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Abstract This paper presents the design of a fully deployed multistage transfer learning
system for targeted display advertising, highlighting the important role of problem formula-
tion and the sampling of data from distributions different from that of the target environment.
Notably, the machine learning system itself is deployed and has been in continual use for
years for thousands of advertising campaigns—in contrast to the more common case where
predictive models are built outside the system, curated, and then deployed. In this domain,
acquiring sufficient data for training from the ideal sampling distribution is prohibitively
expensive. Instead, data are drawn from surrogate distributions and learning tasks, and then
transferred to the target task. We present the design of the transfer learning system We then
present a detailed experimental evaluation, showing that the different transfer stages indeed
each add value. We also present production results across a variety of advertising clients
from a variety of industries, illustrating the performance of the system in use. We close the
paper with a collection of lessons learned from over half a decade of research and develop-
ment on this complex, deployed, and intensely used machine learning system.
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1 Introduction

Advertising is a huge industry (around 2 % of U.S. GDP), and advertisers are keenly inter-
ested in well-targeted ads. Online display advertising is a large subfield of the industry where
ad targeting holds both promise and challenges. It is promising because of the wealth of data
that can be brought to bear to target ads. It is challenging because the display advertising
ecosystem is an extremely complicated system where accessing the data and delivering the
ads can involve dozens of different corporate players. This is in contrast to search adver-
tising for example. This paper deals with a particularly challenging segment of the online
display advertising market: customer prospecting. Customer prospecting involves delivering
advertisements to consumers who have no previously observed interactions with the brand,
but are good prospects—i.e., are likely to become customers after having been shown an
advertisement.

Display advertising has matured rapidly over the past several years, with the proliferation
of real-time bidding exchanges (RTBs) that auction off website real estate for placing online
display ads. This has created an efficient platform for advertisers to target advertisements
to particular consumers (see e.g. Singer 2012). As is standard in the industry, we call the
presentation of a display ad to a particular consumer an “impression.” In each RTB the good
being auctioned is an impression opportunity—a particular space or “slot” on a particular
webpage at a particular instant with a particular consumer viewing it. The auctions are run
in real-time, being triggered the instant a consumer navigates to the page and taking place
during the time the page is being rendered in the consumer’s browser. At the time of auction,
information about the location of the potential advertisement and an identifying random
number of the particular internet user are passed to all potential bidders in the form of a bid
request. Advertisers often supplement these data with information previously collected or
purchased about the specific consumer and website. When an auction is initiated, a potential
advertiser must determine if it wants to bid on this impression, how much it would like to
bid, and what advertisement it would like to display if it wins the auction. There are billions
of such real-time auctions daily and advertisers require large-scale and efficient systems to
make these decisions in milliseconds.

This complicated ecosystem invites machine learning to play a key role in the ad opti-
mization process, particularly because of the simultaneous availability of (i) massive, very
fine-grained data on consumer behavior, (ii) data on the brand-oriented actions of con-
sumers, via instrumentation of purchase systems, and (iii) the ability to make advertising
decisions and deliver advertisements in real time. The work we describe in this paper is one
such massive-scale machine learning system that is deployed and in regular use by M6D,
a company that finds prospective customers for targeted display advertising campaigns and
executes those campaigns on the many advertising exchanges. Notably, the learning sys-
tem itself is deployed, in contrast to the much more common case of deploying the models
resulting from machine learning plus human model curation. Each week, this learning sys-
tem builds thousands of models totally automatically, driving the advertising campaigns for
major marketers across many industries.

This paper’s main contribution to the machine learning literature is to use this application
domain to demonstrate how data characteristics and availability constraints are translated
and integrated into a complex problem formulation and finally implemented successfully as
a robust learning system. We cover some seldomly discussed aspects of problem formula-
tion for machine learning applications, focusing much of the discussion on the fact that for
pragmatic reasons, the system draws data from multiple different sampling distributions to
compose the machine learning solution.
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As mentioned at the outset, our task is to identify prospective customers—online con-
sumers who are most likely to purchase a specific product for the first time in the near
future after seeing an advertisement. The ultimate goal of the system is to build pre-
dictive models automatically for hundreds of different and concurrent display ad tar-
geting campaigns. A challenge for the system is that each campaign may have a dif-
ferent performance criterion. Each of these criteria may be approximated with a good
ranking of potential purchasers in terms of their likelihood of purchasing. These prob-
lems have been described in detail previously (Provost et al. 2009; Perlich et al. 2012;
Raeder et al. 2012). A primary source of feature data is a consumer’s browsing history,
captured as a collection of anonymized URLs that the consumer has visited in the past. The
class label for each campaign is based on the observation of actual purchases of the cam-
paign product. At first blush, this looks like an instance of a fairly straightforward predictive
modeling problem. However, from a practical standpoint, it is impossible (both in terms
of time and money) to obtain adequate training data directly for this problem. The dimen-
sionality of the problem is already far beyond one million features in the simplest case of
considering the browsing history of hashed URLs as an unordered set. The typical probabil-
ity of purchasing the product within the next 7 days after seeing the ad varies between 0.001
and 0.0000001, depending on the product and the targeting. Collecting an ideal training set
is often (if not always) prohibitively expensive. It also is time consuming, which has “cold
start” implications for new campaigns.

