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ABSTRACT
Predictive models are often employed to decide actions in
interactive online systems. For example, ads are selectively
served to users who are modeled as being inclined to pur-
chase the product being advertised. News feed items are
populated based on a model of the user’s interests. A com-
mon consequence of these predictive models is the creation
of a spurious correlation, or confounding, between the ac-
tion and its desired outcome. In the above examples, the
targeted users are likely to buy the product or find the news
item regardless of the intervention. This presents a challenge
for measuring the true impact of these systems.

Here we present a novel framework for estimating causal
effects that relies on neither randomized experiments nor ad-
justing for the potentially explosive number of variables used
in predictive models. We propose the identification and in-
strumentation of events that mediate the effect of the action.
When the effect of an action depends on a mediating event
that is not subject to the same confounders, the problem
of causal estimation is greatly simplified. We demonstrate
this approach in display advertising using ad viewability as a
natural experiment that mediates the impact of served ads.
Approximately 45% of display ad impressions never make it
into a viewable portion of the user’s browser. We show that
an analysis based on ad viewability can massively reduce the
amount of bias in estimating campaign lift. We integrate the
use of negative controls as well as the identification and ad-
justment for residual confounding to further reduce the bias
in estimated lift to less than 10%. A system using these
techniques is deployed to monitor the daily causal impact of
many large-scale advertising campaigns.
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1. INTRODUCTION
In today’s complex interactive online systems, economically
important actions increasingly are taken based on inferences
drawn from predictive models. Examples run from classic
applications such as automatic credit decisions to contem-
porary applications such as what content to show a user in a
news feed. In this paper we use online display ad targeting
as our running example and our domain of application. As
has been described comprehensively elsewhere, online dis-
play ads are targeted based on various predictive modeling-
based strategies, e.g., [13].

When actions are important economically, firms generally
would like to assess the impact of the actions. For example,
advertisers would like to assess whether their advertisements
actually lead to an increase in certain outcomes, such as
purchases or other brand actions. Unfortunately, the use
of predictive models substantially increases the difficulty of
assessing the true impact of the actions. In this paper we
explain this phenomenon carefully, present a framework for
collecting and using data to address this difficulty directly,
and provide a demonstration implemented across a variety
of real, large-scale ad campaigns.

To understand why predictive modeling makes assessments
of impact more difficult, we need to focus on the key diffi-
culty of causal reasoning: confounding. Consider figure 1,
which shows a causal directed acyclic graph (DAG) [12] rep-
resenting a collection of random variables that describe an
individual and the causal relationships among them. These
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Figure 1: Causal DAG with confounders.

include an action (A), such as whether or not the individ-
ual was served an advertisement for a particular product,
an outcome of interest (Y ), such as whether or not the in-
dividual purchased the product, and a set of confounding
variables (W ). A variable or a set of variables is confound-
ing if it is causally related to both the action and the out-
come of interest. In the language of causal reasoning, one
must control for confounding if one is to draw valid causal
inferences.

We can now state precisely why using predictive mod-
eling creates a problem. Predictive models very often are
built to choose actions based on the user’s prior inclination
towards a particular outcome. For example, an online store
may recommend products that the user is modeled as likely
to purchase. News feeds may be populated with items that
are predicted to be of interest to the user. The very fea-
tures that predict the outcome for the individual are used to
decide actions to further promote that outcome, thus con-
founding the link between action and outcome. So in our
advertising example, predictive models are built based on,
say, the web pages that users have visited and those users’
purchase behavior. The model identifies the statistical link1

from web page visits W to purchase behavior Y . Then these
predictive models are applied such that users with certain
W values are selected for ad targeting. This creates the
causal link between W and A, and completes the confound-
ing. The practical upshot is well understood by academics
and knowledgeable data scientists, but poorly dealt with in
the industry: the models select people who are more likely to
purchase even without being shown an ad, a concept known
as selection bias. Due to the confounding one cannot judge
the effectiveness of the ad campaign easily—estimates that
do not control for the confounding will be highly inaccu-
rate [9, 8].

