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Abstract, Muchine fearning programs necd (0 scale up e very large data sets for several reasons, nciudmg
increasing, acenracy and discovering imfrequent special cases. Current inductive learners perform well with
hundreds or thousands of training examples, but in seme cases, up to a millien or more examples may be
necessary (o learn impoertant special cases with confidence. These tasks are infeasible for corrent leaming
programs running on sequemial machines. We discuss the need for very large data sets and prior efferts to
scale up machine learning methods. This discussion motivates a stralegy that exploits the inherent pazallelism
present in many learning algorithims. W describe a paraliel implementation of one induetive learning program
on the CM-2 Conncalion Machine, show that it scales up to millicns of examples, and show that it uncovers
special-case rules thar sequential learning programs. running on smaller datasets, would miss. The parallel
version of the learning program is preferable to the sequential version lor cxample sets larger than about
10K examples. When learning from 2 public-health database consisting of 3.3 million examples, the parallel
rule-learning svstent uncovered a surprising relarionship that hag lsd fa ennciderable follow up research.

Keywords: inductive leaming, parallelism. small disjuncts

1. Introeduction: Why Scale Up?

Current inductive learning programs cannot practically be used with very large data sets
{e.g., a million or more examples). Catlett esttmates (1991b) that real-world learning
lasks using one rnillion data items will require months on a dedicated workstation. This
paper outlines reasons why very large data sets are necossary and summarizes past efforts
1o scale up machine learning methods. We then present an clfective way to scale up a
standard rule learncr using massive parallelism and an implementaticn on the CM-2
Connection Machine. In a public-health domain, this program discovered relationships
that could not have been found on current sequential machines. One relationship has led
to considerable follow-up rescarch by our public-health collaborators.

There arc important reasons why machine learning methods must scale up to very
large data scts. Perhaps the most obvious reason 1s to maximize accuracy. In the most
comprehensive work to date on scaling up machine learning, Catlett (199 14) amassed a
collection of very large data sets. In every domain, halving the size of the raining sct
produced a statistically sigmilicant decrease in accuracy.

In many cases. degradation in accuracy when learning from small samples stems from
over-fitting, due to high dimensionality of the concept description language or due to the
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need to allow the program o learn rules known as small disjucts (Holte, Acker & Porter
1989), which correspond to special cases of the concept. Because small disjuncts cover
fow data items, learning programs have difficulty learning these rules with confidence.
Unfortunately, in some domains special cases account {or a large portion of the concept
(Danyluk & Provost, 1993). In such domains, high-accuracy learning depends on the
ability t learn spesial cases well. Noisc further complicates the problem, because with a
small sample it is impossible to 1cll the difference between a special case and a spurious
data point (Danyluk & Provost, 1993; Weiss, 19953,

Classtlication accuracy aside, small disjuncts arc olen of most interest 10 scientists
and business analysts, since they are precisely the rules that were unknown previousty;
analysts usually know the common cases. Consider machine learning as an aid to public-
health research. [t may be the case that, in general, fapancsc-Americans have a low inlam
mortality rate. An inductive learner trying to descnbe the class Low-Infant-Mortaliry
might look at linked birthAnfant death data and produce the rule Japanese-American
— Low-Infant-Mortaitty. Learning such a rule with nigh confidence is not a problem
if the rule represents a substantial portion of the data, but if the rule covers only a
small percentage of the data, a sample set of several thousand cxamples will not contain
encugh instances 1o infer the rule with confidence. if at all. Thus, if the sample sct
contains only a few Japancse-Americans—a situation that is likely since they form such
a smali percentage (0.3%) of the births in the U.S —a learner could not draw conclusions
about them with any degree of certainty.

In sum, a sample must be large encugh o conlain cnough instances of cach special
casc from which to generalize a rule with confidence. Learning rules for still smaller
subgroups of the Japanese-American population would require still larger samples. For
example, Japancse-Americans who live on the Bast Coast make up only 0.03% ol the
U.S. births. [n order 1o have 30 cxamples Itom wlach 0 generalize a rule, one would
need approximately 100,000 examples. In practice, 1l s desirable to have many more
than 30 examples from which to generalize, to reduce the probability that a rule looks
good by chance due o the generation and festing of many allernative hypotheses. For
our example ol Japanese-Americans living en the Fast Coast, increasing the number of
examples required to generalize a rule by an order of magnitude pushes the total number
of examples requived up to one million. It is important o note that, in principle, scaling
up does not climinate the problem of small disjuncts; for any data sct there could be
ever-smatler special cases that could not be learned with confidence.

