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Abstract W hy sca le up? 

This paper establishes common ground for re-  
searchers  addressing the challenge of s ca ling up 
inductive data mining algorithms to ve ry  large 
databases, and for practitioners who want to un- 
derstand the state of the art. W e begin with a 
discussion of important, but often tacit, is sues  
related to s ca ling up. W e then overv iew existing 
methods, categorizing them into three main ap- 
proaches. F inally, we use the overview to recom- 
mend how to proceed when dealing with a large 
problem and where future research efforts should 
be focused. 

The most commonly c ited reason for attempting to 
scale inductive methods up to massive data sets is  
based on the prevailing v iew of data mining as c lassifier 
learning. W hen learning c lassifiers, increasing the s ize 
of the training set typically increases the accuracy of 
the learned models (Catlett 1991). In many cases, the 
degradation in accuracy when learning from smaller 
samples stems from over-fitting due to the need to al- 
low the program to learn small disjuncts (Holte 1989) 
or due to the existence of a large number of features 
describing the data. Large feature sets increase the 
s ize of the space of models; they increase the likeli- 
hood that, by chance, a learning program will find a 
model that fits  the data well, and thereby increase the 
s ize of the example sets required (Haussler 1988). 

Introduction 
Organizations are beginning to amass very  large repos- 
itories of customer, operations, s c ientific, and other 
sorts of data. One of the primary, explicit challenges of 
the knowledge discovery and data mining community is  
the development of inductive learning algorithms that 
scale up to large data sets (Fayyad, Piatetsky-Shapiro, 
& Smyth i!XJ6j. This paper overviews the work done 
to date addressing this challenge. 

W e first address the meaning of “scaling up” and 
highlight important, issues that are often tacit in pub- 
lished work. W e then show s imilarities between exist- 
ing methods by grouping them into three high-level ap- 
proaches: build fast algorithms, partition the data and 
use a relational representation. For each of these ap- 
proaches we briefly describe the constituent methods. 
F inally, we conclude with recommendations based on 
this high-level v iew. 
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possible in this paper to provide references to even a 
fraction of the relevant published work. Instead, we 
have made available a detailed survey and comprehen- 
s ive bibliography as a technical report (Provost & Kol- 
luri 1997). 
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Scaling up is  also an issue in applications not con- 
cerned with predictive modeling, but with the discov- 
ery of interesting knowledge from large databases. For 
example, the ability  to learn small disjuncts well is  of- 
ten of interest to s c ientists and business analysts, be- 
cause small disjuncts often capture special cases that 
were unknown previously-the analysts often know the 
common cases (Provost & Aronis 1996). As with c lassi- 
fier learning, in order not to be swamped with spurious 
small disjuncts it is  essential for a data set to be large 
enough to contain enough instances of each special case 
from which to generalize with confidence. 

It should be c lear that scaling up to very  large data 
sets implies, in part, that fast learning algorithms must 
be developed. There are, of course, other motiva- 
tions for fast learners. For example, interactive in- 
duction (Buntine ENij, in which an inductive learner 
and a human analyst interact in real time, requires 
very  fast learning algorithms in order to be practi- 
cal. Wrapper approaches, which for a particular prob- 
lem and algorithm iteratively search for feature sub- 
sets or good parameter settings (Kohavi & Sommer- 
field 1995) (Provost & Buchanan 1995), also require 
very  fast learners because such systems run the learn- 
ing algorithms multiple times, evaluating them under 
different conditions. 
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What is “scaling up”? when one considers scaling up. Evaluating the effec- 
For most scaling up scenarios the limiting factor of 
the dataset has been the number of examples. The 
related algorithmic question is: what is the growth 
rate of the algorithm’s run time as the number of ex- 
amples increases? Also important, but less visible in 
published work, is the number of attributes describ- 
ing each example. For most published work on in- 
ductive algorithms, one million training examples with 
a couple dozen attributes is considered to be a very 
large data set (lOOMbyte-1Gbyte range). Most algo- 
rithms work has been done by researchers from the 
machine learning community, who are accustomed to 
dealing with flat files and algorithms that run in min- 
utes or seconds on a desktop platform. Practitioners 
from the database community are used to dealing with 
multi-gigabyte databases. Typically, data preprocess- 
ing techniques are used to reduce the size of the data 
set presented to algorithms by orders of magnitude. 

tiveness becomes complicated if a degradation in the 
quality of the learning is permitted. The vast major- 
ity of work on learning algorithms uses classification 
accuracy as the metric by which different algorithms 
are compared. Thus, we are most interested in meth- 
ods that scale up without a substantial decrease in 
accuracy. For algorithms that mine regularities from 
the data for purposes other than classification, met- 
rics should be devised by which the effectiveness can 
be measured (and compared) as the system scales up. 
Some researchers have proposed L‘interestingness” cri- 
teria (Srikant & Agrawal 1996). 