One possible way to address this confounding is by con-
ducting randomized experiments, called A/B tests in the
advertising industry. A/B testing can have serious technical
challenges, which have been described in detail [6]. Possibly
more importantly, A/B testing is expensive. In the case of
online display advertising, typically 5-15% of targeted con-
sumers are randomly assigned to a control group and shown

1Technically, there are some hidden behavioral drivers that
cause the individual to have both an increased propensity
to visit the web pages and an increased propensity to pur-
chase. We will ignore that distinction for now; it makes the
causal graph slightly more complex, but does not affect the
confounding by W .

campaign-irrelevant public service announcements (PSAs),
while the remaining users are assigned to the test group
and are shown normal campaign ads. Thus, advertisers or
their targeting agents must spend 5-15% of marketing bud-
gets on ads that have no direct effect on outcome, and not
surprisingly advertisers are reluctant to spend such sums.
Even in cases where they do, usually the A/B tests are con-
ducted over a limited time period that restricts the scope
of the assessment. Finally, in certain cases ethics precludes
randomized trials. This concern is well known in ethically
fraught applications such as medical treatment [1]; it is only
beginning to come to attention in online experiments (e.g.
[7]).

The other major alternative is to use causal analysis to di-
rectly adjust for confounders present in observational data.
Several factors prevent this from being done efficiently or
at all. First, for many modern applications, W can con-
tain tens of millions or more variables, such as all the pos-
sible web pages that an ad targeter considers in modeling a
user. Correctly controlling for such a huge number of non-
independent confounding variables is difficult. Second, for
automated actions there is a strong possibility of a viola-
tion of the positivity assumption necessary for causal infer-
ence [14]. If the action A is taken for every individual with a
particular W , then there is no control group for W in which
the action was not taken.

Most importantly, the organization interested in the as-
sessment of impact often does not have precise knowledge of
the data W on which the actions are taken. For example, it
is the brand who cares about the impact of advertisements.
A large brand typically will engage a dozen or more target-
ing firms. For most of those firms, the brand does not know
exactly how they are targeting, or even exactly what data
they are using. And the brand generally does not have ac-
cess to those data, which may have been gathered by the
targeter, purchased from third parties, or created internally
based on inferences from other models. So while targeters
themselves can conduct observational causal studies based
on their own data [3, 15], the brand generally cannot do so
either for individual targeters, or across targeters, e.g., to
judge which targeters are generating the best return on ad
spend.

Here we offer an alternative, that can complement A/B
tests or causal analysis, and that can also be applied in some
situations where these techniques break down or lack statis-
tical significance. Our framework, as outlined in section 2,
is based on the identification and exploitation of an event
M that mediates the impact of the action A on the outcome
Y (figure 2). When such an event exists and is indepen-
dent of the predictors W used to decide the action, it can be
treated as a natural experiment. This removes or dramati-
cally reduces the need to perform complicated adjustments
for W in assessing causal effects. A major contribution of
our framework is the proposal to instrument computer sys-
tems to observe such mediating events. The framework also
integrates the use of negative controls to assess any residual
confounding, and the use of methods from causal inference
to adjust for residual confounding.

The second main contribution of this paper is the spe-
cific application of our framework to assessing the impact
of online display advertisements. The key novelty is the in-
strumentation of the display advertising ecosystem to reveal
a mediator M : viewability of ads [11]. More specifically,
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Figure 2: Causal DAG with mediating variable.

it turns out that for various reasons described below, after
an ad targeting action A has been taken, online consumers
are able to view only about 55% of display ads. The rea-
sons for not seeing the ad are largely independent from the
predictive modeling and from W , and thus confounding is
dramatically reduced. Our results show that indeed the ap-
parent impact of online display ads is dramatically reduced
when utilizing viewability as a natural experiment. This
concurs with prior results from randomized experiments [2]
and from causal modeling with access to W [3, 15]. We
then show, by employing negative controls, that the resid-
ual confounding is relatively small—though still present. We
identify particular confounders that affect the viewability of
ads, and further reduce the bias of our estimates through
an adjustment. An implementation of our framework that
estimates causal performance of display ad campaigns using
viewability has been deployed as a product at the corre-
sponding author’s company. The system monitors lift for
dozens of advertising campaigns on a daily basis. The se-
lection of the right confounders to adjust the performance
estimate is a work in progress and will be incorporated into
future product releases.