Thus, at a high level the problem faced in building models automatically at scale for
display advertising is twofold:

• The ideal training data are very costly to obtain, which is driven by many factors. Be-
fore a campaign is started there is no data at all on whether or not consumers purchase
the product after having been shown the advertisement (no one has yet been shown the
advertisement!). Once a campaign starts, there are severe selection bias problems with
almost any available data—unless very careful and costly randomized experimentation
is conducted. The base purchase rate is generally very low, so a tremendous number of
randomly targeted ads must be shown to collect a data set with a significant number of
positive examples. The result is that data from the ideal distribution for learning are scarce.
However, related data from other distributions can be acquired at substantially lower cost.

• The system needs to learn models automatically for each new campaign. However, each
campaign can vary widely in terms of the data available to it for learning, including the
number of positive labels collected and the optimal feature engineering that can be ap-
plied. To operate as a robust and scalable learning system, the system needs to be flexible
enough so that it can learn and exploit the idiosyncrasies of a specific task (i.e., campaign),
but also run with minimal human intervention.

The system presented here solves these two problems with a two-level modeling ap-
proach. The first-level modeling deals with the sparseness, high-dimensionality, and model
variety by drawing from sources of abundant, cheap (but notably biased) data. This step ag-
gregates data from various data providers, engineers features and learns relationships from
a variety of related processes that can be transferred to the main task we are trying to learn.
The second-level modeling uses a stacked ensemble to combine, weight and recalibrate the
outputs of the first-level process, and this learning uses data drawn from the actual “target”
distribution.

We are aware of only few existing papers in the machine learning literature that look
critically under the hood at the anatomy and design choices of real, deployed, massive-
scale learning systems, some of them for targeting advertisements (cf., Perlich et al. 2012;
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Raeder et al. 2012). Examining real, deployed learning systems can help to keep machine
learning researchers aware of issues that are critical to the actual use of machine learning,
and thereby can help to keep the science of machine learning vital (Provost and Kohavi
1998). Based on our experience in many real applications of machine learning, the issues
that we present in this paper are more common in practice than the research literature would
suggest. Specifically, this paper focuses on crucial issues of dealing with constraints of data
availability including having data drawn from less-than-ideal distributions, and extremely
rare outcomes. To address these issues, M6D’s system incorporates and composes tech-
niques from transfer learning and stacked ensemble classification. But more generally, we
assert that most deployed applications of machine learning are actually instances of transfer
learning—with at least some aspects of the learning data different from the true target task.
If this indeed is true, then as a community we should examine applications more broadly as
applications of transfer learning.

Other aspects of the system have been presented previously in conference publica-
tions (Perlich et al. 2012; Provost et al. 2009; Raeder et al. 2012), and with few exceptions
these will be treated quickly in this paper.

2 Background on M6D display advertising and related work

M6D (Media6Degrees) delivers targeted display advertisements to online consumers, pri-
marily focusing on prospecting, as described above. M6D finds and targets consumers online
for over 100 marketers/brands at any given time, delivering many millions of ad impressions
daily. The targeting system uses cookies to maintain a unique identifier for an internet user
(until the cookie is deleted or the consumer chooses ‘do-not-track’) and this allows the sys-
tem to associate different events with the same consumer as it interacts with her (technically,
with her cookie). M6D works with a number of data partners that allow it to observe con-
sumers’ (partial) browsing history. In addition, at the beginning of a campaign each marketer
places a number of “tracking pixels” on its brand website that allow the system to record
visits to the site, purchases, and other actions that the marketer has deemed interesting. This
also enables marketers and advertisers to measure meaningful metrics such as post-view
conversions (important actions that occur subsequent to the showing of an ad) rather than
just (mostly meaningless (Dalessandro et al. 2012)) clicks. Specifically, after a consumer is
shown an impression, there is a time period established by the marketer within which some
relevant action (e.g., visiting the marketer’s website, downloading information, subscribing
to some service, or purchasing a product) is considered a conversion. These conversions are
the basic unit on which M6D’s customers evaluate the success of the campaigns. Throughout
the paper, we use the term brand action to refer to any relevant interaction between a con-
sumer and a brand’s web site. Most notably, we define site visits as visits to the brand home
page or other selected pages. These are used to train many of our models where purchase
information is too sparse or not available at all.

