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Problem definition, data cleaning, and evaluation constitute much of the process of
building useful, real-world classifiers with inductive algorithms. This paper is a case
study of this process based on a long-term project addressing the automatic dispatch
of technicians to fix faults in the local loop of a telephone network. The bottom line of
the project is that simple learning techniques can be effective. However, constructing a
convincing argument to that effect is far from simple. In particular, we had to consult
multiple sources to obtain class labels, use domain knowledge to clean up data, com-
pare with existing methods, and evaluate with data from multiple locations. Finally,
it was necessary to use decision-analytic techniques to evaluate the cost-effectiveness of
the learned classifiers, because evaluation based on classification accuracy is misleading
without an analysis of cost-effectiveness. Qur view is that application studies should be
helpful in guiding future research. Therefore, we conclude by outlining useful directions

suggested by our experience on this long-term project.

1 Introduction

This paper presents a case study into the process
of real-world classifier learning. The case study
has been taken from the long-term MAX project,
which addresses the automatic dispatch of tech-
nicians to fix faults in the local loop of a tele-
phone network. For this paper, we use the term
machine learning to denote the automatic gener-
ation of local-loop dispatch classifiers from histor-
ical data.

In the MAX domain we wish to learn classifiers
for dispatching technicians to troubleshoot tele-
phone line problems reported by phone company
customers. In this domain, a small increase in ac-

curacy can have a large impact on the company’s
bottom line. For example, if we are willing to
ignore details for the moment, New York State
alone has over three million residential trouble
reports per year. If an erroneous dispatch costs
the company (on average) $100, then even a one-
percentage-point decrease in dispatch error rate
can save the company over $3 million annually.
Therefore, it is worthwhile to investigate meth-
ods for increasing the effectiveness of local-loop
trouble diagnosis.

We discuss several interrelated issues involved
in determining the efficacy of inductive learning
programs in this domain. As the case study will
show, such a determination is more complicated
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than merely running a handful of learning pro-
grams on a data set and comparing the accura-
cies of the resulting classifiers. To be convincing,
we had to use multiple sources for class labels,
and use domain knowledge to clean the data. For
the first set of experiments presented, we use er-
ror rate as our primary metric. However, absolute
error rates are not useful for comparisons between
the experiments because the problem formulation
varies. To facilitate inter-study comparison, we
also report the percentage decrease in error rate
(PDER) as compared to classifying all instances
as the most frequently occurring class (the default
class).

Next we discuss comparisons with existing
methods, including both a set of experts and an
existing expert system, as well as comparisons
with data drawn from geographically disparate lo-
cations. The breadth of this comparison study in-
creased our confidence in our evaluation. Finally,
we discuss that an error-rate comparison, albeit
a fine starting point, is not sufficient for classi-
fier evaluation in this real-world domain. What
is important is the cost-effectiveness of the sys-
tem, rather than its accuracy. Moreover, we show
that a naive evaluation of cost-effectiveness also
is not satisfactory, so we utilize techniques from
decision analysis. From this case study a cost-
sensitive learning method emerges as the most ef-
fective technique.

Our view is that application studies help to
guide future research. Therefore we conclude
by presenting a summary of general lessons
learned and by outlining useful research direc-
tions suggested by our experience on this long-
term project.

2 MAX and Machine Learning

MAX (Rabinowitz et al. 1991) is an expert sys-
tem developed by NYNEX! Science and Technol-
ogy for the purpose of troubleshooting customer-
reported telephone problems. MAX deals specifi-
cally with problems in the local loop, the part of
the telephone network between the central office
and the customer’s premises.

!Now Bell Atlantic. At the time MAX was developed,
NYNEX was the parent company of New England Tele-
phone and New York Telephone.
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When a customer has difficulty with his tele-
phone line he calls the phone company to report
the problem (the trouble). A phone company rep-
resentative creates a trouble report and also initi-
ates electrical tests on the customer’s line, called
the Mechanized Loop Test (MLT).2 The MLT
measures the electrical signature of the customer’s
line and gives such information as voltages and
resistances. All this information is then sent to
a Maintenance Administrator (MA) who deter-
mines a high-level diagnosis for the trouble, and
dispatches a technician to fix it. MAX (Mainte-
nance Administrator eXpert) plays the role of an
MA. It gives a high-level diagnosis of a trouble
based upon MLT results, and other information
about the customer. MAX can take one of five
possible actions.

1. dispatch a cable technician (PDF);

2. dispatch an outside repair technician to
the distribution wiring or customer premises

(PDO);

3. dispatch a technician to the central office
(PDI);

4. queue the trouble for further testing (PDT);

5. send the trouble to a human MA for diagnosis
(PSH).

The problem of local-loop diagnosis was a par-
ticularly promising machine learning application
for the following reasons.

1. Diagnosis in this domain is a static problem,
i.e., all data are gathered and the dispatch
decision is based on the values given. Diffi-
cult problems such as incorporating time are
not an issue.

2. Data are abundant.

3. A knowledge base already exists, providing a
wealth of information about the domain.

4. Small decreases in error rate can have a large
impact.

Machine learning is also appealing because of
its potential for generating dispatch knowledge
that captures local differences and because of its

2MLT is a product of AT&T.



CLASSIFIER LEARNING

potential for tracking changes in dispatch knowl-
edge as the network equipment degrades or is re-
placed.

Several approaches to the problem of automat-
ically generating dispatch knowledge from data
have been investigated: (1) The application of
inductive learning to generate completely new
knowledge bases for specific locations (Danyluk
& Provost 1993a,b). (2) The application of ana-
lytic and inductive learning to modify the existing
knowledge base for specific locations (Pazzani &
Brunk 1993). (3) The application of techniques
to perform parameter tuning (Merz, et al., 1996).
This paper discusses the first of these only.