2. MEASUREMENT FRAMEWORK
We now outline our framework for using mediating events
to measure the causal impact of an action, as illustrated
in figure 3. The workflow is briefly sketched here and then
described in more detail in later sections as we work through
our application in online advertising.

The process begins with the identification of potential me-
diators that correspond to the causal model in figure 2. A
good candidate must meet several criteria. First is that the
event must happen after the action is taken but before the
outcome occurs. Second, the mediating event must be neces-
sary for the action to have an effect on the outcome. Third,
the event should not be directly influenced by the same pre-
dictors W that confound the system in the first place. Fi-
nally, the mediating event must fail to occur sometimes for
all values of W in order to avoid positivity violations. The
mediating event for our application is the viewability of dis-
play ads, but another example exists in online advertising
that uses real-time bidding (RTB) systems. The effect of
targeting a user for ads is mediated by winning an auction.
If the auction is lost, the user cannot be influenced by tar-
geting. There are candidates in other domains as well. The
effect of adding a recommended song to a playlist is me-
diated by whether the user remains online long enough for

the song to play. The effect of placing an item in a news
feed is mediated by whether the user scrolls through all the
preceding items.2 In our framework, once a candidate event
is proposed, the next step is to instrument the mediator to
collect measurements of M .

Propose M

Instrument M

Test on 

negative controls

Identify

confounders

Report 

measurement

Reduced bias?

Residual bias?

Adjust for

confounders

Residual bias?

yes

no

yes

no

yes no

Figure 3: Framework for exploiting mediators.

An ideal or perfect natural experiment results when the
treatment status for each user is assigned due to a truly ran-
dom and naturally occurring event. If the event M results in
an ideal natural experiment, then the estimation of a causal
effect is straight-forward. For all users who experienced the
action A, the probability of outcome Y can be compared
directly between users who experienced the mediating event
and users who did not, as if a randomized experiment had

2Jensen et al. [5] discuss an automated method of dis-
covering natural experiments (what they term “quasi-
experimental designs”) in observational data. They show
that natural experiments can be discovered using a relational
database schema, additional information about the tempo-
ral durations of specific events, and limited prior knowledge
about potential causes.
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been conducted.3 This analysis would be subject to none of
the bias associated with a näıve analysis where users who
experienced the confounded action A are compared to those
who did not experience A. It may be quite helpful for a
comparison of both types of analysis to be carried out as
a first-pass evaluation of the usefulness of the measurement
M as a natural experiment.

It may be the case that M is not a perfect natural ex-
periment, meaning that there exist residual confounders W ′

between the mediator M and the outcome Y (figure 4). The
confounders W ′ may or may not overlap with W depending
on the domain. How can we identify whether there is resid-
ual confounding of the mediator? In principle, this could
be identified by comparing results from the analysis to that
of a randomized experiment. However, it may be that reli-
able experiments are not available if this framework is being
used. If available, a low-cost alternative is to employ nega-
tive controls as a way to identify confounding of M .

Confounders
W

Action
A

Mediator
M

Residual
Confounders

W ′

Outcome
Y

Figure 4: Causal DAG with confounded viewability.

A negative control is an irrelevant but observable outcome
Y − where the action A is known to have no impact (figure 5).
Negative controls can help identify bias in causal studies as
they provide a test where the analysis should produce an
estimate of zero effect [10]. Online entities typically track a
large number of actions that a user may take, so negative
controls are often readily available. A commonly used nega-
tive control in online advertising is a conversion event from
an unrelated campaign [3, 15]. In the case of recommender
systems, the selection by the user of an unrelated item could
serve as a negative control for the recommended item.

A negative control is most useful when it is subject to all
of the same confounders W as the original outcome Y . If the
negative control conversion has fewer confounders, then it is
possible to correctly predict no effect on the negative control
while still admitting residual bias on the actual outcome.
For this reason, we propose to use a spectrum of negative
controls to increase the likelihood that each confounder is
covered by at least one control. An additional advantage
of using multiple negative controls is the possibility to infer

3Please note the similarity between this approach and the
front-door criterion described by Pearl [12].