M6D delivers the majority of its ad impressions through ad exchanges (mostly in form
of banner ads, but also video and mobile). After receiving a bid request from the exchange,
M6D evaluates whether the consumer associated with the impression opportunity is a good
prospect for a particular campaign, and if so, M6D will submit a bid. The bid price is deter-
mined by a separate machine learning process, which is described elsewhere (Perlich et al.
2012).1 If the M6D bid was the highest across all bids for this auction, M6D delivers an ad
for the campaign.

1In this paper, we will ignore issues of contention between multiple campaigns.
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The system described here is not the only machine learning system to evaluate and op-
timize online display ad opportunities, and some prior efforts have been written about.
Prior papers on the use of machine learning have focused on challenges associated with
the applying machine learning in online advertising, such as the modeling of very rare
outcomes using high-dimensional feature vectors and the “cold start” problem of having
no training data from the target modeling task at the outset of the campaign. The use of
high-dimensional, raw user log data as features in classification models was introduced in
earlier work (Provost et al. 2009; Chen et al. 2009). Further work describes in finer de-
tail how features can be constructed from raw user event data (e.g., Pandey et al. 2011;
Liu et al. 2012).

To address the rare event/high dimensionality problem, various solutions have been pro-
posed. Agarwal et al. (2010) use hierarchical relationships within the feature set to smooth
probability estimates across levels in the hierarchy. Chen et al. (2009) incorporate Laplace
smoothing into Poisson regression estimates, and Pandey et al. (2011) and Dalessandro et al.
(2012) augment the rare outcome with a correlated outcome that has higher rates of occur-
rence. Though neither Pandey et al. (2011) nor Dalessandro et al. (2012) mention it, the
use of alternative outcomes in a classification model is an instance of transfer learning. Liu
et al. (2012) directly approach the challenges of modeling in the online display advertising
setting with transfer learning in mind. Specifically, they propose a method, often referred
to as “multi-task learning,” where data from multiple tasks (campaigns) are pooled, a joint
feature space is defined, and parameters are estimated across the joint feature space. The
joint feature space is constructed such that some features can be thought of as global across
all campaigns and others are specific to individual campaigns. This method is similar to
the multi-task learning approach to spam filtering presented by Weinberger et al. (2009).
Transfer learning across campaigns, however, is not the focus of this paper. M6D generally
does not apply cross-campaign transfer because that may involve using one brand’s data to
optimize a competing brand’s campaign, which is undesireable to M6D’s clients.

The transfer learning conducted by the system described in this paper involves the use of
data directly relevant to the current campaign, but drawn from a variety of different sources.
Importantly, these sources represent distributions and tasks that are different from the distri-
bution and task to which the learned models will be applied. We describe that more precisely
next. To our knowledge, this is the first paper: to describe this sort of transfer learning in ad-
vertising, to describe in detail an actual production learning system that scalably conducts
transfer learning across a multitude of source tasks, and to describe and carefully evaluate
the inner workings of a fully deployed display advertising system, in this case a system that
combines multiple models via (stacked) ensemble learning.

3 Transfer learning for display advertising

The focus of this paper is on transfer learning across different tasks, so let us next introduce
formal definitions that will allow us to discuss the transfer precisely. The definitions here
are somewhat more elaborate than in many machine learning papers because we need to
decouple the various elements of the data that come from different sources. The interested
reader is directed to Pan and Yang (2010) for a comprehensive survey of transfer learning, or
to Weinberger et al. (2009), Xue et al. (2007), Heskes (1998), Evgeniou and Pontil (2004) for
work most closely related to the sort of transfer learning described here. At a high level, the
idea of transfer learning is that (i) the learning (in part) is conducted for a task that differs
from the real target task in either the sampling distribution of the examples, the features
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describing the examples, the exact quantity being modeled (the “label”), or the functional
dependence between the features and the label, and (ii) that the knowledge obtained from
this alternative learning task is then transferred to the real task—i.e., it is somehow used to
improve the learning for the target task.

Specifically, let a task consist of a domain and a mapping. The domain, D, consists
of an example/instance space, E, a sampling distribution, P (E), on E, and a feature
representation X(e) for any e ∈ E, which provides a feature set for the example. The sepa-
ration of the example space and the feature representation is important—examples (online
consumers, in our case) are sampled from different distributions and the features can be en-
gineered in different ways. Crucial to understanding the transfer is to understand that users
may be sampled from distributions other than the target distribution, in order to augment the
training data. Given the domain, a mapping, M , consists of a label/outcome space, Y , and
a function f (·) that maps from a feature space X to a label space Y .

Any labeled dataset, whether used for training or testing, represents such a learning
task with an implicit example space, some implicit sampling distribution, an explicit fea-
ture representation, and some implicit mapping. A target task includes a target domain
DT = {ET ,PT (ET ),XT (ET )} and a target mapping MT = {YT ,fT (·)}. The ultimate goal is
to build models that predict well for the target task, i.e., have as good as possible an estimate
of fT (·). What it means for an estimate to be good is specific to the target task. Each poten-
tial source task includes a source domain DS = {ES,PS(ES),XS(ES)} and source mapping
MS = {YS,fS(·)}, where DS �= DT and/or MS �= MT . Transfer learning aims to improve the
learning of fT (·) (in DT ) by transferring knowledge of DS and MS into the estimation of
fT (·). Note that, as with machine learning problems generally, each function f (·) is not ob-
served but can be learned approximately from the data. We can use this characterization to
define precisely the different datasets used by the M6D system.

