
9.

Scaling Ub Induc tive Algorithms : An O v erview

Foster Provost
NYNEX Science and Technology

W hite Plains, NY 10604
fosterQnynexst.com

Abstract W hy sca le up?

This paper establishes common ground for re-
searchers addressing the challenge of s ca ling up
inductive data mining algorithms to ve ry large
databases, and for practitioners who want to un-
derstand the state of the art. W e begin with a
discussion of important, but often tacit, is sues
related to s ca ling up. W e then overv iew existing
methods, categorizing them into three main ap-
proaches. F inally, we use the overview to recom-
mend how to proceed when dealing with a large
problem and where future research efforts should
be focused.

The most commonly c ited reason for attempting to
scale inductive methods up to massive data sets is
based on the prevailing v iew of data mining as c lassifier
learning. W hen learning c lassifiers, increasing the s ize
of the training set typically increases the accuracy of
the learned models (Catlett 1991). In many cases, the
degradation in accuracy when learning from smaller
samples stems from over-fitting due to the need to al-
low the program to learn small disjuncts (Holte 1989)
or due to the existence of a large number of features
describing the data. Large feature sets increase the
s ize of the space of models; they increase the likeli-
hood that, by chance, a learning program will find a
model that fits the data well, and thereby increase the
s ize of the example sets required (Haussler 1988).

Introduction
Organizations are beginning to amass very large repos-
itories of customer, operations, s c ientific, and other
sorts of data. One of the primary, explicit challenges of
the knowledge discovery and data mining community is
the development of inductive learning algorithms that
scale up to large data sets (Fayyad, Piatetsky-Shapiro,
& Smyth i!XJ6j. This paper overviews the work done
to date addressing this challenge.

W e first address the meaning of “scaling up” and
highlight important, issues that are often tacit in pub-
lished work. W e then show s imilarities between exist-
ing methods by grouping them into three high-level ap-
proaches: build fast algorithms, partition the data and
use a relational representation. For each of these ap-
proaches we briefly describe the constituent methods.
F inally, we conclude with recommendations based on
this high-level v iew.

W P rnmv.4 ths+ hewzamam nf ETIZ,,.PI 1;m;tstL-m. it ;. ;m- . . I Zyp’” .JllU” YIIUUYI “J, Yp.“” Y~U~VUY~V’LY, A” A” AA&S

possible in this paper to provide references to even a
fraction of the relevant published work. Instead, we
have made available a detailed survey and comprehen-
s ive bibliography as a technical report (Provost & Kol-
luri 1997).

Copyright 1997, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

Venkat eswarlu Kolluri
University of Pittsburgh
Pittsburgh, PA, 15260

venkatQlis.pitt.edu

Scaling up is also an issue in applications not con-
cerned with predictive modeling, but with the discov-
ery of interesting knowledge from large databases. For
example, the ability to learn small disjuncts well is of-
ten of interest to s c ientists and business analysts, be-
cause small disjuncts often capture special cases that
were unknown previously-the analysts often know the
common cases (Provost & Aronis 1996). As with c lassi-
fier learning, in order not to be swamped with spurious
small disjuncts it is essential for a data set to be large
enough to contain enough instances of each special case
from which to generalize with confidence.

It should be c lear that scaling up to very large data
sets implies, in part, that fast learning algorithms must
be developed. There are, of course, other motiva-
tions for fast learners. For example, interactive in-
duction (Buntine ENij, in which an inductive learner
and a human analyst interact in real time, requires
very fast learning algorithms in order to be practi-
cal. Wrapper approaches, which for a particular prob-
lem and algorithm iteratively search for feature sub-
sets or good parameter settings (Kohavi & Sommer-
field 1995) (Provost & Buchanan 1995), also require
very fast learners because such systems run the learn-
ing algorithms multiple times, evaluating them under
different conditions.