It should be clear that scaling up to very large data sets implics. in part, that faster
learners must be developed. There are, of course, other motivations for very fast learners.
For example. interactive machime learning (Buniine, 1991), in which a machine learncr
and a human analyst inferact in real time, roquires very fast learning algorithms i order
10 be practical. Automatic bias sclection (Gordon & desJardins, 1995) also requires very
fast learners, because such systems evaluate learning on multiple biases: cach evaluation
may involve naltiple rins 10 produce performance statistics (e.g., with cross vahdation),
and cxperimenting with many biases also requires large data sets to avoid over litting
due to hias selection. In addition o implications for jearning tume, scaling up lo very
large data sete may require space elticient algonthme for space-limited platforms.
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SCALING UP INDUCTIVE LEARNING

We now turn our attention to a number of strategies that scek to scale up learning
methods to very large data scts and/or that have been designed with the related goals of
reducing learming time or space complexity.

2. Scaling Up Inductive Learning: What has been done?

There are several approaches one might take to apply symbolic machine learning to very
large problems. A straightforward. alhert imited, stratepy for sealing np s ta use a very
fast, but simple, mcthod. This stratcgy may seem siily unti) we consider results like
Holte’s (1993}, Holte showed that degenerate (ene-level) decision trees, called “decision
stumps.” performed well in terms of aconracy for many cammaonly used databases. While
the algorithm for learning decision stumps is very fast, the method prohibiis the learning
of complex concept descripticns. Nonetheless. the decision-stump results suggest that
a fast, but simple, learning algorithm may he an effective tool for scaling up to very
large databases. Catlett (1991a; 1991c¢) applied the strategy of simplifying a learner’s
representation language to the problem of scaling up, and showed that the discretization
of numeric attributes can reduce the run time of a dacision-tree learner, often without a
corresponding decrease in accuracy.

A second strategy is 1o oplimize a learning program’s search and representation as
much as possible. Optimization may mvolve the sdentification of constraints that can
be exploited to reduce algorithm complexity, or the use of more efficient data structures
(e.g., bit vectors, hash tables. binary search trees). Scgal and Eezioni's BruteDL (1994) is
4 highly optimuzed rule learner, which uses clever wearch-reduction technigques as well as
elficient data structures. When learning time is an issue, such code optimizalion is good
cngineering practice and complements the other methods of scaling up that we describe
below. However. when tast, simple methods are not adequate and aptimization s not
cnough, other strategics arc necessary o scale up learning methods.

The most common method for coping with the infeasibility of learning from very large
data sets s to select a smaller sample from the ininial data ser Catlett (199]12) studied
a variety of stratcgies for sampling from a large data set. Despile the advantages ol
certain sampling strategics, Catlett concluded that they are not a solution to the problem
of scaling up to very large data seis. Sampling does not adequately address either of the
two main reasons [or using large data sets; small samples generally reduce accuracy and
inhibit learning nlrequent special cases.

Catlett (1991a; 1992) also siudied wrategies lor redocing the complexity associated
with description languages containing aumeric attributes. He found that by looking at
subsets of examples when scarching for good split values for numeric attributes, the run
trme of decreian-tree learners can be significantly reduced, without a corresponding loss
in accuracy. Even with these strategics in place, the run time of the learners is still Hnear
in the number of examples. so learning with very large data sets can sull be prohibitively
expensive. Phoee techniques are complementary 16 the methods described below Tor
learning in parallel.

Incremental batch learning (Clearwater, Cheng, Hirsch & Buchanan, 19893 1s a cross
between sampling and incremental learning {(Sehlimmer & Fisher, 1086, Utgofl, 1980)
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Incremental baich learners process subsamples of examples in sequence to learn from
large training sets. Incremental batch learning has been used Lo scale up to example
sc1s that are (0o large for pure bach processing (Provast & Buchanan, 1995). Such an
approach is effective because even for learners that, in principle, scale up linearly in the
number of examples, if the entire example set docs not fit in main memory, memory-
managemen!t thrashing can render the learner uscless.

Stil] another approach to scaling up has been studied by Gaines (1989), though Gaines’
primary goal was 1o unify manual and automatic knowledge acquisition. In particular,
Gaincs analyzed the extent thal prior knowledge reduces the amount ol data needed for
effective learning. Unfortunately, pinpointing a small set of relevant domain knowledge
begs the very question of machine learning. Therefore techniques for using background
knowledge must scale up 1o large knowledge bases. Aronis and Provost (1994) use paral-
lelism to cnabte the use of massive networks of domain knowledge to atid in constructing
new terms for indactive learning.