Recall the ultimate goal of our targeting system: identify internet users who are likely to
purchase a particular product for the first time shortly after seeing an advertisement. This
ultimate goal is the target task. Under this premise, the ‘correct’ target sampling distribution
PT (E) for our models is the distribution of those users for whom we can win an ad impres-
sion given our pricing in a real-time auction and for whom there are no prior brand actions
(purchases or site visits) related to the campaign in question. The target feature representa-
tion XT (E) is chosen by M6D to be most broadly a consumer’s associated browsing history
and characteristics inferrable from the consumer’s browser. The ultimate target outcome YT

is binary: did/will the user purchase after seeing an ad?
As pointed out previously, actually drawing sufficient data from the target task is pro-

hibitively expensive, and we can now state precisely why. There are two reasons: draw-
ing from PT involves actually winning—purchasing—randomly selected impressions in the
bidding systems (Perlich et al. 2012). Moreover, these impressions must be purchased in a
quantity that provides sufficient positive instances to estimate a reliable, high-quality model
given the feature space XT . Three factors make this impracticable:

1. Most of the relevant information about purchase propensity is hidden in the complex
browsing history. As a result, the potentially informative feature space X is extremely
large (in our case tens of millions of URLs even after massive reduction).

2. YT has very, very few positive examples. The basic purchase rate for most of our advertis-
ers’ products, in particular for prospects (consumers who have not bought or interacted
with the brand before) is typically below 0.001 % (sometimes well below) even when
well targeted.

3. Showing ads randomly to (non-targeted) browsers and then waiting for them to purchase
leads to many times fewer individuals that purchase, as compared to targeting intelli-
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gently, and thus it is difficult to convince advertisers to spend money on random ad tar-
geting.

Ultimately, the performance expectations of the advertisers do not allow for an expensive
and lengthy “data gathering” period. Campaigns need to meet client goals in a relatively
short period of time, often within the first week of launch. M6D’s system solves this problem
by using data it has gathered already. This data often goes back months to years and involves
different P (E), as well as actions similar to and relevant to YT but in much greater supply.
Sampling from these alternative processes forms the basis for transfer learning within the
system.

3.1 Possible alternative mappings/labels for targeted advertising

There are a number of more liberal definitions of labels Y that can be utilized to increase the
number of positives for model learning. As mentioned, the primary target label of “purchase
after being exposed to an ad” is a very rare event that requires delivering costly impressions.
Alternative labels, candidates for YS , include: (1) clicking on an ad (still requires showing
impressions), (2) any purchase (not just first time) after an ad, (3) any purchase with or
without an ad, and (4) any other brand action with or without an ad. The number of pos-
itively labeled internet users is larger for the alternative actions. In fact, 4 is a superset of
3 is a superset of 2 is a superset of our target label. In addition to having a larger supply
of YS than YT , for the transfer of knowledge to be effective, the estimated function fS(·)
should be (closely) related to the function of interest fT (·). Consequently, the outcomes YS

and YT should be (strongly) related. Intuitively, one interpretation is that whatever are the
fundamental behavioral drivers for YT , they also should drive YS to some reasonable extent.

3.2 Domains and features of a users’ online activity

As defined above a domain D has three main parts: the example space E, the sampling
distribution P (E), and the feature representation X(E). For the M6D system, the example
space most generally is the space of internet users/online consumers. This is globally true
throughout the system. However, users are sampled in several different ways, specifically
based on a set of events where M6D can interact with them. Individual internet users may be
more or less likely to engage in specific sampling events (affecting P (E)), and this induces
substantial heterogeneity across potential source and target tasks.

Specifically, the events during which M6D encounters users are based on several different
interaction scenarios:

1. general internet activity—a user visiting a site/URL with which M6D has a data partner-
ship,

2. bid requests from the exchanges/bidding systems,
3. showing an ad impression, whether targeted or untargeted,
4. clicking on an ad,
5. making a purchase at a campaign’s brand’s site,
6. taking some other related online brand action that can be tracked online, including visit-

ing the brand’s homepage, store locator page, etc.

For this paper, the main differences between populations collected through the different
sampling events are differences in the sampling distributions P (E). Thus, the data for a
specific domain D comprise the set of instances collected via one of the above interaction
scenarios, based on its corresponding distribution P (E). In our stage-1 experiments below,
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we use the union of all these events as the basis for the source domain. In practice, M6D
builds different source-domain models based on the different events.