Confounders
W

Negative
control
Y −

Action
A

Outcome
Y

Figure 5: Causal DAG with negative control.

the magnitude of estimation bias. If the negative controls
are subject to the same bias as the outcome of interest, they
can provide an empirical distribution of this bias.

If an analysis based on a mediating event produces sig-
nificant non-zero effects when analyzed against a spectrum
of negative controls, this likely indicates there are residual
confounders W ′. Below we describe an approach to identify-
ing W ′ and adjusting for it to revise a causal estimate in the
context of online advertising. When successful, adjusting for
residual confounders can lead to low-bias estimates of causal
effects at the mere cost of instrumenting M . In general, we
expect that controlling for confounding of the mediator M
to be easier than controlling for the deep confounding of the
action A. That being said, if the adjustment for confounders
of M estimates large effects on negative controls, then the
proposed M should be discarded for a new candidate.

3. AD VIEWABILITY
We apply our framework to online advertising where we
identified ad viewability as a mediating event. A large frac-
tion of ad impressions that are served to users are never seen
because these ads are not loaded to a viewable portion of the
user’s browser. Unviewable ads cannot have an effect on the
user’s actions, and so viewability mediates the effect of serv-
ing ads. To understand this phenomenon, it is important
to know the factors that determine whether an ad becomes
viewable.

The most common reason for a display ad to be unview-
able is it being served “below the fold.” This means the user
must scroll down the page for the ad to move into the win-
dow of the web browser. If the user leaves the web page
before scrolling to the ad’s location, the impression will not
be seen. Whether an ad is served below the fold is deter-
mined by a combination of factors including the web page’s
layout, the size and location of the ad, the window size of
the user’s browser, and the monitor’s display settings. Each
of these factors is subject to a wide degree of variability. For
example, ads can be displayed as wide, short banners at the
top of a web page, as narrow, tall ”skyscrapers” on the bor-
der of a page’s content, or as rectangular patches distributed
at various locations within the page.

Another reason why ads become unviewable is their being
“out of focus.” Sometimes content is loaded to a browser
that is minimized or to a tab that is not currently active.
This is commonly a result of auto-refreshing where content is
reloaded at regular intervals without the user’s intervention.
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The content is not seen unless the user actively navigates to
the hidden or minimized window.

The targeter has very limited information about any of
these factors at the time of placing an ad. Typically the
targeter bids for placements based on the URL, the ad size,
and aspects of the visitor, so detailed information about the
likelihood of the ad to be viewable cannot be factored into
the decision to serve the ad. This suggests that viewability
is a good candidate for our analysis framework since it is not
subject to normal targeting bias.

The corresponding author’s company has instrumented
viewability via JavaScript code that is served along with
ads. This code is run in the user’s browser, where it queries
geometric data and other information from the browser that
it uses to determine whether the ad is currently in view. The
definition we use for in view for this paper is that at least
50% of the ad’s pixels are visible on the user’s screen. The
end result is a measurement of the duration over which the
ad was determined to be in view.

Figure 6 shows the distribution of the duration of time in
view for a random sample of ads collected from advertising
campaigns from a variety of industries. We find that ap-
proximately 45% of ads are in view for less than one second.
Hereafter, we will refer to such ads as unviewable. Impres-
sions that were in view for at least one second will be called
viewable.
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Figure 6: Distribution of time in view for viewable impres-
sions (i.e. impressions that have at least 50% of the ad’s
pixels in a visible portion of the user’s screen for at least
one second).

Figure 7 summarizes the influence of vertical location of
the impression on ad viewability. The median browser win-
dow size is depicted as the red box in figure 7a and the
frequency of a pixel containing an ad is shown by the green
heatmap. We see in figure 7b that less than half of all ads are
served above the fold. Furthermore, the probability of the
impression being viewable drops quickly around the median
location of the bottom of the browser window (figure 7c).
In addition, hidden tabs and minimized browser windows
account for about 6% of ads being unviewable.