Provost 239

,,
4’. .
:; ,,

:
.,” From: KDD-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

c SCALING METHODS
I c Main Approach

Fast algorithm

Relational representations

L

Data partitioning

Optimized representation efficient data str

Instance sampling

Feature samplmg

Process samoles incrementallv

ction
“g

random sampl
duplicate cornpat
stratified samplil
peepholing
mformatmn-theo
utx relevance knc
use statlstical
use subset stu
mdeoendent n

tretlc peepholmg
>wledge

indicatmns
dies

Process samples concurrently

Use relational database

sequentml multi-sample learmng
sequential feature selectmn
multiple models, pick best
combining model descriptions
cooperative learning
acce88 via SOL au&es

1- ‘~~-----

utlllze parallel database engrne
push computation into DBMS
utlllse dlstrlbuted databases

Use relational background knowledge * mductive logic programming
efficient subset of ILP

What is “scaling up”? when one considers scaling up. Evaluating the effec-
For most scaling up scenarios the limiting factor of
the dataset has been the number of examples. The
related algorithmic question is: what is the growth
rate of the algorithm’s run time as the number of ex-
amples increases? Also important, but less visible in
published work, is the number of attributes describ-
ing each example. For most published work on in-
ductive algorithms, one million training examples with
a couple dozen attributes is considered to be a very
large data set (lOOMbyte-1Gbyte range). Most algo-
rithms work has been done by researchers from the
machine learning community, who are accustomed to
dealing with flat files and algorithms that run in min-
utes or seconds on a desktop platform. Practitioners
from the database community are used to dealing with
multi-gigabyte databases. Typically, data preprocess-
ing techniques are used to reduce the size of the data
set presented to algorithms by orders of magnitude.

tiveness becomes complicated if a degradation in the
quality of the learning is permitted. The vast major-
ity of work on learning algorithms uses classification
accuracy as the metric by which different algorithms
are compared. Thus, we are most interested in meth-
ods that scale up without a substantial decrease in
accuracy. For algorithms that mine regularities from
the data for purposes other than classification, met-
rics should be devised by which the effectiveness can
be measured (and compared) as the system scales up.
Some researchers have proposed L‘interestingness” cri-
teria (Srikant & Agrawal 1996).

Three approaches

As may be expected, time complexity analyses do
not tell the whole story. Although seldom discussed,
space considerations are crucial to scaling up-most
importantly, the absolute size of the main memory
with which the data mining computing platform is
equipped. Almost all existing implementations of
learning algorithms operate with the training set en-
tirely in main memory. No matter what the com-
putational complexity of the algorithm, if exceeding
the main memory limitation leads to continual virtual
memory thrashing, the algorithm will not scale well.

Many diverse techniques have been proposed and im-
plemented for scaling up inductive algorithms. The
similarities among the techniques become apparent
when they are categorized into three main approaches.
In most cases, techniques from separate categories are
independent and can be applied simultaneously. Fig-
ure 1 summarizes the general methods that make up
each of the three broad approaches to scaling up in-
ductive algorithms, and lists some specific techniques.

Build fast algorithms

Finally, the goal of the learning must be considered

The most straightforward approach to scaling up in-
ductive learning is to produce more efficient algo-
rithms. Of course, for very large problems, even a fast
linear-time algorithm may not be suficient for practi-
cal data mining. However, it is usually the case that

240 KDD-97

Figure 1: Methods for Scaling Up Inductive Algorithms

for very large problems, even with sampling and fea-
ture selection, a fast algorithm is still necessary.

Inductive algorithms have been framed as searching
through a space of models for a model that performs
well with respect to some criteria (Simon & Lea 1973)
(Mitchell 1982). This view partitions fast-algorithm
design into two categories of methods. First, one can
restrict the space of models to be searched, based on
the straightforward principle that a small model space
will be much faster to search than a large one. Often
simple models perform well (Holte 1993). Second, for
a large model space, one can develop powerful search
heuristics, where “powerful” means that the heuristics
are efficient, yet often find competitive models. It is
also important to consider algorithm engineering opti-
mizations such as efficient data structures and book-
keeping schemes. Finally, most data mining tasks are
decomposable, so fast algorithms can be built by tak-
:..,I.....+..-. ,A! ,,..,ll-1 ,..,,,,,:.., lug au”arlba&G “1 pbraur;r p,r”Lcaslrrg.