Making things more complicated, sampling events can be used to label the examples—
some of these events reflect brand interaction, others do not. Thus the system can build
modeling data sets by sampling a population from one event and assigning labels from a
different event. For instance, those consumers who were shown an ad might be the popula-
tion and the subset of those consumers who subsequently purchase from the brand’s website
might be the positively labeled consumers. Alternatively, a set of consumers active within
the system who may or may not have seen an ad could be the population, and the subset of
them who have also visited the brand’s website could be the positively labeled set.

We would ideally like to use all available information to make the best decision. So as
described before, the target feature representation XT (E) includes a consumer’s associated
browsing history as well as other user information. In any of the above domains and event
samples, we can characterize a user i by a large set of K features {x1i , x2i , . . . , xKi}. These
features capture various aspects of the event, the user, and the user’s internet browsing his-
tory. Also, this representation is general to both target and source domains. We generally
assume that the feature representation {x1i , x2i , . . . , xKi} is universal in the system, and that
only P ({x1i , x2i , . . . , xKi}) is different between source and target domains. An example fea-
ture representation might be based on the collection of URLs that the browser has visited
in some pre-specified history. For example, some xki may be a binary indicator of the user
having visited a specific URL in the past. This particular feature representation will be de-
noted as Xbinary . Alternatively, each xki may be some real numbered value that reflects some
weighting of recency and frequency of the browser visiting a particular URL. In the M6D
production system when URLs are employed as features, the system hashes the URL string
into a string token that is devoid of any semantic context or meaning. The actual URL is
not saved. This is done in an effort to maintain the privacy and anonymity of the user. Addi-
tionally, features describing various characteristics of the user can be used, such as for how
long the user has been observed, some measure of the amount of internet activity, coarse
geographic location, and descriptive elements of the browser application the user is using
(Xinf o). Appendix B uses this formal characterization to present the specific definitions of
the target and source tasks we use in the experiments in Sect. 4. Figure 1 highlights the main
relationships between the user events (different colors identify different events and corre-
spond in color to the sampling distribution of the tasks) on the left, the target task drawn
from randomly targeted impressions and the two-staged transfer learning tasks.

3.3 Two-stage transfer learning

So far we have identified many possible source learning tasks (domains and mappings) that
can be utilized for the ultimate goal of predicting the users who will most likely purchase a
product after being exposed to an ad. Rather than selecting one, we use a two-stage transfer
learning approach to learn multiple candidate mappings and then weight and combine them.
Intuitively, the goal of the first stage is to dramatically reduce the massive target feature set
XT so that in the second step, we can actually learn based on the target sampling distribu-
tion PT . The first stage considers multiple, parallel source learning tasks. Each task has its
own learning problem that estimates a function fs(X) to approximate the label YS . In the
second step, we learn how to transfer the set of predictions from the first stage by weighting
the individual inputs via a learned linear classifier. The details of this are presented below.
The key to understanding the different source and target tasks is to understand the different
events; these lead to different sampling distributions and labels, as depicted in Fig. 1.
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Fig. 1 Conceptual overview of the different events and tasks, their feature sets and how they are sampled
from browser events. The colors identify different event types; the italic text describes the feature represen-
tation for the different tasks; dotted arrows and bold text specifies the process of assigning labels; regular
arrows indicate the event sampling; the dashed arrows show the stage 1 to stage 2 transition where the pre-
dictions of models from stage one form the new feature set for stage 2

An interesting caveat about the system is that the ‘correct’ target learning task, which is
whether or not a consumer purchases following an ad impression, is sometimes not used at
all in our production system to build models for a particular campaign. The reason is that for
some campaigns, budgets make it unrealistic to serve enough impressions to observe a suf-
ficient number of purchases. In extreme cases, the purchase event of interest isn’t observed
at all due to issues with instrumenting the tracking pixels on the brand’s post-conversion
webpage. In such cases, the closest outcome observed is used as the target learning task.
In practice, the next best outcome is usually a visit to the brand’s website following an ad
impression. A detailed analysis of such proxy outcomes (Dalessandro et al. 2012) shows
that when attempting to predict purchases, using the site visit as the training outcome can
significantly outperform using a purchase as the training outcome. In light of these findings
we will move on, no longer making a formal distinction between a purchase and a site visit;
the union of the two will be considered as the target label. This distinction is secondary
for the transfer learning application in this paper, as we focus primarily on the sampling
distributions P (E) and how site visits/purchases are incorporated as labels.