4. REDUCTION IN BIAS
In this section, we use measurements of ad viewability to
reduce bias in estimating campaign performance. We com-
pare a viewability analysis to a näıve one where the presence
of selection bias is ignored. For both analyses, we use the
individual impression as the unit of analysis (see figure 8).
The observed data structure is O = (A,M, Y ) ∼ P where

A indicates whether the impression is from the campaign of
interest, M indicates whether the impression was viewable,
Y indicates whether the user converted in a window after
the impression, and P is the underlying probability distri-
bution. We use a conversion window of 7 days from the
exact time of the impression. Note that in both analyses it
is assumed that the effect of an ad is not modified by pre-
ceding or following ads. If a user receives multiple ads, they
are considered in isolation of each other. While this assump-
tion is likely to break down in certain scenarios, we use it
to simplify our analysis while still addressing the problem of
selection bias.

Conversion (Y=1)

Web page visit

Viewable ad (M=1)

Unviewable ad (M=0)

Treated User

Untreated User

Campaign period

Figure 8: Diagram depicting variable definitions for viewa-
bility analysis. Gray boxes indicate the window in which
conversions are monitored.

In our näıve analysis, we compare cases where the impres-
sion is from the campaign associated with the conversion
(A = 1) versus cases where the impression is from an un-
related campaign (A = 0).4 We expect this analysis to be
biased by strong confounding from ad targeting. The target
parameter for this analysis is the campaign lift defined by

Φnäıve(P ) =
E{Y | A = 1}
E{Y | A = 0} − 1

=
p(Y = 1 | A = 1)

p(Y = 1 | A = 0)
− 1.

(1)

For the viewability analysis we focus only on impressions
from the campaign (A = 1). We compare conversion rates
for users who received viewable ads (M = 1) with those who
had unviewable ones (M = 0). The lift in this case is defined
by

Φviewability(P ) =
E{Y |M = 1, A = 1}
E{Y |M = 0, A = 1} − 1

=
p(Y = 1 |M = 1, A = 1)

p(Y = 1 |M = 0, A = 1)
− 1.

(2)

Both equations could be interpreted causally in the ab-
sence of confounders. However, as we expect strong selec-
tion bias in ad targeting, our hypothesis is that utilizing ad
viewability will dramatically reduce such bias.

Our data come from seven display advertising campaigns
run during the 4th quarter of 2014. The products adver-
tised represented diverse industries including auto insurance,
4All the users in data under consideration received at least
one impression from some campaign.
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Figure 7: Summary of the effect of the page fold on viewability. The red box and line depict the median size of a browser
window. Location units are in pixels.

beauty products, finance, and online marketing. Conver-
sions also represented diverse actions such as visiting the
advertiser’s web page, purchasing a product, or filling out
a quote form. The volume of the campaigns ranged from 3
million to 29 million impressions. We define our users via
browser cookies. The number of users who converted after
receiving an impression ranged between 2,000 and 2 million
depending on the campaign. For each campaign, we calcu-
lated Φnäıve and Φviewability from the empirical probabilities
that impressions of each type were followed by conversions.
Confidence intervals were derived from the binomial distri-
bution.

We found that across all campaigns values dropped dra-
matically between Φnäıve and Φviewability (figure 9). For ex-
ample, campaign C saw a drop in lift from 33,000% (95%
CI, 28,000%–40,000%) in the naive analysis to 26% (95%
CI, 21%–32%) in the viewability analysis. This campaign
utilized retargeting practices where users were served ads if
they had specifically interacted with the advertising brand
in the past. This practice suggests selection bias should be
particularly severe. Campaign F saw the smallest difference
between the naive and viewability analyses displaying lifts
of 65% (95% CI, 62%–69%) and 12% (95% CI, 7%–16%),
respectively. The campaign in question was run by a major
US consumer banking company which may use rather broad
targeting criteria, limiting the amount of selection bias.

While the above data provide compelling evidence that
bias can be reduced by using measurements of ad viewability,
it is unclear how much residual bias remains. To probe the
remaining bias, we turn to negative controls.

A                  B                 C                  D                 E                  F                 G

Campaign

10000

1000

100
0

0

L
if
t 

(%
)

Naive

Viewable

Figure 9: Lifts estimated for the naive analysis and for the
analysis using viewable ads to define the treatment group.
Note: a log scale is used to depict the difference between
lifts.