Unless stated otherwise, all results reported in
this paper were generated using the C4.5 decision
tree learner (Quinlan 1993) with default settings.3
Results given are after pruning. Numbers of test
examples are given with each set of runs. All re-
sults reported have been averaged over 10 runs
with independent training and test sets chosen
randomly. Unless indicated otherwise, all data
used in the runs in this paper are taken from a
single site during a period of approximately eight
months, and are described by 22 features used by
MAX.

3 Multiple Data Sources

Determining whether learning programs can pro-
duce effective classifiers in this domain is compli-
cated by a general belief that it is very difficult
to ascertain the “correct” dispatches for histor-
ical trouble records, which has led to a general
distrust of the class labels of the examples. To
produce a robust evaluation we considered three
different sources for the class labels, each of which
created a slightly different learning problem.
First, we used MAX to generate class labels. If
one assumes that MAX is performing the task sat-
isfactorily, the ability to learn to duplicate MAX’s
performance is solid evidence that machine learn-
ing approaches can be effective in generating dis-
patch classifiers from clean data. Second, we had
experts generate class labels. If one assumes that
the experts have knowledge not yet captured in

SEarlier results were obtained with other learning tech-
niques, including rule learners and neural network learners,
but C4.5 consistently has yielded results that are at least
as good as the other systems.
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MAX, then it would be useful to be able to model
the classification performance of experts.

Finally, we generated class labels by cross-
referencing a database of the resolutions reported
by technicians in the field. The class labels gener-
ated from these resolutions are considerably noisy,
due to errors in reporting and ambiguities in
translation.* However, the ability to learn high-
quality classifiers from these data would be very
useful, because the potential exists to learn classi-
fiers that capture knowledge unknown to the ex-
perts, and because the volume of data is poten-
tially very large.

For the experiments reported in this section and
the next, we evaluate learning results in two ways:
(1) we measure error rate on independent test sets;
and (ii) we measure the percentage decrease in er-
ror rate (PDER) of the learned concept descrip-
tion over the error rate of the default class. The
PDER indicates the extent to which the learned
decision tree decreases the error rate that would
result from classifying all cases identically using
the class that occurs most frequently in the train-
ing data (for which we use “the default class” as
a shorthand).

The PDER is important because different data
sets have different numbers of classes. MAX, for
instance, has the option of diagnosing cases as
being the type that need to be looked at by a hu-
man expert. These tend to be cases where the
data required to analyze the trouble are missing.
Field technicians, on the other hand, are not al-
lowed such latitude. Therefore, a data set ob-
tained from MAX will have more diagnostic class
options than a data set of troubles analyzed by
field technicians. Moreover, the machine learning
studies also have different sets of dispatch options,
which are described in detail below. Because dif-
ferent data sets have different numbers of classes,
comparisons of absolute error rate are affected
and the PDER becomes an important measure
of the relative quality of the learned diagnostic
knowledge.

3.1 Class labels obtained from MAX

As reported previously (Danyluk & Provost
1993a,b), we used the existing MAX expert sys-
tem to create a “clean” data set from which to

4Some of the codes used to describe resolutions do not
map uniquely to dispatch classes.
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learn. We ran a series of experiments with the
goal of showing that given good data we could
learn knowledge to recreate MAX’s behavior. We
found that given a large enough quantity of data,
using machine learning we can duplicate MAX’s
performance very well. As shown in Table 1,
training on 1000 troubles yields an error rate of
0.09; training on 5000 troubles yields an error
rate of 0.04. Although these results show promise
for machine learning as a method of creating the
knowledge base for a dispatch system, they do
not offer a solution to the problem of generating
knowledge that will increase the performance of
MAX.

Table 1: MAX data; five class problem. Size of
test set = 871. Average error rate (ER) with the
default class (PDT) = 0.54.

‘ Training ‘ ER ‘ StDev ‘ Avg PDER ‘ StDev ‘

100 .34 .04 36.51 7.92
500 14 .02 73.44 3.90
1000 .09 .01 82.41 2.58
2000 .06 .01 89.31 2.61
5000 .04 .01 93.62 1.53

3.2 Class labels obtained from experts

In order to evaluate the potential of machine
learning as a tool to build a better MAX, we
enlisted the help of several experts in local-loop
troubleshooting. The experts were phone com-
pany veterans with many years of experience in
the areas of maintenance and repair of the local
loop. We ran a set of experiments testing the
ability to learn dispatch knowledge from expert-
classified data. The rationale behind this set of
experiments is that if machine learning can cre-
ate knowledge that models the behavior of human
experts well, then it may be possible, albeit re-
source consuming, to have local experts analyze
large numbers of troubles and then to learn clas-
sifiers from these data.

Table 2 shows results for one expert who ana-
lyzed 500 troubles from one site. The results show
that C4.5 can model the expert’s behavior fairly
well as compared to the default. Similar analyses
of other experts’ answers yielded comparable re-
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sults. The large PDER suggests the potential for
learning programs to model the behavior of hu-
man experts. Unfortunately, the size of the data
set in these experiments was limited due to the
limited availability of experts. The previous re-
sults of modeling MAX suggest that 400 examples
may be too few for effective learning. An analysis
of the classifiers learned from the MAX data ex-
plains why many examples are needed: very small
disjuncts comprise a large portion of the concept
description (Danyluk & Provost 1993a). Large
data sets are necessary to learn small disjuncts
with confidence (Provost & Aronis 1996).

Table 2: Expert data; five class problem. Size of
test set = 100. Average error rate (ER) with the
default class (PDT) = 0.58.

‘ Training ‘ ER ‘ StDev ‘ Avg PDER ‘ StDev ‘
100 .39 .04 32.88 8.59
400 .35 .04 38.75 6.60

Our intention had been to increase the volume
of data by using multiple experts to generate a
larger expert-classified data set. However, this
exercise revealed that there is not a high degree
of agreement among experts as to the correct clas-
sification for a trouble. In fact, the error rate of
the classifiers learned from the expert data was
approximately equal to the error rate obtained
when one expert was used to generate class la-
bels for the evaluation of another expert. This
suggests that the problem is much more difficult
than previously thought. It also offers an expla-
nation for the general distrust of class labels.