We now discuss an important class of strategies that deal with very large problems by
decomposing the learning problem and using parailel machines to process the different
pieces simultaneously. Three approaches to parallelization can be identificd. First, in the
course-grained approach, the data are divided among a set of processors: cach proces-
sor (in parallel) learns a concept description from ils set of examples, and the concepl
descriptions arc combined. Shaw and Sikora (1990) take this approach using a genetic
algorithm te combine the multiple concept descriptions, but de not experiment with very
large data sets. Chan and Stolfo (1993a; 1993b) also take a coarse-grained approach and
allow different learning programs 1o tun on dilferent processors. Their approach lakes
advantage ol existing lcarning algorithms—only the parallel infrastructure needs to be
programmed. Not unexpectedly, as with sampling. such techngues may degrade classi-
fication accuracy compared (o learning with the entire daia set. Provost and Hennessy
(1994) also use a coarse-grained parallelization, where the individual leamers cooperate
such that it 1s guaranteed that cach rule is considered acceplable o the distributed learner
if and only if it would be considered acceptable to a monolithic learner using the entire
data set. This approach has been successful with very large data sets. Coarse-grained
parallel learning algorithms ut)ize loosely coupled computers 1n a distri buted processing
setting. and could also be implemented successfully on a MIMD (muliiple instruction
multiple data} parallel architecture,

In the second approach to parallel learning, rule space parallelization. the search of the
rule space is decomposed such that different processors scarch different portions of the
rule space in parallel. This type of decomposition is similar to that used in parallelizing
other forms of heuristic search. Aithough some have stated that massively paraliel SIMD
(single instruction multiple data) machimes are mherently wnanitable for parallel heuristic
search {Bobrow, 1993), severai rescarchers have taplemented hearistic scarch routines
(IDA*) on SIMD architectures with impressive tesults (Cook & Lyons. 1993; Powley,
Ferguson & Korf, 1993, Mahanti & Daniels, 1993). In this work, portions of the search
tree are given Lo the processors, cach of which performs a heurisuc search Brevious work
has also dealt with scarch on MIMD machines; lor example, Rao and Kumar discuss
parallcl depth-first scarch (Kumar & Rao, 1987; Rao & Kumar, 16X7).
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In this mold, Cook and Holder {1990y used the CM-2 Conncction Machine for a
rule-space parallelization of AQ (Michalski, Movetic, Hong and Lavrac, 1986). AQ
was parallelized by specializing all elements of a star (e, an overly general concept
description) simultaneously instead of using a beam search. In their approach, 2'% (32K)
processors on the CM-2 can handle problems with fificen features or fewer. However,
a maxunwn ul fificen features imposes a strict limitation on the utility ot a learning
program. In general, this type of parallelization does not address the problem of very
large data sets. If rules arc distributed across processors, each processor will cither have
w deal with all the daa (which does not address the inability of current Processors
deal with massive data sets) or cach processor will have to deal with subsets of the
data (which would run into the same problems as subsampling). Also, load balancing
becomes an issue in order 10 take full advantage ol the parallel processmg power. Load
balancing and interprocess communication add additional overhead. Cook and Holder
(1990) also discuss (without implementing) a rule-space paraliclization of ID3 (Quinlan,
1986), but conclude that it is “actually very difticult to implement” and does not provide
“much benefit over the sequential ID3 procedure.” Cook and Holder (1990) take a
simlar approach to parallelizing the perceptron method, and there has been work using
tufe-space parailelism 1o scale up other connectionist methods (Rumelhart, Hinton &
Williams, 1986); (or cxample, Zhang, Mckenna, Mesirox and Waltz (1989) utilized the
massive paraliehism of the CM-2 in a paralielization of a backpropagation neutal network.

‘The third parallelization approach stems from the identification of the major bottleneck
in learnimg from very large data scts and the distribution of the computation that addresses
that hottlencck.  More specifically, many inductive lcarning programs fall under the
generate-und-rest paradigm. In typical artificial intelligence search problems, the major
computational cost 1s due to the fact that many nodes are generated. Thus, previous work
on using massively parallel scarch has concentrated on distributing both the generation
and testing of nodes across many processors. However, scarch for inductive learning
duffers from most other Al scarches —in inductive learning the cost of evalualing a node
is very expensive. Nodes in the search tree (e.g., partial rules or decision tree branches)
are hypothesized and cach must be matched against many examples. The results of this
match guide the generation of subsequent hypotheses. Bor a problem with more than a
tew hundred exampies, this matching dominates the computation.