Partition the data
The data partitioning approach involves breaking
the data set up into subsets, learning from one or more
of the subsets, and possibly combining the results, as
illustrated in Figure 2. Subsets can be subsets of exam-
ples or subsets of features, corresponding to selecting
rows or columns of a data table.

Figure 2: Learning using data partitioning.

Systems using a data partitioning approach select
one or more subsets S’l, . . . , S, of the data based on
a selection procedzlre. Learning algorithms ~51, . . . , L,
are run on the corresponding subsets, producing con-
cept descriptions Cl,. . . , C,. Then the concept de-

. scriptions are processed by a combining procedure,
which either selects from among Cl,. . . , C, or com-
bines them, to produce a final concept description. The
systems differ in the particular procedures used for se-
lection and combining. They also differ in the amount
and style of interaction among the learning algorithms
and learned concept descriptions.

The most common approach for coping with the in-
feasibility of learning from very large data sets is a
degenerate form of this model: select a single, small
sample from the large data set. The differences be-
tween sampling techniques involve the selection proce-
dure used, e.g., random or stratified sampling.

For taking advantage of more data, processing mul-
tiple subsets can be used to avoid thrashing by memory
management systems. Also, if a learning algorithm’s
time complexity is more than linear in the number of
examples, processing small, fixed-size samples sequen-
tially can reduce the complexity to linear. Sequentially
processing subsets allows the results of one data min-
ing phase to feed into the next. Alternatively, the runs
can be independent, and the class descriptions can be
combined. In the case of independent runs, it is pos-
sible to use a system of distributed processors to mine
the subsets concurrently.

Use a relational representation
The relational representation approach deals with
cases when the data set cannot feasibly be represented
as a flat file, because of its size. This is the case
with any large relational database, as well as with
other large relational structures such as those used for
knowledge representation in artificial intelligence. In
addition, for large databases the flattening-out pro-
cess itself becomes quite time consuming, and keep-
ing flat files around leads to the problems that rela-
tionai databases are designed to avoid (e.g., update
and delete anomalies),

One way to use relational data directly is to inte-
grate data mining algorithms with database manage-
ment systems (DBMSs). Integrated KDD/DBMS sys-
tems scale up by taking advantage of the storage effi-
ciencies of relational representations, the use of indices,
and the fact that DBMSs typically reside on powerful
platforms that are optimized for database operations.
Scaling can be extended further by making use of par-
allel database server technology.

Adrlitinanl rnnted ran he adrld tn A.IIV d&a main- -----I --__ - --__ 2-a-d --__ I- ----- 1- ---J
ing problem by exploiting information contained in
other databases. We must then ask whether all these
databases must be resident on a single system, because
concurrent analysis of different relations may give ad-
ditional speedups. Moreover, a database of interest
may be accessible over the network, but not practically
transferrable. However, the ability to link together
many databases further extends the scaling challenge.

Recommendations
vvnen a data set fits in main memory, restricted modei
space learners should be tried first, because they are of-
ten effective at building competitive classifiers quickly.
If the resulting simple classifiers are not satisfactory,
there are several fast, effective algorithms for data sets
that can fit into main memory.

Provost 241

When a data set does not fit in main memory, several
techniques are clear choices when they apply. First,
one should sample a subset of the data for training. A
subset of the examples should be sampled, using strat-
ified sampling when one class dominates strongly. A
subset of the features should also be sampled, perhaps
by doing empirical studies to determine relevance. Ex-
isting algorithms are fast enough that a good deal of
experimentation (with data subsets) is possible to se-
lect the right problem parameters. Once a practitioner
has chosen a good subset of examples, a good subset of
features, and an algorithm with an efficient data rep-
resentation, there may not be a significant increase in
accuracy when learning with more data than will fit
in main memory. Second, and perhaps too obvious to
mention, if the computer’s memory slots are not filled
to capacity, a very cost-effective method for scaling up
is to install more memory.

Once these straightforward methods have been ex-
hausted, research results provide less guidance as to
what approach to take. Parallel matching is very ef-
fective if one has access to a massively parallel machine.
Taking advantage of powerful, well-tuned database sys-
tems via KDD/DBMS integration is a good idea if cy-
cles on the database engine are readily available. Inde-
pendent multi-sample learning shows promise for scal-
ing up and retaining the flexibility of desktop data min-
ing, and offers to take advantage of the large number of
idle workstations that are already networked in most
institutions. Unfortunately, there is currently a dearth
of readily available technology.