3.3 Class labels obtained from field
technicians

The third data source from which we obtained
class labels for troubles is the reporting of field
technicians who fix (“resolve”) the troubles. In
order to generate class labels, we translated their
resolution codes into the corresponding dispatches
using a standard mapping. As the results in Ta-
ble 3 show, the performance of the learned de-
cision trees is less than inspiring. However, the
learned trees do perform slightly better than the
default.
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Table 3: Technicians’ data; four class problem.
Size of test set = 863. Average error rate (ER)
with the default class (PDF) = 0.62.

All Features
Training ‘ ER ‘ StDev ‘ Avg PDER ‘ StDev

100 .61 .03 0.96 5.72
500 .60 .02 3.73 3.90
1000 .59 .01 4.51 2.53
5000 .58 .01 6.56 2.68

Vercode Only
Training ‘ ER ‘ StDev ‘ Avg PDER ‘ StDev

100 .62 .04 -1.31 7.03
500 .54 .01 11.63 2.80
1000 .53 .02 13.24 2.80
5000 .52 .01 15.98 2.10

Quite surprisingly, we were able to increase sig-
nificantly our ability to dispatch accurately by re-
ducing the feature set to a single feature: wver-
code. Reducing the feature set to a single fea-
ture produces decision stumps, i.e., decision trees
that split on a single feature only (Holte 1993).
Vercode, generated by MLT, is a summary of the
electrical readings into 50-150 categories; the de-
cision stumps therefore have 50-150 leaves. As
the results in Table 3 show, the decision stumps
learned by C4.5 on the field data have higher ac-
curacy than the decision trees learned with larger
feature sets.

4 Cleaning up the Data

The experiments with class labels generated by
MAX suggest considerable promise for machine
learning in this domain. The experiments with
class labels generated by the experts suggest that
it is possible to model expert behavior to some de-
gree, but that small expert-classified data sets are
not sufficient to model expert behavior with high
accuracy. Moreover, the disagreement among ex-
perts suggests that even if a given expert’s behav-
ior can be modeled with high accuracy, there will
still be questions about the expert’s performance.
The most promising source of class labels is the
field technician database. This database is very
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large and (arguably) based on fact rather than
conjecture. Unfortunately, the learning programs
had the most difficulty modeling these data. This
almost certainly is because, with the given set of
features, MAX generates class labels determinis-
tically (and probably so do the experts), while the
technicians’ class labels are inherently probabilis-
tic.

Analyzing the different trouble resolutions re-
ported by the field technicians suggests some
concrete reasons why machine learning programs
would have a difficult time modeling the data. For
some borderline resolutions at the interface be-
tween the cable and the distribution wiring, it is
not clear what the correct dispatch should have
been because the diagnosis cannot be mapped to a
dispatch unambiguously. Furthermore, there are
many cases for which the resolution is a “Test
OK.” This resolution indicates that the techni-
cian retested the line in the process of attempting
to locate the trouble, and found that there was
no longer a problem. Unfortunately, it is impos-
sible to tell the difference between cases where
there was no longer a problem to fix (e.g., the
customer’s second phone had been off the hook
and was subsequently placed back on) and cases
where the manifestation of the problem was tran-
sient (e.g., the trouble had been a short circuit
due to the presence in a cable of water that
had dried by the time the technician retested the
line). Thus determining what the correct dispatch
should have been is difficult.

We wanted to evaluate whether increasing the
quality of the field data would improve the abil-
ity of a learning program to produce accurate
classifiers. To this end, we used prior knowledge
of trouble resolutions and dispatches to clean up
the field data. Specifically, we eliminated from
the data all troubles for which the resolution was
“Test OK.” Additionally, we removed cases where
it was impossible to determine from the resolu-
tion codes the correct dispatch, especially border-
line cases. The effect of the data cleaning was to
provide us with a set of cases for which we have
only three class labels (PDF, PDO, PDI), but for
which we have (relatively) high confidence in the
correctness of those labels. We now describe a
set of experiments that investigate the effect on
learning of cleaning up the data.

As the learning results in Table 4 show, the per-
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Table 4: Cleaned data; three class problem. Size
of test set = 686. Average error rate (ER) with
the default class (PDF) = 0.47.

All Features
Training ‘ ER ‘ StDev ‘ Avg PDER ‘ StDev

100 41 .04 12.04 7.52
500 .38 .03 19.31 6.94
1000 37 .02 20.72 3.94
2000 .36 .02 23.23 3.25

Vercode Only
Training ‘ ER ‘ StDev ‘ Avg PDER ‘ StDev

100 .38 .04 18.97 | 10.07
500 .35 .02 26.48 3.90
1000 .35 .01 26.73 2.87
2000 .34 .02 27.44 4.15

formance on the cleaned-up data is considerably
better than the performance on the original field
data. It is important to note that the cleaned-up
data have only three classes instead of four, and
using the default yields a lower error rate than on
the previous data. However, as the results in Ta-
ble 4 show, the percentage decrease in error rate
(PDER) for the learned concept descriptions is
larger than with the original data.

These results provide support for the conclusion
that from clean field data it is possible to learn
more accurate classifiers. It must be noted, how-
ever, that by separating out the cases for which
the final resolution is unambiguous, we may also
be separating out the cases that are “easy” to di-
agnose. The effect of using this learned knowledge
on the entire spectrum of troubles is still an open
question, made very difficult by our inability to
know the “correct” answer.

