence between the two sets of classi�-cations. Thus translating one coding scheme toanother will introduce errors, some due to puremistranslation and others due to inherent ambi-guities.� Errors in coding: The codes used to indicate thetrouble found are complicated and errors in cod-ing will occur naturally. A repair person mightalso deliberately miscode a diagnosis.Many of these types of errors may occur systemati-cally. This is especially true in the case of deliberatemiscodings. We have no exact estimates of the numberof errors occurring in the MAX data, where the troublediagnoses are those actually given by the technicians.When trained and tested on this data, however, nei-ther c4.5 nor RL was able to achieve accuracy above60% even after training on 1000 examples.Noise is a fundamental problem that has been ad-dressed in many systems. The MAX domain haspointed out new issues to consider, however. In a do-main where small disjuncts play a critical role in theoverall performance of a system, it is imperative to �nda mechanism to distinguish true exceptions from noise.Furthermore, in a domain such as ours, it is importantto be able to distinguish between general rules thatare correct, and erroneous trends. In order to achievegreater accuracy in MAX we will almost certainly re-



quire a good model of probable errors (more robustthan the one we currently have) to perform intelligentinstance selection.7 CONCLUSIONSLearning general rules is a fundamental goal of a num-ber of learning systems. For a variety of reasons,ranging from comprehensibility to e�ciency, many sys-tems are biased to concentrate on general rules ratherthan on special cases. Holte, et al., �rst identi�edthe fact that this bias drew attention away from an-other important problem, that of ensuring the accu-racy of small disjuncts. We have described one do-main, the NYNEX MAX domain, in which learninglarge disjuncts alone is not su�cient. However, learn-ing a range of disjuncts is. Two learning systems, c4.5and RL, were able to learn very accurate rules. c4.5 in-corporated criteria for including both large and smalldisjuncts into its bias. The RL work showed that whilelearning a combination of large and small disjuncts wassu�cient for learning concept descriptions with highaccuracy, learning only large disjuncts was not. Wehave shown this to be true even though the error rateof disjuncts increases as the size decreases.We agree with previous authors that the quality ofboth large and small disjuncts is important to the per-formance of a learning system. We show MAX to bea domain in which both are essential. We believe thatthere are other domains in the real world that requirethe ability to learn both generalities and special cases.This must be a capability of learning systems, if theyare to succeed in these areas. Balancing the tradeo�sbetween true special cases and anomalies due to errorsis still a great|and crucial|challenge. This is espe-cially true since errors may be systematic as well asrandom.ReferencesBuchanan, B. & Mitchell, T. (1978). Model-directedLearning of Production Rules. In D. A. Waterman &F. Hayes-Roth (ed.), Pattern Directed Inference Sys-tems, p. 297-312. New York: Academic Press.Clearwater, S. & Provost, F. (1990). RL4: A Toolfor Knowledge-Based Induction. In Proceedings of theSecond International IEEE Conference on Tools forArti�cial Intelligence, p. 24-30. IEEE C.S. Press.Holte, R. C., Acker, L. E. & Porter, B. W. (1989).Concept Learning and the Problem of Small Disjuncts.In Proceedings of the Eleventh International JointConference on Arti�cial Intelligence, p. 813-818. SanMateo, CA: Morgan Kaufmann.Mitchell, T. M. (1980). The Need for Biases in Learn-ing Generalizations. Technical Report CBM-TR-117,Rutgers University.
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