5. NEGATIVE CONTROLS
As discussed above, negative controls help to identify bias
in causal studies as they provide a test where an unbiased
estimator should predict zero effect. For each of our seven
campaigns, we identified 7–10 conversion events from other
campaigns to serve as negative controls. The negative con-
trols were chosen from a different industry from the true
conversion in order to minimize any possible interaction. In
figure 10 we show the result of campaign B’s impressions
analyzed against its true conversion event as well as 10 neg-
ative controls using the viewability methodology. The lift
on the true conversion, 41% (95% CI, 34%–50%), is larger

1844



than that of any of the negative controls. However, all but
one negative control showed a significant lift despite being
irrelevant to the campaign ads (p < 0.05).
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Figure 10: Lift estimated for campaign B’s true conversion
and several negative controls B−i using ad viewability to
define treatment.

In total, we had seven campaigns with a combined 60
negative controls. The average absolute effect estimated on
the negative controls was 11% ± 8% indicating a modest
bias in the viewability analysis. Out of 60 negative controls,
44 showed a significant effect (p < 0.05). The most likely
explanation for this bias is that ad viewability is not a perfect
natural experiment and that there are confounders for the
impact of ad viewability on conversion (W ′ in figure 4). In
the next section we proceed to identify and adjust for these
confounders.

6. ADJUSTMENT FOR CONFOUNDERS
Confounders are variables that influence both the outcome
and the action as described above. A common way to iden-
tify such factors is to test for a statistical dependence on a
candidate confounder of both the action and outcome. In
our case, we are searching for factors X with the properties
M 6⊥ X and Y 6⊥ X | M . We caution that statistical tests
are generally insufficient for identifying a true confounder
and that the identification must also rest on true domain
knowledge of the system under study [12].

To determine which variables constitute a set of confounders
in our new framework, we first identified a set of candidates
by drawing on domain knowledge from the online adver-
tising ecosystem. These features are organized into three
general categories that encompass user level and campaign
level characteristics. A summary of potential confounders
is given in table 1. We identified the confounders W ′ on a
campaign-by-campaign basis as those factors that were sig-
nificantly correlated with both M and Y . This was deter-
mined by performing a logistic regression with each factor
alone and testing its coefficient for statistical significance
(p < 0.05).

We adjusted our analysis for these confounders through
an extension of our viewability analysis. We continued to
use individual impressions as the unit of analysis. The aug-
mented data structure was O′ = (W ′, A,M, Y ) ∼ P ′ where
the confounders W ′ have been added while all other vari-
ables are as before. The estimation of lift was altered to
provide for an adjustment over W ′. The equation for the

Category Description Examples

Technical
The user’s com-
puter setup.

Operating system,
browser, screen resolu-
tion, aspect ratio

Behavioral
Determined by
the user’s ac-
tions.

Browsing frequency,
average viewability for
user, previous brand
interaction, time of day

Targeting
Parameters of
campaign as set
by advertiser.

Prospecting or retar-
geting strategy, average
viewability for publisher,
targeted web page

Table 1: Summary of potential confounders.

adjusted lift is

Φadjusted(P ′) =
E{Y |M = 1, A = 1}
E{Y0 |M = 1, A = 1} − 1

=
p(Y = 1 |M = 1, A = 1)

p(Y0 = 1 |M = 1, A = 1)
− 1

(3)

where Y0 indicates whether the outcome would occur if the
ad had been unviewable. In the language of causal inference
this is a counterfactual outcome which can only be identified
by performing an adjustment for the confounders W ′ [12].
This adjustment is given by

p(Y0 = 1 |M = 1, A = 1)

=
∑
w′

p(Y = 1 |W ′ = w′,M = 0, A = 1)

× p(W ′ = w′ |M = 1, A = 1)

≈ 1

N

N∑
i

p(Y = 1 |W ′ = w′i,M = 0, A = 1).

(4)

The first equality performs an adjustment over all possible
values of the confounder W ′ = w′. The second equality
makes an empirical approximation for the distribution of W ′

among viewable impressions. The final summation is over
the N viewable impressions in O′ where w′i represents the
confounders of viewability for the ith viewable impression.