It should be noted that an alternative prob-
lem redefinition may also be effective. Specifi-
cally, much of the aforementioned ambiguity can
be eliminated by combining two of the three dis-
patch classes. PDF (dispatch to a cable tech-
nician) and PDO (dispatch to an outside repair
technician) both address problems in the “out-
side plant.” There are a priori reasons why it
might be desirable to combine these classes into a
single “dispatch out” class. For example, training
technicians to handle a larger class of problems
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may eliminate the need to separate problems in
the outside plant. In order to test the hypothe-
sis that we could differentiate accurately between
dispatching “in” to the central office and dispatch-
ing “out” to the outside plant, we combined the
two outside plant dispatches in the cleaned-up
dataset. In doing so, we were able to reinsert
those troubles eliminated because of PDF/PDO
ambiguity. The results for the two-class problem
are given in Table 5. As the table shows, the per-
formance of the learned decision models is con-
siderably better than the default when trained
on large (2000 examples) data sets. In the ta-
ble we report particularly high standard devia-
tions for PDER in two cases. Inspection of the 10
runs shows that in two cases, the learned model
performed similarly to the default, but in the re-
maining eight, it outperformed the default signif-
icantly.

Table 5: In vs out; two class problem. Size of
test set = 738. Average error rate (ER) with the
default class (PDO) = 0.09.

All Features
Training ‘ ER ‘ StDev ‘ Avg PDER ‘ StDev

100 .09 .01 0.35 1.04
500 .09 .01 -0.50 2.11
1000 .08 .02 10.12 | 13.29
2000 .07 .01 24.89 2.93

Vercode Only
Training ‘ ER ‘ StDev ‘ Avg PDER ‘ StDev

100 .09 .01 0.15 0.19
500 .09 .01 0.15 0.19
1000 .09 .01 0.15 0.19
2000 07 .01 21.41 | 11.70

5 Comparison with Existing
Methods

In the previous sections we compared the ability
of learning programs to produce accurate classi-
fiers from several different perspectives. The use
of the field data as the source of class labels al-
lows us to compare the performance of the learned
classifier with the performance of MAX (and with
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the performance of the experts). Such a compari-
son has been a major component of Bell Atlantic’s
evaluation of the potential for learned knowledge
to help with local-loop dispatch.

Table 6 compares the performance of the ver-
code decision stumps with the MAX expert sys-
tem on the three different versions of the field data
(discussed above).® The comparison is compli-
cated because MAX does not give solid dispatches
on all the cases; it routes some difficult cases to
a human analyst, and for others it requests ad-
ditional tests. The decision stumps, on the other
hand, produce a dispatch for every case.

It is important that we be as fair as possible
in our comparison of the learned decision stumps
and MAX. It is inappropriate to assume that
MAX is in error each time it routes a trouble to
an analyst. On the other hand, it is unfair to pe-
nalize the learned decision stump for being forced
to make a decision on all cases. In order to make
the comparison equitable, Table 6 reports

— error rates for MAX and for the learned de-
cision stump (LDS) on all the test data

— error rate for MAX on the subset of cases for
which it chose to make a dispatch (MAX-D)

— error rate for the learned decision stump on
the subset of cases for which MAX made a
dispatch (LDS-D)

— error rate for the learned decision stump on
the subset of cases for which it was confident
(LDS—C).6

Table 7 gives the sizes of the subsets, as a per-
centage of the entire dataset.

As Table 6 shows, with little exception, the
learned decision stump outperforms MAX. The
increase in performance using the learned vercode
mapping over the MAX system is one piece of ev-
idence supporting the conclusion that by looking
at the data we can extract dispatch knowledge
that can improve MAX’s performance.

SA comparison with the experts is not included in
the summary, because the small number of troubles ana-
lyzed by the experts makes the performance of the experts
incomparable.

8In all cases, a decision was deemed “confident” only if
the estimated probability of membership in the predicted
class was at least 0.6.
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A potential criticism of the above argument is
that the learning is fitting systematic error in the
data (and that MAX actually may be as good or
better at dispatching). Support for the contention
that the learned knowledge is not just modeling
errors in the data comes from a comparison of the
effectiveness of the learned knowledge for dispatch
in other geographic areas. In order for the effect
of modeling systematic error to generalize across
locations, the error must be systematic through-
out the company. Furthermore, since we are using
a vercode decision stump, the error must be sys-
tematic with respect to the vercode alone. We
believe that this combination is highly unlikely.

To test the hypothesis that positive results are
not just from modeling local systematic error, we
trained decision stumps on the data from one lo-
cation (X) and used them for dispatch in four
other areas (A,B,C,D). As shown in Table 8,
in three of the four comparisons, the knowledge
learned in one area transfers well to the other
areas. Note that this is especially true for the
Cleaned data. The number of training examples
were 5000, 2000, and 3000 for Field, Cleaned, and
In vs Out, respectively. The number of test ex-
amples varies for each site. All numbers reported
are the averages of testing ten decision trees on all
of the data from each of the sites A, B, C, and D.
Note that we report PDER as well as error rates,
due to the differing class distributions among the
sites.

6 Cost-effective Dispatch

If the field technicians’ resolutions are taken to be
reasonably reliable, the previous analysis seems to
imply that MAX’s performance is poor. We are
faced with the issue of analyzing this seemingly
poor performance in light of evidence to the con-
trary. The system has been in use for many years
and has not had a negative effect on the opera-
tions of the company. One explanation could be
that the technicians just do not code the trouble
resolutions correctly. However, as the results be-
low show, much of this seeming discrepancy can
be explained by the fact that accuracy (or error
rate) is not the best metric with which to evaluate
dispatch effectiveness.

In the domain of local-loop repair and main-
tenance, the costs associated with the diagnoses
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Table 6: Comparison of error rates of Learned Decision Stumps (LDS) and MAX. Standard deviations
are given in parentheses, except (*), which indicates that the evaluation was performed on the entire
data set, rather than on a small test set reserved after learning.

‘ | Field Data (4 class) | Cleaned (3 class) | In vs. Out (2 class) ‘
MAX 67 (*) 79 (*) 58 (*)
IDS 52 (0D) 34 (01) 07 (1)
MAX-D .67 (.01) 42 (.03) 04 (.01)
LDS-D 52 (.01) 31 (.02) 04 (.01)
LDS-C 34 (.10) 27 (.02) 06 (.01)
Default 62 (.01) 47 (.01) 09 (.01)

Table 7: Coverages of test data. Standard deviations are given in parentheses.