Thus, our approach utilizes paraflel matching. Our approach is simitar to that taken
by Lathrop’s ARIEL system (Lathrop, Webster, Smith & Winston, 1990); the cxample
sef is distributed to the processors of a massively parallel machine. ARIEL, was not
run on data sels larger than a {ew hundred cxamples, however, for two reasons. First,
the biological problem being investigated only consisted of several hundred examples,
and second. using ARTEL’s method of decomposition a few hundred instances was the
maximum possible on the avaitable 8K-processor CM-2 Connection Machine (Lathrop,
1995},

Stanfill and Waltz (1988) use a parallel matching approach for case-based learning trom
very latge databases. Their Memory-Based Eearning (MBL) approach uses a Connection
Machine to find the most similar mstance from a very large database. This approach
is inherently ditferent from parallelizing the 1ype ol gencralization algorithm addressed
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in our work. In MBL all processing is done when a new example is classified, but
in our approach learning a concept description precedes classification with that concept
description; a parallel machine is not necessary for classification. A parallel MBL-like
appreach would only be suitable for the batch classification of a large set of examples,
due to the overhead of loading the data onto the parallel machine. Turthermore, MBI.-
style leaming does not make interesting special cases apparent, because it does not [orm
explicit generalizations,

3. The RL Learning Program: Sequential and Parallel Variations.

The RL learning program (Provost, Buchanan, Cloarwater & Lee, 1903, Clearwater &
Provost, 1990) is a descendant of Meta-DENDRAL (Buchanan & Mitchell, 1978). RL
uses a heuristic scarch algorithm to gencrate a serics of if-rhen rules and tests each of
them against a set of data. In practice, RL 1s often used to find interesting individual
rules. However, the set of rules learned by RIL. forms a digjunctuive class description,
which can be optimized with standard techniques as described, for example, by Quinlan
(1987).

RIL. performs a straightforward, general-to-specific search of the space of rules defined
by conjunctions of attribute-value pairs (features). The goal of RL’s scarch is to find rules
that satisly user-defined criteria. In particular, in the experiments below RL searches for
rules that salisfy two thresholds: the positive threshold, which specifics the minimum
number of positive examples a rule must cover, and the regative threshoid, which speci-
fies the maximum number of negative examples a rule may cover. The use of thresholds
relaxes constraints on the coverage of discovered rules, mutigating the cffects of noise in
the data and/or the effects of an inadequate represcntation language,

Each rule has a set of conditions and a predicied clags, which RE. evaluates statistucally.
The space of possible rules includes all possible combinations of conditions, so the size
of the search space grows cxponentially with the allowable number of conditions 1n a
rule. RL. uses a beam search to cnsure that the time complexity of the search 18 lincar
in the number of conditions. The beam cvaluation function is defined by the user;
tor the cxperiments reported here we used a signal-to-noise function that is, roughly,
the percentage of positive examples covered by a rule divided by the percentage of
negative cxarnples covered. Fach rule is tested against the entire set of data to calculate
performance statistics. This intraduces only a lincar factor wnto the cewplexity of the
algorithm when the data are described solely by nominal attributes (an o log v factor if
the program searches for numcric features). Nonetheless, for data sets with more than
a few hundred examples, the testing dominates the computation.  For data sets with
millions of cxamples the time spent checking rules against data can run into days or
weeks, making learning from very large data sets impossible [rom # practical standpoint.

SIMD parallel architectures. such as the CM-2 Connection Machine, consist ol a front-
cnd workstation that issues instructions to thousands of processors to be exccuted simul-
tanecusly. This provides a perfect match 1o gencrate-and-test inductive learning programs
such as RI.. The front-end generates partial rules, and each partial rule 15 tested on data
residing on individual processors. As cach rule s created 1t is broadeast to all the CM-2
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processors which simultancously match it against the data residing on that processor.
The results ol these matches are sent back to the [ront-end 10 guide the gencration of
subsequent rules. !

On a scquential machine checking a rule against n data items takes en time, bul on
a SIMD machine with p processors, it takes only o= /p time to check a rule. Since p
is large lor massively parallel machines {e.g.. up o 64K on a CM-2), this is a very
tavorable speedup despite the fact that on the CM-2 individual processors are relatively
slow, bit-serial processors (fe., ¢ is large).

Notice that processors check a rule against only the data items stored in that processor’s
local memory. There 1s no communication overhead because there 1s no interprocessor
communication. In theory, collecting resulis frem individual processors and returning
the aggregale 1o the front-end takes log ri time, but special hardware makes this tactor
insignificant.

This complexity analysis may obscurc the main point, which 1s that parallelism allows
ug o scale up to data seis several orders of magnitude larger than previously possible.
Since checking & rules lakes time proportional 10 &n/p, a large p allows us o increase
the number ol data items, 7, thereby making it possible to learn more accurate concept
descriptions, and te icarn small disjuncts that previously were not practically possible o
learn.