Even when problem and environmental character-
istics dictate a general approach, there is little guid-
ance for choice among the various constituent tech-
niques. For each approach, several techniques have
been studied in isolation, but there exist few (if any)
studies comparing their relative merits. For example,
for partitioned data approaches, research has only just
reached the border between the proof-of-concept stage
and the comparative-evaluation stage. Both theoreti-
cal and empirical research is still needed before we can
claim a thorough understanding.

We know even less about efficient methods for learn-
ing with massive amounts of relational knowledge.
Given the storage economies possible with relational
representations, their use promises that much larger
data sets can be processed in main memory than
with flat file representations. Thus, arguably the
most promising direction for future scaling research
is the development of fast, effective methods of min-
ing relationally represented data. Such research would
have broad implications, affecting the development of
KDD/DBMS integrated systems, algorithms for learn-
ing in main memory, and partitioned data approaches.

Finally, we would like to stress again that many of
these directions are still in the proof-of-concept stage.
We should be careful not to assume any of these issues
has been “solved” until we can point to studies that

provide comprehensive comparisions of methods.

Acknowledgements
We are indebted to many, including John Aronis, Bruce
Buchanan, Jason Catlett, Phil Chan, Pedro Domin-
gos, Doug Fisher, Dan Hennessy, Ronny Kohavi, Rich
Segal, Sal Stolfo, and many anonymous referees, who
have influenced our views of scaling up. We also
thank Tom Fawcett and Doug Metzler for comments on
drafts, and Usama Fayyad for encouraging us to turn
our informal summary into a formal survey. This work
was partly supported by National Science Foundation
grant IRI-9412549 and NCRR(NIH) grant RR06009.

References
Buntine, W. 1991. A theory of learning classification
rules. Ph.D. diss., School of Computer Science, Uni-
versity of Technology, Sydney, Australia.
Catlett, J. 1991. Megainduction: machine learning on
very large databases. Ph.D. diss., Dept. of Computer
Science, University of Sydney, Australia.
Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P.
1996. Knowledge Discovery and Data Mining: To-
wards a Unifying Framework. In Proc. KDD-96, 82-
88. AAAI Press.
Haussler, D. 1988. Quantifying inductive bias: AI
learning algorithms and Valiant’s learning framework.
Artificial Intelligence, 36, 177-221.
Holte, R.C. 1993. Very Simple Classification Rules
Perform Well on Most Commonly Used Datasets. Ma-
chine Learning, 3, 63-91.
Kohavi, R. and Sommerfield, D. 1995. Feature sub-
set selection using wrapper model: Overfitting and dy-
namic search space topology. In Proc. KDD-95.
Mitchell, T.M. 1982. Generalization as search. In Ar-
tificial Intelligence, 18(2), 203-226.
Provost, F.J. and Aronis, J.M. 1996. Scaling up in-
ductive learning with massive parallelism. Machine
Learning, 23, 33-46.
Provost, F.J. and Buchanan, B.G. 1995. Inductive Pol-
icy: The pragmatics of bias selection. Machine Learn-
ing, 20, 35-61.
Provost, F.J., and Kolluri, V. 1997. A Sur-
vey of Methods for Scaling Up Inductive Learn-
ing Algorithms, Technical Report ISL-97-3, In-
telligent Systems Lab., University of Pittsburgh
(http://www.pitt.edu/“uxkst/survey-paper.ps).
Srikant, R. and Agrawal, R. 1996. Mining Quantita-
tive Association Rules in Large Relational Tables. In
Proc. of the ACM SIGMOD Conf. on Mgmt. of Data,
Montreal, Canada, June 1996.
Simon, H. A. and Lea, G. 1973. Problem solving and
rule induction: A unified view. In Gregg (ed.), KnovrL
edge and Cognition, 105-127. New Jersey: Lawrence
Erlbaum Associates.

242 KDD-97