‘ | Field Data (4 class) | Cleaned (3 class) | In vs. Out (2 class) |
MAX 100 (0.00) 100 (0.00) 100 (0.00)
LDS 100 (0.00) 100 (0.00) 100 (0.00)
MAX-D 99.43 (0.18) 56.59 (1.90) 55.66 (1.78)
LDSD 99.43 (0.18) 56.59 (1.90) 55.66 (1.78)
LDS-C 9.30 (3.15) 72.19 (5.60) 99.27 (0.52)
Default 100 (0.00) 100 (0.00) 100 (0-00)

vary substantially. Typically, the cost associated
with dispatching a trouble outside of the cen-
tral office is greater than dispatching to the cen-
tral office, with the highest cost being associated
with dispatching cable technicians. By analyz-
ing the cases for which the decision stump and
MAX differ in their dispatches, we find that MAX
is making conservative decisions with respect to
cost. Thus a convincing comparison of methods
for local-loop dispatch must be made with respect
to cost-effectiveness in addition to accuracy (Paz-
zani et al. 1994, Provost 1994). Our focus for
this section will be on the three-class version of
the MAX problem (cleaned-up data).

6.1 Evaluating Results:
Cost-Effectiveness and Accuracy

We now consider the cost that would be incurred
by any incorrect decisions made. This task is com-
plicated by the fact that, as discussed in the de-
cision analysis literature (Weinstein & Fineberg
1980), it is often difficult to estimate costs. For
instance, certain tests in the central office might

require much more time than others, resulting in
higher labor costs to determine that the trouble is
elsewhere. We interviewed experts to determine,
as well as we could, the error costs associated with
each of the three dispatchs (PDF, PDO, PDI).
Our best approximation is a cost ratio of 3:2:1
(PDF:PDO:PDI), with the cost of a central office
dispatch (PDI), the base cost, about $50.

A naive approach to cost-sensitive classification
is to use error costs such as these in combination
with estimates of the probabilities of the classes
to determine which dispatch will yield the lowest
expected cost (EC). The corresponding naive ap-
proach to evaluating cost-effectiveness is to clas-
sify a test set with the learned classifier and sum
up the costs of each incorrect dispatch, using the
costs defined above. This is the approach that has
been taken in most prior work on cost-sensitivity
in the machine learning literature (Turney 1996).

This naive approach is problematic for multi-
class problems, because it assumes that after the
dispatch is identified as being incorrect, the sub-
sequent dispatch will be correct. The problem can
be seen clearly in the following example. Given
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Table 8: Comparison of error rates of knowledge learned from location X when applied to other

locations.

‘ Location ‘ Field ‘ PDER ‘ Cleaned ‘ PDER ‘ In vs Out ‘ PDER ‘
X .52 (.01) 16 | .34 (.02) 27 | .07 (.01) 29
A 54 (.01) 19 | .25 (.01) 51| .05 (.01) 74
B .57 (.01) 41 .38 (.01) 25 | .07 (.01) -12
C .56 (.01) 7 (.21 (.01) 58 | .03 (.01) 2.3
D 64 (.01) -2 | 51 (.04) 2] 18 (01)| -22

the 3:2:1 cost ratio defined above, assume that
the estimated probability distribution of classes
(PDF:PDO:PDI) is 0.5:0.4:0.1. In this case the
dispatch with the (naive) minimum expected cost
is PDI: EC(PDI) = 950 = 45, EC(PDO) =
.6 % 100 = 60, EC(PDF) = .5 x 150 = 75. How-
ever, a choice of PDI would be incorrect 90% of
the time, and in most cases would not make the
choice between PDO and PDF any easier.” In-
deed, such a naive strategy yields undesirable re-
sults in practice.

The alternative is to take a more com-
plex, decision-analytic approach, in which the
expected-cost calculation takes subsequent deci-
sions into account. Ideally, for determining the
best dispatch for a given trouble, we would like
to use the frequencies of classes at the leaves of
the decision stump to estimate the class proba-
bility distributions for all possible combinations
of decisions, in order to calculate the minimum
expected-cost dispatch. However, one goal of this
analysis is a comparison with the dispatch deci-
sions of the MAX expert system. For MAX, we
know only the first dispatch; we do not know what
subsequent decisions MAX would make. Thus,
using the probability distributions at the leaves
of the decision stump for more than just the first
decision may give the decision stump an unfair ad-
vantage in the comparison, because if MAX were
programmed differently, it would be able to is-
sue recommendations for subsequent dispatches
as well.

In sum, we are faced with a dilemma, it is ob-
viously important to take subsequent dispatches
into account, but we do not know what subse-
quent dispatches MAX would make. To resolve

"In fact, we assume independence of solutions.

the dilemma, we used the prior probability dis-
tribution of the classes to determine likely subse-
quent decisions. This information is built into a
cost matrix, so that it can be used both to eval-
uate the decisions of classifiers (such as MAX)
that give only a single answer, and to choose
cost-sensitive dispatches in cost-sensitive classi-
fiers. Fortunately, we found that there is very
little difference in cost-effectiveness between us-
ing the prior probability distribution and the leaf
probability distribution for determining the sec-
ond dispatch when the first is wrong. We will
now describe in detail the process of building cost
matrices that take subsequent (expected) errors
into account.

First let us define the function cost(x), which,
based on the cost vector, gives the cost of mistak-
enly choosing dispatch z.

For the naive approach, the cost matrix is built
by assigning

] cost(p) ifp#a
NCost(p)(a) = { 0 otherwise
where p = predicted and a = actual. For

the decision-analytic approach, we assume that
the subsequent dispatch will be the minimum
expected-cost dispatch of the remaining choices,
based on the prior probability distribution. Sup-
pose there are three classes, X, Y, and Z, and let
p = X.

cost(X) + SecCost ifa# X
DACost(p)(a) = { 0 ) othe;fwise

Without loss of generality, let a = Y, then

cost(Z) if Z is the min exp-cost class
SecCost = between Y and Z
0 otherwise



10 Informatica 17 page xxx-yyy

In this case, the expected cost of a secondary
dispatch, e.g., Y, is the probability of ¥ be-
ing wrong times the cost of being wrong,® or
(1= (p(Y)/(p(Y) +p(Z)))) * cost(Y ), where p(Y)
and p(Z) are the prior probabilities. The frac-
tional probability term is due to the removal of
X as a possible correct secondary dispatch.