4. Experimental Results.

This scction describes the rosults of running scquential and parallel versions of RL un
synthetic and real-world data sets of a million or more examples. We used synthetic
data o better control experimental parameters, and real-world data to illustrate that the
scaling cnabled by massive parallelism doces indeced lead to useful, novel discoveries. In
the results presented below, sequentiat RL {a relatively {ast C-language version of the
program} was run on a dedicated DECstation 5000 with 32M main memory. Parallel RL
was run on o CM-2 Connection Machine with 85/{ processors,

4.1.  Experiments with Synthetic Data.

We designed a learning task that had a concept description with disjuncts of various sizes.
There were a total of one million examples, and the concept to be learned included 0.5
milfion posttive examples, As Table | indicates. cach cxample of the concept consisted
of 27 features: 7 significant features, and 20 with random valucs. For the (positive)
examples of the concept, one example had a *17 for the first significant feature, and “07
tor the rest of the sigmificant features; 10 examples had a “07 for the first significant
featare, 17 tor the second, and “07 for the rest of the significant features; 5 100,000
examples had a 07 for the firet five significant featurcs, 17 for the sixth, and “0” for the
rest of the significant features; the remainder of the 0.5 million examples of the concept
had “0” for the first six significant features, and a =17 for the seventh significant feature.
The 0.5 million examples of the complement simply had ()" for cach significant feature,



40 F.LOPROVOST AND J ML ARONIS

All examples of the concept and its complement had random valucs for the remaiming
20 features.

Tuble ! Desigr of the Synthetic Concept.

Positive Examples

1 Example: L0 6 0 0 & ¢ + 20 random digits
10 Examples: O t 0 0 0 0 0 + 20 randorm digits
100 Examples: 0 0 L0 0o o0 o0 + 20 randem digits
1000 Examples: o o o L 0 0 0 + 20random digits
10000 Examples: O 0 0 0 b 0 0 + 20randem digits
100000 Examples: o 0 0 0 0 I 0 + 20 random digits
Remainder of .5M Examples: 0 0 0 0 0 0 1 + 20 random digits

Negative Examples

.54 Lxamples, o 0 0 0 0 0 0 +  20random digis

RL allows the user to specity thresholds of acceptability, Typically, a user specifies
that an acceptable rule must cover a substantial portuon of the positive cxamples, while
allowing it o cover some small number of negative examples. Tor this experiment we
spectfied that a rule can cover as few as one positive example, but must not cover any
negative examples. Furthermore, to eliminate extraneous scarch [rom the companison of
run limes we specified that RL was to learn only rules wath a single conjunct. Thus,
to characterize the concept RL was forced to learn a rule for cach part—with its single
conjunct specilying a “17 in one of the significant {eatures. The disjunction of these
rules covered the concept. This test was designed to see if sequential and parallel RIL
could 1n fact learn rules of various sizes from a large set of data, and to compare the run
times.

Figure | shows the time required by both scquential RL and parallel RL 1o learn rules
that characterize the concept. The sequential version was run on data sets up to 70K
examples, at which point it became inteasible to run it on larger data scis. We project
that it would have taken more than 20 hours 1o run sequential RIL on all the data. Parallel
RL took less than one minute 10 learn rules on ail data sets up to onc million cxamples.

A close examination of the graph in Figure 1 reveals that the umes for parallel learning
form o step function. Figure 2 shows the parallel learning times in detal. Without the
sequential times it the graph to swamp the much smaller paratlel tmes, the step function
ts more apparent. The CM-2 was run with 8K actual processors. Tor data sets with
more than 8K cxamples virrual processors had to be allocated. That 1s, cach processor
cmulated several virtual processors (and. therefore, stored multiple data tlems). Each
time new virtual processors had o be used to accomodale a larger data set the overall
computatton time reflected the incrcased cost of crulation. Virtual processors must be
allocated in powers of 2, so as to emulate an entire hypercube. Thus, the bottom of the
steps wvisible in the graph shown in Figure 2 correspond to example sets of size 64K,
128K, 256K, and 512K. Onc cxtra example pushes the run time ap to the next step.
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Two observations are relevant here. First, the buasic parallel operation—evaluating
a predicate across Independent data items distributed across many processors-—does not
mvolve interprocessor communication. Second, cach processor of the CM-2 1s a rclatively
weak bit-serial processor, so the speedup factor is not nearly 8K, but the usc of thousands
ol such processors produces an overall dramatic effect. Subsequent architectures thas
combine large numbers of more powerful processors (such as the CM-5 or Cray’s T3D)
will give more wnpressive speedups.

Farallelizing R1. allowed it to learn rules that practically are impossible for the sequen-
tial program to learn on current workstations. On the test workstation, the maxinnum
practical sample size for the sequential RL 1s 50K -100K examples, but the chance is
nearly zero that such a sample will contain an adequate representation of ail parts of a
concept that 1s made up of very small disjuncts, Remember that it > often these spe-
cial cases that particularly interest scientists, In contrast, parallel RL learned all rules
necessary to cover the positive examples with a mitlion training items.