3.3.1 Step 1—reducing the high-dimensional feature space

The prime motivation of the first stage in the transfer process is that the number of features
in XT is very large while the target label YT is very rare. The cold-start problem can be
thought of as an extreme case of not having sufficient labeled data to learn a model. Given
millions of ad impressions served, such a low base rate may or may not be a problem if X

were of low dimensionality. Thus, the goal of the first step is to reduce the feature space in
order to enable (subsequent) learning from a sample drawn from the actual target sampling
distribution PT .
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The first stage involves learning multiple functional mappings in parallel, from differ-
ent source tasks. The system creates multiple modeling datasets by sampling users from
events that occur often, are relatively inexpensive, and are available prior to the start of the
campaign. One of the most effective approaches is simply to assign every user who visits
an advertiser’s website a positive label, and then add a random sample of all other users
that were active during the same time period as negative instances (as shown in Fig. 1).
Call this alternate outcome YS . Note that although superficially similar, this setup is in fact
quite different from sampling a cohort of consumers that could be “won” in the auctions
and waiting for them subsequently to purchase. We can learn a function fS(X) that esti-
mates/predicts YS . Any learning algorithm that is appropriate for the given feature space
Xbinary and is also scalable to tens of millions of features and tens of millions of examples
may be used to learn fS(Xbinary). The production system at M6D currently uses both modi-
fied naive Bayes and logistic regression trained with stochastic gradient descent to estimate
the multiple fS(Xbinary), due to these methods’ scalability and robustness in production.

3.3.2 Stage 2—adjust to the target domain

As discussed above, in the first stage we estimate a number of models for each campaign,
one for each suitable source task. More formally, let S be the set of source tasks that are
suitable to be used in transfer learning. These source tasks are different combinations of do-
mains and mappings as described above (for example, different sampling distributions and
different label definitions). Given a user sampled in the target domain, we create a new fea-
ture representation XS = [f1(Xbinary), f2(Xbinary), . . . , fn(Xbinary)] where each fs(Xbinary)

is the result of applying the learned function fs(·) for one of the source tasks. This feature
representation can be appended to the mostly numeric feature set Xinf o, capturing other user
characteristics.

In essence, we replace the original high-dimensional binary feature space with a much-
condensed set of predictions (each of which again is a mapping from the binary feature space
Xbinary to a single numeric predictor) from the first stage models that have captured discrim-
inative information. However, these predictions potentially have incurred bias due to domain
differences. The second stage uses a stacked ensemble to estimate a low-dimensional func-
tion YT = f (XS ,Xinf o) in this compressed feature space. Having a much smaller (but still
informative) feature space allows us to learn this second-stage model (i) using the target
sampling distribution PT (E) (a “control” set of users without prior brand interactions who
had been selected randomly and targeted with advertisements in keeping with M6D’s stan-
dard operating procedure) and (ii) using a target that actually tracks outcomes forward in
time and after the ad event. As discussed above, in certain cases even the true campaign tar-
get label of purchase isn’t available in sufficient supply for this step. So ultimately, even the
second stage can yet again be an instance of transfer learning (albeit one that we have studied
in depth to convince ourselves that it indeed is appropriate (Dalessandro et al. 2012)). Now
we can move on to assess this transfer learning empirically, addressing two main questions:

1. Does the increase in positive labels in stage 1 indeed improve performance on the target
task, considering the large bias resulting from the use of different sampling distributions
and different definitions of labels? And as a side question: can we measure how different
the tasks actually are?

2. Does the adjustment of the domain and the labels to the target task in stage 2 improve
over the performance of the stage-1 models? Note that the models from the first stage can
be used directly in production to target browsers with high purchase propensity.



Mach Learn (2014) 95:103–127 113

In production, this two-step process produces two sets of models that are applied in
sequence to identify the best browsers for targeting. Section 5 will speak to the production
performance of the entire transfer system.

4 Transfer learning results

We now present results examining the different stages of the system’s transfer learning and
provide empirical answers the two questions presented at the end of the last section. The
two experiments use the production system to create training sets and we provide two eval-
uation/test sets to isolate the impact of training on different source tasks in stage 1 and of
combining and weighting the resultant models in stage 2.

The tasks on which we will evaluate the models in both stages have the correct sam-
pling distribution PT (ET ) of the target task (the above-mentioned population of a randomly
selected set of users to whom we can show an ad and who have not taken a brand action pre-
viously) and use the feature set that was used for training. Note that in sequence, the models
of stage 1 and stage 2 provide a mapping of the complete feature set of the target feature
representation XT = (Xbinary,Xinf o) from both browsing history and user characteristics.
Positive browsers (in YT ) are those who take a brand action within seven days of seeing
the ad.

4.1 The benefits of stage-1 transfer

This section shows that using a convenient sampling distribution PS(E) and labeling scheme
that maximizes positives but does not reflect the actual target task often provides better
results than if we were to just always use the sample PT (E) of the target task. From the
transfer learning perspective, we will show that the estimation of function fS(·) is often a
better predictor of YT than the estimation of fT (·).