An example of a decision-analytic cost matrix
calculated from example costs and data priors is
given in Table 9. Note that all costs here are error
costs. The cost is zero for correct dispatches.

6.2 Building a Cost-sensitive Decision
Stump

We built cost-sensitive decision stumps by record-
ing at each leaf a frequency-based probability esti-
mate for each class. The estimate was calculated
as (TP/(TP+FP)), where TP is the true-positive
coverage of the leaf and FP is the false-positive
coverage of the leaf. When the cost-sensitive
stump is used, it uses the conditional probabil-
ities at the leaves to dispatch to the minimum
expected-cost class, using the decision-analytic
cost matrix (built using prior probabilities from
the training data to determine expected subse-
quent dispatches, as described above). Note that
Pazzani et al. (1994) found that estimating class
probabilities at the leaves of a decision tree and
using these for a minimum expected-cost calcula-
tion is not effective at reducing cost; they account
for this phenomenon by noting that the probabil-
ity estimates at the leaves of a decision tree are
based on small samples, and thus are inaccurate.
Since we use a decision stump, we hope that the
larger numbers of examples at the leaves will lead
to better probability estimates.’

Results comparing MAX with the vercode deci-
sion stump and cost-sensitive decision stump are
summarized in Table 10. The cost matrix used to
generate these results is that in Table 9. A sim-
plistic comparison of the performance of MAX,
the vercode stump, and the cost-sensitive stump
(first, second, and fifth rows of the table) shows

8When Y is correct, the error cost is zero.

9Recent work suggests that cost-sensitive classification
with decision trees can be quite effective, if the probabili-
ties are generated using the Laplace estimate rather than
a simple frequency-based estimate (Bradford et al. 1998).
The Laplace estimate protects against unwarranted opti-
mism due to small samples.

Provost and Danyluk

that although the dispatches made by the ver-
code decision stump are more accurate than those
of MAX, the decisions made by MAX are more
cost-effective. The cost-sensitive decision stump
reduces the cost without losing accuracy.

However, this comparison masks an important
subtlety. Specifically, as with the earlier error-
rate comparisons, MAX only gives a dispatch
recommendation on (approximately) 57% of the
cases; the rest are routed for further testing or for
human analysis. On other hand, the stumps give
dispatch recommendations on 100% of the cases.

In Table 10, we therefore also report the er-
ror rate (ER) and Error Cost per Dispatch for
the stumps on those cases for which MAX gave
a dispatch recommendation (MAX-D), and on
those cases for which the stumps were confident
of their recommendation (i.e., the probability of
class membership was > 0.6).

As expected, the decision stumps perform con-
siderably better on both subsets of cases, in terms
of both error rate and cost. Perhaps surpris-
ingly, the difference in performance between the
cost-sensitive and non-cost-sensitive stumps is no
longer apparent when they are evaluated on the
subsets. This is because as the required confi-
dence level is raised, the behaviors of the two
types of stump are more and more similar, eventu-
ally becoming identical. Apparently, a threshold
of 0.6 is sufficient (effectively) for the cost matrix
being used.

6.3 Sensitivity Analysis

While the results above suggest that it is possi-
ble to learn cost-sensitive decision stumps that
are both more accurate and more cost-effective
than MAX, we must have confidence that this is
not due to a fortuitous choice of costs (especially
since the specification of costs is far from perfect).
To this end, we perform an analysis of the evalu-
ation’s sensitivity to changes in the cost ratio.
For this paper, we consider varying only the
ratio PDF:PDO, holding the ratio PDO:PDI at
2:1.  Consider the cost ratio to be X:1:0.5
(PDF:PDO:PDI). Figure 1 shows the effect of
varying X from 1 to 3 in increments of 0.1 on the
error costs associated with the dispatches made by
MAX, the decision-stump, and the cost-sensitive
decision stump, using decision-analytic cost ma-
trices constructed as described above. Figure 2
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Table 9: Cost matrix for dispatch classes in the MAX domain. Rows are predicted classes. Columns
are actual classes. Classes:(PDF:PDO:PDI) Costs:(150:100:50) Priors:(0.51:0.35:0.14)

| [ PDF | PDO | PDI |

PDF 0
PDO | 100
PDI 50

150 | 250
0| 250
200 0

Table 10: Comparison of Vercode Decision Stumps and MAX. Training sets of 2000 examples used to
build the Vercode stump and Cost-sensitive stump (ER = error rate). Independent test sets of 686
examples used to test. All avgs are over 10 runs. Standard deviations are given in parentheses.

‘ ‘ Total Preds Made ‘ ER ‘ Error Cost per Dispatch ‘
| MAX (MAX-D) \ 56.69% (1.9) | 0.42 (.03) | 50.61 (3.87) |
Vercode stump 100% (0.0) | 0.34 (.01) 51.44 (2.35)
Vercode stump (MAX-D) 56.69% (1.9) | 0.31 (.02) 43.77 (2.66)
Vercode stump (Conf) 72.19% (5.6) | 0.27 (.02) 39.41 (3.00)
Cost-sensitive stump 100% (0.0) | 0.35 (.02) 47.50 (2.47)
Cost-sensitive (MAX-D) 56.59% (1.9) | 0.33 (.01) 4378 (2.58)
Cost-sensitive (Conf) 70.90% (5.1) | 0.27 (.02) 39.08 (2.75)
Always dispatch PDF 100% (0.0) | 0.47 (.01) 83.92 (2.41)
Always dispatch PDO 100% (0.0) | 0.66 (.01) 85.93 (2.15)
Always dispatch PDI 100% (0.0) | 0.87 (.01) 94.88 (2.67)

and Figure 3 show the effects of varying X for
the stumps when evaluated on MAX-dispatched
and confident cases, respectively.