4.2. Experiments on a Public-Health Database.

We analyzed a data set comprising U8, Department of Health birth records linked with
records of intant deaths. Parallel RL was used to lcarn rules to predict infant mortality
and survival. ‘The databasc contained 3.5 miilion records with abour 20 fields cach.
including race, birthweight, and place of birth. This 15 an example of a problem where
the goal is not to form a classifier, since we are not predicting whether new inlants arc
gomng 10 survive, but to identity interesting suberoups of the population. Idennifying
subgroups with unosually high and unusuvally low nfant mortality rates directs further
research. The long-term goal of such work is to formulate policies that will reduce the
nation’s infant mortality rate. and the rate for particular subgroups.

Figure 3 shows the learning times required to learn with this data set, which are similar
to those obtained with the synthetic data. Notice, in particular, that the sequential program
hecomes practically useless at approximately the same number of traimng examples as
it cid with the synthetic data.

The massively parallel system learned the rule, known by experts in the field, that
Alrican-Americans have a high rate of infant mortality (1.88% vs. 1.10% [or the general
population). [t also learned the small rele that Tapanese-Americans have a low rale
of infant mortality (0.79%), and the even smaller ruic that Japanese-Americans living
in BEast Coast states have a very low rate of infunt mortality O 18%1 2 Tt is mportani
to remember that the dataset contained approximatcly 3.5 mullion records, so the small
differences we see here are significant.

In addinon, the analycis of the infant mortatity database with parallel RT. uncovered a
surprising relationship that has led to considerabie follow-up rescarch with our public-
health collaborators. Public-health researchers are concerned about the disparity 1n infani
mortality rates hetween African-Amerteans and the vencral population. In the general
population carlier prenatal care correlates with a reduction in infant mortality rates:
however, RL discovered that for African-Americans, earlier prenatal care 1 correlated
with Aigher infant mortality rates. Statistical tests show the relationship to be significant
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Figure 3. Time Required to Learn on Health Depaniment Data.

even after controlling for confounding variables.  Further analysis has explamed the
relationship only partially. These results are currently being written up for submission
to a public-health journal (Sharma, Provost, Aroms, Mattisen & Buchanan, 1994).

5. Conclusions

Massively parallel matching succeeds hecause it altacks a specific bottleneck encountered
with very large problems, e, matching hypotheses against huge data sets s computa-
uonally expensive. As opposed to previous work (Cook & Heoelder. 19903, we did not
attempt o parallelize the entire algorithm. The gencration of hypetheses takes place on
the supercomputer’s Itont-end workstation. This makes sense since the resulls of match-
ing hypotheses agamnst the data euide the generation of subsequent hypotheses (and so
there is a serial nature o this portion of the algorithm). Each hypothesis is independently
checked against cach data ttern, which can be done in parallel. However, the sequen-
tial hottlencek 15 not avoided entirely with the CM-2. Loading the data into the CM-2
processors 1s a sequential task that can take several minutes for one million data points.
Coupling this overhead with the performance numbers depicted 1n Tigures 2 and 4, we
conclude thal the massively paraliel version 1s preferable when the number of cxamples 1s
greater than 10K This conclusion 1s based on domains with approximately 20 attributes,
but 1t should hold for domains with more or fewer attributes. up o the point where the
memory ol the individual processors 18 exhausted.



44 FALPROVOST AND J.M. ARONIS

Parallel matching applies to gencratc-and-test learning programs in general, such as
MetaDENDRAIL-style rule learners akin to RL; parallel matching would undoubtedly
enable dramatic scaling for systems such as BroieDI {(Segal & Erzioni, 1994), where
efficiency 1s a primary concern. Parallelizing some other generate-and-1est machine learn-
ing programs would be shghtly less straightforward, but we believe our basic approach
would succeed. For example, consider a version of ID3 that exploits parallel matching.
Roughly speaking, as decision-tree partial paths were generated by the front end, they
would be matched against all of the data in parallel. This procedure does not exploit
the recursive partitioning nature of sequential ID3, which matches partial paths against
increasingly smaller subsets of the data. Thus, speedups would not be as large as tfor R1.,
because often many processors would be “extraneous” when matching a decision-tree
partial path. Nonetheless, we still would expect speedups to be dramatic for very large
example sets,

For other lcarning methods where concept description gencration and festing are oo
closely coupled, parallel matching will be either awkward or impossible. As an extreme
example, 1t would be difficult to use this method to parallelize backpropagation learning
for 4 neural network.

[n summary, for some learning tasks, like the exploratory analysis of the infant mor-
lality data, learning small rules is very important. In order o learn small rules, it is
necessary to have very large samples so that the algorithm will sec cnough cases Lo form
a rule (wath confidence). However, learning with sarople sets containing one million or
more examples is infeasible on standard sequential machines. We have shown that mas-
sive parallelism 5 an effective way to scale up inductive leaming to large data-analysis
problems.
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Notes

I Stolto wid Shaw designed [2AIX0. a parallel ree-structured machine for production system matching, to
deal with large production systems (Siolfo & Shaw, 1982; Stolto, 1987). DADO was based on (he principle
that in production syszems, the matching of each rule against working memory is independent of the others,
In principle, our approach to paratlel icaming would work well on DADO; however, our representation is
much simpler, so many of IYADO’s capabilities would be wasted.