Three approaches 

As may be expected, time complexity analyses do 
not tell the whole story. Although seldom discussed, 
space considerations are crucial to scaling up-most 
importantly, the absolute size of the main memory 
with which the data mining computing platform is 
equipped. Almost all existing implementations of 
learning algorithms operate with the training set en- 
tirely in main memory. No matter what the com- 
putational complexity of the algorithm, if exceeding 
the main memory limitation leads to continual virtual 
memory thrashing, the algorithm will not scale well. 

Many diverse techniques have been proposed and im- 
plemented for scaling up inductive algorithms. The 
similarities among the techniques become apparent 
when they are categorized into three main approaches. 
In most cases, techniques from separate categories are 
independent and can be applied simultaneously. Fig- 
ure 1 summarizes the general methods that make up 
each of the three broad approaches to scaling up in- 
ductive algorithms, and lists some specific techniques. 

Build fast algorithms 

Finally, the goal of the learning must be considered 

The most straightforward approach to scaling up in- 
ductive learning is to produce more efficient algo- 
rithms. Of course, for very large problems, even a fast 
linear-time algorithm may not be suficient for practi- 
cal data mining. However, it is usually the case that 
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Figure 1: Methods for Scaling Up Inductive Algorithms 



for very large problems, even with sampling and fea- 
ture selection, a fast algorithm is still necessary. 

Inductive algorithms have been framed as searching 
through a space of models for a model that performs 
well with respect to some criteria (Simon & Lea 1973) 
(Mitchell 1982). This view partitions fast-algorithm 
design into two categories of methods. First, one can 
restrict the space of models to be searched, based on 
the straightforward principle that a small model space 
will be much faster to search than a large one. Often 
simple models perform well (Holte 1993). Second, for 
a large model space, one can develop powerful search 
heuristics, where “powerful” means that the heuristics 
are efficient, yet often find competitive models. It is 
also important to consider algorithm engineering opti- 
mizations such as efficient data structures and book- 
keeping schemes. Finally, most data mining tasks are 
decomposable, so fast algorithms can be built by tak- 
:.., . . ..I.....+..-. ,A! ,,..,ll-1 ,..,,,,,:.., lug au”arlba&G “1 pbraur;r p,r”Lcaslrrg. 

Partition the data 
The data partitioning approach involves breaking 
the data set up into subsets, learning from one or more 
of the subsets, and possibly combining the results, as 
illustrated in Figure 2. Subsets can be subsets of exam- 
ples or subsets of features, corresponding to selecting 
rows or columns of a data table. 

Figure 2: Learning using data partitioning. 

Systems using a data partitioning approach select 
one or more subsets S’l, . . . , S, of the data based on 
a selection procedzlre. Learning algorithms ~51, . . . , L, 
are run on the corresponding subsets, producing con- 
cept descriptions Cl,. . . , C,. Then the concept de- 

. scriptions are processed by a combining procedure, 
which either selects from among Cl,. . . , C, or com- 
bines them, to produce a final concept description. The 
systems differ in the particular procedures used for se- 
lection and combining. They also differ in the amount 
and style of interaction among the learning algorithms 
and learned concept descriptions. 

The most common approach for coping with the in- 
feasibility of learning from very large data sets is a 
degenerate form of this model: select a single, small 
sample from the large data set. The differences be- 
tween sampling techniques involve the selection proce- 
dure used, e.g., random or stratified sampling. 

For taking advantage of more data, processing mul- 
tiple subsets can be used to avoid thrashing by memory 
management systems. Also, if a learning algorithm’s 
time complexity is more than linear in the number of 
examples, processing small, fixed-size samples sequen- 
tially can reduce the complexity to linear. Sequentially 
processing subsets allows the results of one data min- 
ing phase to feed into the next. Alternatively, the runs 
can be independent, and the class descriptions can be 
combined. In the case of independent runs, it is pos- 
sible to use a system of distributed processors to mine 
the subsets concurrently. 