As would be expected, the cost per dispatch of
the decision stump increases smoothly (and lin-
early) with the increasing cost of making PDF
errors. The decision stump always makes approx-
imately the same percentage of PDF errors, so as
the cost of a PDF error increases linearly, so will
the cost-per-dispatch of the decision stump.

The performance of MAX as the cost of a PDF
error increases is more interesting. Inspection re-
veals that the curve representing MAX’s error
cost per dispatch is (approximately) piecewise lin-
ear with increasing PDF error cost, and the slope
of each segment is less than the slope of the deci-
sion stump curve. The relatively low slope of each
segment is due to the fact that MAX errs on the
conservative side; specifically, it makes fewer PDF
errors than the decision stump. Thus, the growth
of the overall cost per dispatch as the PDF error

cost grows will be smaller.

The discontinuity when the PDF:PDO error
cost ratio reaches 2:1 can be explained by ex-
amining the changes in the cost matrices as
the ratio increases. In particular, consider the
two cost matrix entries DACost(PDF)(PDO)
and DACost(PDO)(PDF).10 Across the
range of ratios represented in the graph,
DACost(PDF)(PDO) = cost(PDF), because in
this range PDO is always the minimum expected-
cost secondary dispatch. Similarly, when the
ratio of the error cost of PDF to PDO is
in the range [1,2), DACost(PDO)(PDF) =
cost(PDQ). This explains technically why the
slope of the MAX curve is less: cost(PDO)
is constant; cost(PDF) increases linearly.
However, when the ratio is in the range
[2,3], DACost(PDO)(PDF) = cost(PDO) +
cost(PDI), because due to the prior distribution

10Recall that the cost matrix entries are of the form
DACost(predicted)(actual).
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Figure 1: Effect of Varying Error Cost Ratios on Cost of Errors Made

of classes, PDI becomes the secondary dispatch of
choice. Thus DACost(PDO)(PDF) is still con-
stant, but it is greater than it was over the prior
range. Hence the curve’s piecewise linearity. This
reasoning applies to the vercode stump as well,
though the difference in slopes of the two line seg-
ments is very slight, and thus difficult to recognize
from the graph.

The result of these two factors is that MAX’s
performance, in terms of error cost per dispatch,
is better than the decision stump when the ratio
of the cost of a PDF error to a PDO error is in
the range (1.4,2). As mentioned above, our prob-
lem analysis determined (independently) that the
actual cost ratio is approximately 1.5. Thus, the
design of MAX and the years of tuning its perfor-
mance in the field seem to have been effective.

The graph also shows that the cost-sensitive
stump adjusts for the different cost ratios au-
tomatically. Across the entire range, the cost-
sensitive stump out-performs the other two meth-
ods, although the difference is small in the range
of MAX’s maximal effectiveness. Statistical tests
on individual points do not indicate that the dif-
ference is statistically significant, and statistical
tests on the entire curves are difficult because of
interdependencies in the generation of the differ-
ent points. However, it is not clear that statisti-

cal significance is particularly important. Even if
the performance were indistinguishable, the cost-
sensitive decision stumps are preferable for their
simplicity, for their flexibility in adapting to dif-
ferent cost scenarios, and for their ease of updat-
ing. From the perspective of business significance,
a potential cost savings of two or three dollars
per dispatch is very significant. Also, it should
be noted that (as above) these comparisons are
somewhat unfair to the decision stumps, because
they are making recommendations on all cases,
whereas MAX is only making recommendations
on about half of the cases.

Figure 2 shows that both the vercode decision
stump and the cost-sensitive decision stump out-
perform MAX across the entire range, when clas-
sifying only those cases on which MAX makes a
recommendation. Again, as would be expected,
the cost per dispatch of the decision stump in-
creases smoothly and linearly with the increasing
cost of making PDF errors. It simply makes fewer
of these errors when asked to make a call on fewer
cases.

Also, as expected, the vercode decision stump
and the cost-sensitive stump perform similarly in
the range [1,2), where the cost ratio PDF:PDO is
relatively low. When the PDF cost becomes in-
creasingly large, the cost-sensitive stump adjusts



CLASSIFIER LEARNING

Informatica 17 page xxx-yyy 13

80 T T T T

Error Cost per Dispatch

40 | = MAX-D —— .
& VC Stump on MAX-D -+~
P CS Stump on MAX-D -8--
35 g_/” .
30 1 1 1 1 1 1 1 1 1
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Cost Ratio, PDF:PDO

Figure 2: Effect of Varying Error Cost Ratios on Cost of Errors Made. Data are restricted to MAX-

dispatched cases.

for that cost, diverting classifications to less ex-
pensive dispatches.

An even greater disparity in error costs is seen
when the vercode stump and cost-sensitive stump
dispatch only on confident cases.

7 Summary and Discussion

For this case study we have selected a series of
experiments that highlight the variety of perspec-
tives that must be taken in order to determine
the potential for inductive learning programs to
be applied successfully. The case study highlights
issues of problem definition, data cleaning, and
evaluation that are usually glossed over (or sim-
ply ignored) in most published reports on classi-
fier learning. Taken in total, the results provide
solid evidence that simple inductive learning pro-
grams can learn effective classifiers for local-loop
troubleshooting.

At first glance, the primary result is that deci-
sion stumps can be learned that are more accurate
and more cost-effective than the troubleshooting
system currently in place. What is more interest-
ing, however, is that the stumps achieve at least
equivalent performance with much less effort in
design, implementation, and tuning. This sug-

gests that dealing with new equipment or with
different local environments (e.g., Manhattan ver-
sus Maine) will be much easier. In the long run,
being able to do a better job of keeping systems
well-tuned may magnify the differences in perfor-
mance observed here.