2. The feature Eusr Coast does not appear in the original data sei. It was created by a constructive induction
progrant described by Aronis and Provost {1994).
References

Aronis, J. M., & Provost, BT (1994). Efficiently constructing relational features from background knowledge far
inductive machine learning. Working Notes of the AAAL-94 Workshop on Knowledge Discovery in Databases
(pp. 347-35K) Scattle. WA: AAAL

Bobrow, 1. (1993). Editorial introduction, Artificial Intelligence, 60, 197.

Buchaman, B.. & Mitchell, T. (1978). Model-directed learming of production rules. In 13 Waterman & F
Hayes-Roth (Bds.), Partern Directed Inference Sysrems. New York, NY: Academic Press.

Buntine. W. (1991} 4 dheory of learning classificarion ruics. Doctoral dissertation.  School of Computer
Science, University of Technology. Svidney. Australia.

Catlert, 1. (1991a). Megainduciion: machine learning on very lurge databases. DNoctoral dissertation. Basser
Department of Computer Science, University of Sydney, Auastralia.

Catlett, I (19910). Mogainducton. A west Dight. Proceedings of the Eighih Internaiional Workshop on Machine
Legramg (pp. 3963993 San Mateo, CA Morgan Kaufmann

Catlegt, I {1991ey On changing continuous attributes into ordered discrete attributes. Proceedings of the
Luropean, Working Session on Learning (pp. 164-178). New York, NY: Springer-Verlag

Catlea, ). (1992). Peepholing: choosing atributes efficiently for megainduction.  Proceedings of the Niuh
hwernational Conference on Machine Learning (pp. 4954, San Mateo, CA: Morgan Kawlimann

Chan, P, & Stolfo. 5. 11993a). Meta-learning for multistrategy and parallel leaming.  Proceedings of the
Second tnternational Workshop on Multiserategy Learning {pp. 150-163). Fairfax, VA Center for Al
George Masion University.

Chan, P. & Stolfo. 5. (1993b), Toward parallel and distriboted learning by meta-learning, Working Notes of
the AAAL-93 Workshop on Knowledpe Iiscovery in Darabases (pp. 227 240). Searttle, WA: AAAL

Clearwater. SH . Cheng, TP Hhrseh 11 & Buchanan, R G {1989)  Ineremental hateh leaming Proceedings
of the Sixth Internatonal Workshop on Machine Learning {pp. 366-370). San Matco, CA: Morgan Kaufmann.

Clearwater, 5. & Provost. F (1990). RLA: A tool for knowledge-based induction. Proceedings of the Second
Internanional TEEE Conference on Tools for Artificial Inielligence (pp. 24 303, Los Alamitos. CA: [EFE
Computer Sociery Pross.

Cook. )., & Holder, L. {11990} Accelerated learning on the connection machine. Proceedings of the Sevond
TERE Symposium on Paraltel and Disoibuted Processing (pp. 448-454). Los Alamiuos, CA: IEEE Computer
Society.

CooK, .. & Lyons. G (1993). Massively parallel INA* search. fnfernationa! Jouwrnal on Artijicial tetligence
Tools, 2, 163 130

Danyluk, A P, & Provost, FJ. (1993). Sinall disjuncts in action: Learning to diagnose errors in the wlephone
network local oop. FProceedings of the Tenth International Conference on Muchine Learning {pp. R1 88)
San Mateo. CA: Morgan Kaufmann,

Gaines. B.R. (1989, An ounce of knowledge 1s worth a ton of data: Quantitative studics ot the mrade-olf
belween expertise and data based on siaristically well-founded empirical induction. Proceedings of the Sixth
Internarional Workshop on Maockhme Fearnmg ipp 1561590 San Maten, OA Morgsn Kaafruann

Gordon, [, & desfarding, M. (Bds.) (1999). Special issue or bias evaluation and sclection. Machine Learmmy
20

Hokte, R.C.(1993% Very simpie classification rules perform well on most commonly used datascts. Macfuae
Learning. (1, 63 D0



46 L PROVOST AND J.M. ARONIS

Holte, R.C., Acker, LE . & Porter, B W. (19089}, Concept learning and the problern of small disjuncts.
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (pp. 813 818} San
Martco, CA: Morgan Kaufmann,

Kumar, V., & Ruao, V. (1987), Parallel depth-first search, Part I1: analysis. [nternationad Journal of Parallel
Programming, 16, 501-519.