To estimate Φadjusted, we need estimates for the proba-
bilities in the numerator and denominator of equation 3.
We estimated the numerator as the empirical probability of
conversion among viewable impressions. To estimate the de-
nominator we fit the probability p(Y = 1|W ′,M = 0, A = 1)
with a logistic regression trained on data from unviewable
impressions. This model was then substituted into equation
4 and applied to the value of W ′ for all viewable impressions.
Confidence intervals were obtained through 1000 bootstrap
samples.

Following our framework, we tested our model on each of
the seven campaigns and their corresponding set of nega-
tive controls. Both the unadjusted and adjusted viewability
model results for campaigns B and G are shown in figure 11.
In campaign B, we find the lift on the true conversion, 34%
(95% CI, 28%–41%), is larger than that of any of its neg-
ative controls. Whereas the unadjusted estimate shows a
significant effect (p < 0.05) in 9 out of 10 negative controls,
this number drops to 4 out of 10 when adjusting for W ′. In
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contrast, the adjusted effect of impressions from campaign
G on its true conversion is not significant (p > 0.05).

Overall, the average lift across negative controls is -2%
suggesting an absence of systematic bias. The average ab-
solute value of the lift estimated for negative controls was
9%±9% which constitutes only a small decrease when com-
pared to the unadjusted estimate. Out of 60 negative con-
trols, 29 still showed a significant non-zero effect (p < 0.05).
These results indicate that while adjustment for W ′ were
successful in reducing bias, there is still likely some uncon-
trolled source of confounding.
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Figure 11: Unadjusted and adjusted lift for campaigns B
and G and their corresponding negative controls.

The effect of each campaign on its true conversion is shown
in figure 12. Across campaigns we found that the estimate
of campaign lift dropped on average from 30% to 10% when
adjusting for W ′. The adjustment for confounding therefore
created substantial revisions in the estimate of lift. The
variation in the effect of adjustment on the estimated lift
can likely be attributed to large differences in the degree of
confounding present in each campaign.

7. DISCUSSION AND CONCLUSION
The results presented above demonstrate that even with
intractable confounding, causal estimation is still possible
when the effect of an action is mediated through another
event. We applied our framework to display advertising
where the effect of serving ads is mediated by whether the ad
appears in a viewable portion of the user’s screen. Despite
huge bias in comparing users who receive ads with those
who do not, we found a relatively small bias on the order
of 10% when comparing the effect of viewable ads to un-
viewable ones under proper controls. Approximately 50% of
display ads are unviewable, so ad viewability represents a
perpetual, balanced, and free natural experiment for mea-
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Figure 12: The lift estimates for the campaign’s true con-
version event when using viewability with and without ad-
justing for confounding.

suring the impact of ad impressions. An implementation of
our analysis has been released in production to monitor the
lift of dozens of advertising campaigns on a daily basis. Ex-
tensions of this technique are being used to understand the
performance of campaigns on a more granular scale, such as
different audience segments or targeting strategies.

We discuss two limitations of our current approach. The
first is the assumption that ad impressions can be consid-
ered independently from one another. Violations of this as-
sumption may account for some of the residual bias in our
analysis. It may be that when a user receives multiple ads
from the same campaign that the impressions interact in a
non-additive way. Our current research focuses on a lon-
gitudinal implementation of our viewability analysis [4] in
which we consider the evolution of the user’s ad experience
over the course of the campaign. Second, while we actively
collect information related to measuring ad viewability, we
do not collect all possible metrics. For example, we do not
collect information related to page structure or creative for-
mat (e.g. static image or animated graphics). With further
data mining efforts, other potential confounders can be in-
troduced into our pipeline. The exploration and discovery
of these features is the subject of ongoing work.

Our framework has applications beyond advertising as
confounding is an almost unavoidable consequence of today’s
predictive modeling systems. The use of mediating events
thus provides an attractive alternative for estimating causal
effects when randomized experiments are prohibitive. Com-
panies commonly collect and store an enormous amount of
data on their customers. These data could be leveraged to
identify causal mediators with minimal additional cost to the
company. The instrumentation of mediators has the poten-
tial to become a critical step in measuring the performance
of automated systems.
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