From the standpoint of the machine learning
and the knowledge discovery communities, the
study is most interesting as a counterbalance to
the prevailing narrow view of classifier learning.
In the first place, in most inductive learning re-
search the correctness of the class labels is a ba-
sic assumption that goes unquestioned. Perhaps
more strikingly, although it is difficult to imag-
ine a real-world problem for which all errors have
equal costs, equal error cost is another unques-
tioned assumption of the vast majority of research
on inductive learning.!! This case study shows
how each of these assumptions can lead to a mis-
leading evaluation.

7.1 Lessons Learned

From this case study we can draw several gen-
eral lessons that we believe are applicable to many

"Eor a detailed analysis of this assumption, see the
recent paper by Provost, Fawcett and Kohavi (Provost,
Fawcett, & Kohavi 1998).
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Figure 3: Effect of Varying Error Cost Ratios on Cost of Errors Made. Data are restricted to confi-

dently dispatched cases.

real-world machine learning and data mining ap-
plications. We have found some to echo lessons
learned in other applications work (Kohavi &
Provost 1998).

Lesson 1: A single source of data gives a nar-
row view of the problem. In order to get the com-
plete, well-rounded picture necessary to present a
compelling argument for the real-world use of this
technology, we found it necessary to use multiple
data sources and to perform data cleaning based
on domain knowledge.

Lesson 2: Superficial use of accuracy figures
gives a shallow view of the problem. Be careful
not to fall into the trap of ignoring the accuracy
of simple methods. All too often the inexperi-
enced data miner is elated by the seemingly good
performance of his (or her) favorite learning pro-
gram, only to discover that a simple method (e.g.,
a linear discriminant function or simple Bayes)
works just as well, or more embarrassingly, that
the class distribution is highly skewed. Hopefully,
such a discovery is made before the results are
presented to someone for whom retraction would
be an embarrassment. This paper shows a case
where a simple method (decision stump) actually
outperforms a more complex decision-tree learner
(as well as other complex learning programs).

Also, one should be careful not to compare
incomparable accuracy figures. The most ob-
vious reason why inter-study accuracy compar-
isons would not be valid is that the different data
sets have different class distributions. We saw
evidence of this in the section on data clean-
ing; the different class distributions were due to
the fact that cleaning the data both eliminated
classes from the data and removed troubles non-
uniformly across the remaining classes. For our
inter-study comparisons, we used the percentage
decrease in error rate for each metric over the er-
ror rate of the default class.

Lesson 3: Broad comparison studies increase
the confidence in the evaluation. When arguing
for the use of inductive learning technology, the
last thing you want is to be blindsided by ques-
tions like “How does it compare with the (cur-
rently used) FooBar system,” or “Well ... Brook-
lyn is a special case, have you tried data from
Upstate?” We were lucky to have considerable
management and peer support and enthusiasm,
which is certainly not universal in real-world ap-
plications of emerging technologies. In addition to
the use of multiple data bases, and multiple learn-
ing methods described in Lessons 1 and 2, we also
found it necessary to produce multiple “existing”
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methods with which to compare, including the ex-
isting expert system, as well as the experts them-
selves. Furthermore, we found it necessary to col-
lect data from geographically disparate locations
to demonstrate the robustness of the learning.
Lesson 4: Don’t lose sight of the real perfor-
mance task. In real-world domains, accuracy
is seldom the bottom line. More often, cost-
effectiveness is. In many domains, different er-
rors have different associated costs, so it is impor-
tant that the learned knowledge produce the right
trade-offs. In this domain, not only did we find
that an analysis of the cost-effectiveness of the
learned classifiers is essential, we also discovered
that merely paying lip service to cost-effectiveness
with a naive cost analysis is not sufficient. We
had to bring in techniques from decision analy-
sis (that are seldom even mentioned in machine
learning/data mining research—more below).

7.2 Implications for Inductive
Learning Research

We believe that studies such as this of the ac-
tual use of inductive learning, in a practical ap-
plication where there is high-level support for the
use of AI technologies (and therefore complexity
does not come from a distrust of the techniques),
should be a guiding influence to the research com-
munity. Therefore, let us discuss briefly the type
of research results that would have been helpful
to this effort.

Dealing with potentially erroneous data was a
major issue. Most of the machine learning/data
mining literature on learning in the presence of
noise discusses random errors. However, the types
of errors most often discussed in this domain
(and many real-world domains) usually have some
degree of systematicity—systematicity that may
also appear in the evaluation data. Furthermore,
we have not performed a detailed analysis of the
effect of data cleaning. For example, we elimi-
nated from the data borderline cases and cases
for which we could not determine the correct res-
olution. How will this affect our evaluation? We
believe that learning in the presence of possible
systematic errors is a very interesting open prob-
lem (Weiss 1995, Beers 1957, Lee 1995).

The machine learning community has spent
the last decade comparing learning programs on
suites of benchmark problems ad nauseam. How-
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ever, almost all evaluations have been based on
classification accuracy, the result being a host
of available systems that can maximize accuracy
within their inductive biases. We believe that
unless the accuracy is 100%, very few real-world
domains use classification accuracy as the prime
evaluation criterion. In fact, evaluations based
on classification accuracy can be quite misleading
(Saitta & Neri 1998, Provost et al. 1998).

When we were faced with the prospect of learn-
ing with sensitivity to the cost of errors, we found
ourselves with only a handful of small-scale, com-
paratively inconclusive studies in the machine
learning literature. We believe it is time for ma-
chine learning and data mining research to take
off the blinders of classification accuracy and de-
velop robust methods that can provide the cost-
effective classification needed in the real world.
Interested researchers can begin by referencing
work in statistics (Duda & Hart 1973), decision
analysis (Henrion et al. 1991, Keeney 1982, We-
instein & Fineberg 1980), and pattern recognition
(Dattatreya & Kanal 1985). Also, Turney (1996)
provides an on-line bibliography of work on cost-
sensitive machine learning.
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