Use a relational representation 
The relational representation approach deals with 
cases when the data set cannot feasibly be represented 
as a flat file, because of its size. This is the case 
with any large relational database, as well as with 
other large relational structures such as those used for 
knowledge representation in artificial intelligence. In 
addition, for large databases the flattening-out pro- 
cess itself becomes quite time consuming, and keep- 
ing flat files around leads to the problems that rela- 
tionai databases are designed to avoid (e.g., update 
and delete anomalies), 

One way to use relational data directly is to inte- 
grate data mining algorithms with database manage- 
ment systems (DBMSs). Integrated KDD/DBMS sys- 
tems scale up by taking advantage of the storage effi- 
ciencies of relational representations, the use of indices, 
and the fact that DBMSs typically reside on powerful 
platforms that are optimized for database operations. 
Scaling can be extended further by making use of par- 
allel database server technology. 
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ing problem by exploiting information contained in 
other databases. We must then ask whether all these 
databases must be resident on a single system, because 
concurrent analysis of different relations may give ad- 
ditional speedups. Moreover, a database of interest 
may be accessible over the network, but not practically 
transferrable. However, the ability to link together 
many databases further extends the scaling challenge. 

Recommendations 
vvnen a data set fits in main memory, restricted modei 
space learners should be tried first, because they are of- 
ten effective at building competitive classifiers quickly. 
If the resulting simple classifiers are not satisfactory, 
there are several fast, effective algorithms for data sets 
that can fit into main memory. 
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When a data set does not fit in main memory, several 
techniques are clear choices when they apply. First, 
one should sample a subset of the data for training. A 
subset of the examples should be sampled, using strat- 
ified sampling when one class dominates strongly. A 
subset of the features should also be sampled, perhaps 
by doing empirical studies to determine relevance. Ex- 
isting algorithms are fast enough that a good deal of 
experimentation (with data subsets) is possible to se- 
lect the right problem parameters. Once a practitioner 
has chosen a good subset of examples, a good subset of 
features, and an algorithm with an efficient data rep- 
resentation, there may not be a significant increase in 
accuracy when learning with more data than will fit 
in main memory. Second, and perhaps too obvious to 
mention, if the computer’s memory slots are not filled 
to capacity, a very cost-effective method for scaling up 
is to install more memory. 

Once these straightforward methods have been ex- 
hausted, research results provide less guidance as to 
what approach to take. Parallel matching is very ef- 
fective if one has access to a massively parallel machine. 
Taking advantage of powerful, well-tuned database sys- 
tems via KDD/DBMS integration is a good idea if cy- 
cles on the database engine are readily available. Inde- 
pendent multi-sample learning shows promise for scal- 
ing up and retaining the flexibility of desktop data min- 
ing, and offers to take advantage of the large number of 
idle workstations that are already networked in most 
institutions. Unfortunately, there is currently a dearth 
of readily available technology. 

Even when problem and environmental character- 
istics dictate a general approach, there is little guid- 
ance for choice among the various constituent tech- 
niques. For each approach, several techniques have 
been studied in isolation, but there exist few (if any) 
studies comparing their relative merits. For example, 
for partitioned data approaches, research has only just 
reached the border between the proof-of-concept stage 
and the comparative-evaluation stage. Both theoreti- 
cal and empirical research is still needed before we can 
claim a thorough understanding. 

We know even less about efficient methods for learn- 
ing with massive amounts of relational knowledge. 
Given the storage economies possible with relational 
representations, their use promises that much larger 
data sets can be processed in main memory than 
with flat file representations. Thus, arguably the 
most promising direction for future scaling research 
is the development of fast, effective methods of min- 
ing relationally represented data. Such research would 
have broad implications, affecting the development of 
KDD/DBMS integrated systems, algorithms for learn- 
ing in main memory, and partitioned data approaches. 

Finally, we would like to stress again that many of 
these directions are still in the proof-of-concept stage. 
We should be careful not to assume any of these issues 
has been “solved” until we can point to studies that 

provide comprehensive comparisions of methods. 
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