To demonstrate that the source and target tasks are indeed significantly different, we em-
pirically test the difference in PT (E) between our target domain and the source domain
PS(E) comprising all active internet consumers observed in our system. Specifically, we
build a classifier to distinguish users sampled from the two distributions using binary URL
indicators as the feature set and training a linear logistic regression model with the class
variable representing the domain from which the user was drawn. If this model has predic-
tive power, then the domains indeed are measurably different with respect to the feature set.
Indeed, this model achieves an out-of-sample AUC of 0.8 at predicting the domain, which
means that we can separate reasonably well the consumers sampled from the target domain
and those sampled from the source domains. This implies specifically that there are consid-
erable differences between the population of all active internet users and the population of
those for which it is possible to bid and to win impression opportunities within the bidding
systems.

4.1.1 Data details

Proceeding to our main analysis, for the experiments that follow, we define the source pop-
ulation ES as all active internet users who are observable within the system, and the sam-
pling distribution PS(ES) as the empirical convenience distribution represented by taking the
union of all the sampling events discussed in detail in the previous section. The source label
YS indicates whether the user has visited the marketer’s website at any point in the past. We
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compare models trained on this source task against models trained directly using the target
task. Specifically, the target population ET is all users who appear in the ad exchanges and
for whom we could win the auction at our desired bid price, along with the corresponding
PT (ET ). The target label YT is whether the browser has taken a brand action within seven
days following the ad impression. We estimated the functions fT (Xbinary) and fS(Xbinary)

across 28 active campaigns. The evaluations are made on the distribution PT (ET ) of the
target task using an out-of-sample and out-of-time holdout sample. For the experiments of
this paper, each model is trained on data from the same 14-day time period, with identi-
cal feature sets. The only difference between the source and target tasks is the sampling
distribution P that determines which users make it into the training sample. The (out-of-
sample/out-of-time) evaluation holdout set comprises a random sample of target-task users
from the following seven days. The results, presented below, show that this biased initial
sampling scheme is better for learning from the massive, fine-grained URL features.

4.1.2 Modeling details

The stage-1 models presented here are trained with logistic regression based on the URL
feature representation (binary features). The logistic regression is trained using stochas-
tic gradient descent (SGD) (Bottou 2010), because it scales easily to millions of features
and millions of examples. To specify the exact parameter settings, recall that SGD trains
F(x) = βT x by processing each instance in the training set individually and making small
incremental updates to each coefficient along the gradient of the loss function. The loss
function is regularized maximum likelihood, using either L1- or L2-regularized loss (us-
ing the standard formulations). The SGD training process takes two parameters, hereafter
called learning parameters. The first, the learning rate, controls how aggressively the model
coefficients are updated with each instance and the second, the regularization parameter pe-
nalizes large coefficients to reduce overfitting. Through careful experimentation (done pre-
viously over several years, on completely separate prior data), we have found a set of default
learning parameters that works well across a wide variety of campaigns. Although we ex-
amine parameter tuning below for the purposes of our experiments, M6D typically does not
conduct expensive optimization of the learning parameters on-the-fly for each production
model, as doing so increases training time dramatically and generally reduces the robust-
ness of the production system (Raeder et al. 2012). Production parameter changes are done
offline.

4.1.3 Experimental results

The performance metric for these experiments is lift within the top 2 % of the population: the
number of positive examples in the set of examples with the top 2 % of model scores divided
by the number that would be expected from a random classifier (i.e., 2 % of all positives).
This choice of metric reflects a typical campaign setup, where given a fixed budget that
allows targeting only a small proportion of browsers, M6D is expected to return as many
conversions as possible. Each of the reported lift numbers is the average of 100 bootstrap
estimates, in order to produce a low-variance estimate.

Figure 2 plots the performance of the model trained on the stage-1 source task against
the performance of the model trained on the target task, as evaluated on the same target-
task holdout data. Each point is one campaign; the x-axis plots the target-trained lift; the
y-axis plots the source-trained lift. Models for which source training is better are above
the diagonal line; models for which target training is better are below. Clearly, the stage-
1 source-trained models usually outperform the target-trained models (20-3-5 win-tie-loss
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Fig. 2 Comparison of model performance between learning on the stage-1 source task and learning on the
target task (default learning parameters). Both are evaluated on the target task. Every point is a campaign.
Points above the identity line indicate that the models trained on the source perform better on the target task
than the models trained on the target task

record, highly significant by a sign test). Moreover, the source-trained models sometimes
are much better, whereas in the few cases where the target-trained models are better, the lift
difference is small.

In order to address the possibility that the default learning parameters are especially well-
tuned to the stage-1 population, we conducted an extensive, expensive parameter search on
a smaller set of seven campaigns. Specifically, we built models on both the stage-1 task and
the target task using 25 different combinations of learning rate and regularization parameter
(including instances of both L1 and L2 regularization). For each campaign, we choose the
set of learning parameters with the best two-fold cross-validation (cv) performance on the
training set, and we report the performance of the model learned with these chosen param-
eters, as well as the default-parameter model, on the same out-of-time test sets that we used
for the prior experiments.