Lathrop, R 1, Websier, T A, Smith, TF, & Winston, PH. (1890). ARIEL: A massively parallel symbolic
learning assistant {or protein structure/function. In P H. Winston & S. Shellard (Eds.), Al wt MIT: Expanding
Frontiers. Cambridge, MA: MIT Press

Lathrop, R.IL (1993} Massachusetts [nstitute of Technology. Personal Comrmunication.

Mahanti, A. & Daniels, C (1993). A SIMD approach to parallel hearistic search. Arvificial Intelligence. 60,
243 282

Michalski, R.. Mozetic, L, Hong, )., & Lavrac, N. (1986). The Multi-purpose mcremental learning systern
ADI15 and s testing application to three medical domains. Proceedings of the Fifih Narional Conference on
Artificial Intelligence (pp. 1041-1045) Menle Park, CA: AAAT-Press.

Powley, €., Faguson, €, & Ko, B (1993). Depth-first heunistic search on a SIMD machine.  Arzificiod
Intelligence. 60, 199-242

Provost, FJ., & Buchanan, B.G. {1995), inductive policy: The pragmatics of bas selection. Machine Learning,
20), 33-61.

Provost, B, Buchanan, B .G, Clearwaier, 5.1, & Lee, Y. (1993). Maciune learng th the service of ex
ploratory science and engineering: A case sindy of the RL induction program. Technical Report 15L-93-6,
Intelligeni Sysicins Laboratory, Computer Science Department, Elniversity of Pittsburgh, Pittsburgh, PA.

Provost. F1.. & Hennessy, 1. (1994). Distributed machine leaming: Scaling up with coarse-grained paraliclism.
Proceedings of the Seeond International Conference on Intelligeni Sysiems for Molecular Bivlogy (pp. 340-
347, Menlo Park, CAL AAAL Press.

Quinlan, 1. (}986) Induction of Decwsion Trees. Machine Learning, 1, 81-106.

Ouinlan, 1 (Y87 Generaning prodociton riles from decision tiees. Proceedings of the Tenth International
Joint Conference on Aviificial Telligence (pp. 304-307). San Mateo, CA: Morgan Kaulmann

Rao, V.. & Kunww, V. (1987). Parallel depth-first search, Part [ Implementation. /nfernationad Journal of
Parallet Progranuning, 16. 479-499

Rumelhart, 1D Hinon, G & Williamy, RJ. (1988). Learning imternal representations by ervor propagation.
In I BE. Rumelhart & J.L. McClelland (Bds), Paraliel Disiribated Processing. Cambridge, MAT MIT Press

Schlimemer, §.C.. & Fisher, . (19863 A case study of incremental concept inducion, Proceedings of the Fifth
Natione! Conference on Aviificiual Tnielligence (pp. 496 301). San Mateo. CA: Morgun Kaufmann,

Segal, R., & Fuziown. O (1994), Lewuing decision lists using howogencous wules. Proceedings of the Twelfih
Naticna! Conference an Arsificial fnielligence (pp. 619 623). Menlo Park, CAT AAAL Press.

Sharma, R . Provost, F Aronis, J., Mattison, 12, & Buchanan, B. (1995). An unevpecied relationship betwean
the timing of eniry biio prenatal care. race, and infunt mortality. In preparation. University of Piitsburgh,
Pittsburgh, PA

Shaw, M.} & Sikora. R (¥080). A distribured problem-solving approach ro inductive fearning Technical
Report CMUCRE TR 90 26, Robotics lustitute, Carnegie Mellon University, Pintsburgh, PA

Stanfill, C.. & Witz 1) (1988). The memory-based reasoning paradigm. Proceedings of ¢ Woskshap on
Case-Bused Rewsoning (pp. 414 424, San Mateo. CA: Morgan Kaufimann,

Stolfo, S0 119871 ninal performance of the DADO2 prototype. Compater, 20, 7583

Stolfo, $ 1. & Shaw, DE{1982). DADO a tree structured machine architecture for production sysiems.
Proveedinge of the Navonal Conference on Artificid taelligence (pp 242 246)0 Menlo Park. CAc AAAL
Press

Clgofl, PE. (19895 Incremental induction of decision ees. Muchine Learning, 4 161186

Weiss, G.M (19U} Learnmyg with Smatl Disjunces. Technical Report ML-TR-38, Depanment ol Compuler
Scicnee, Rulgors Uivorsaty, ™Now Bronswick, NE

Zhang, X, Mcekennn, M Mesirox, 1 & Waltr, . (1989). An efficient implementation of the buckpropagaiion
alporithom on the connection pachine CM-2. Technical Report REB9-1. Boston, MA. Thinking Machines
Carporation.

Recetved June 300 1994

Accepted July 10 1995

Final Manuscipt Tuly 10, 1995