Detailed results for these seven campaigns appear in Fig. 3. Each cluster of bars repre-
sents the prediction performance of four different models at target-task prediction on the
test set. From left to right, the bars represent the performance of: (1) the chosen-parameter
model trained directly on the target task, (2) the default-parameter model trained directly
on the target task, (3) the chosen-parameter model trained on the stage-1 source task and
(4) the default-parameter model trained on the stage-1 source task. In six of the seven cases,
the model chosen by cross-validation on the stage-1 source task outperforms the cv-chosen
“best” model built on the target task directly. In one case, the model trained with default
learning parameters on the target task outperforms everything, but in general we see that
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Fig. 3 Comparison of the performance (lift at 5 %) on the target task of stage-1 and target-task (eval) models
for seven campaigns (A-G) after tuning the learning parameters. The “best” model is the one that performed
best in cross-validation on the training set

even when tuning the learning parameters, training on the stage-1 source task remains the
most effective strategy.

These results are not necessarily intuitive—i.e., that learning from a completely different
(source) training distribution and with a different definition of positive vs. negative label
would yield consistently better results in the target domain. However but it is worth not-
ing that the training population consistently provides more positive examples by at least an
order of magnitude. For the campaigns in Fig. 2, our stage-1 source population contained
anywhere from 15 to 98 times as many positives as the target population. This suggests
that the reduction in variance afforded by the increased positive-class signal is more than
sufficient to compensate for the bias introduced by training on a different sampling distri-
bution and different labels. It seems likely that this result would hold in many real-word
applications where positive-class data are scarce or expensive.

4.2 Stage-2 ensemble model

As mentioned earlier, our production system builds several stage-1 source models for each
campaign. The second stage of our transfer process uses the output scores produced by these
models as components of a low-dimensional feature representation of the target-task sample
of users (those who have seen a randomly targeted impression). In this section, we compare
the performance of each “stacked” (Breiman 1996) stage-2 model to the performance of its
constituent stage-1 models. This will provide evidence that the explicit adjustment to the
target task, via the retrained ensemble, improves over simply using one of the source mod-
els without target-task adjustment. (Recall that the high-dimensional stage-1 source-trained
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Fig. 4 Performance of the stage-2 stacked ensemble trained on the target task data compared to the best
stage-1 model for each campaign. Performance is reported as the areas under the ROC curve (AUC) for each
campaign and model. The stage-2 models consistently outperform even the best stage-1 models. (Here, to be
conservative, the “best” stage-1 models are chosen based on their performance on the test data)

models outperform the high-dimensional target-trained models, as shown in the previous
section.)

4.2.1 Data details

For these experiments, as the basis for the target distribution we collected 30 days of ran-
domly targeted users from PT (ET ). The base rates of the campaigns vary dramatically; these
data sets had anywhere from 50 to 10,000 positive examples. In contrast, each campaign has
a huge number of negative examples. For these experiments, we selected a random sam-
ple of 50,000 negatives.2 The stage-2 feature-generating process produces approximately 50
features, including all of the stage-1 model scores for the particular campaign and user, and
a number of user characteristic features (Xinf o) such as browser type, age of the cookie, and
geo-location information.

4.2.2 Modeling details

The stage-2 model is a logistic regression classifier trained using elastic net (Zou and Hastie
2005) regularization. Elastic net regularization combines L1 and L2 regularization and will
usually send some model coefficients to zero, and thus also serves as feature selection (as
with straight L1 regularization).

4.2.3 Experimental results

Figure 4 shows a performance comparison across 29 different campaigns, a representative
sample of target tasks that are part of recurring advertising campaigns. We plot the area

2The AUC results below are not affected by the arbitrary change to the base rate. The training may be affected,
but generally if a fixed number of examples is to be used for training, a more-balanced sample generally leads
to better predictive performance, as measured by AUC (Weiss and Provost 2003).
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under the ROC curve (AUC) of the stage-2 model on the y-axis against the AUC of the best-
performing stage-1 model on the x-axis. All performance estimates were calculated on an
out-of-time hold-out set similar to stage 1 methodology. An important concern in stacking
is ensuring out-of-time evaluation across both stages. The evaluation period was not part of
the stage-1 training period.

The performance differences between the stage-2 learner and the best stage-1 learner
show that combining source models and incorporating information about the target task
significantly improves the effectiveness of the models. In our experience, the majority of
this improvement is due to combining the various stage-1 models. We attempted to build
assembles of stage 1 models an user characteristic features on stage 1 domain and observed
significant deterioration of performance compared to the best stage 1 model. This implies
that the performance improvements in stage 2 are indeed primarily due to the adjustment to
the target domain and not due to the ensemble effect or the additional features introduced in
stage 2.

The median and average improvements in AUC across the different campaigns were
0.038 and 0.041, indicating substantial improvements in predictive performance. The im-
provements are even more dramatic for cases where the best stage-1 model has relatively
poor performance. For cases where the best stage-1 model is in the bottom 50 % of cam-
paigns, the median and average improvements due to the stage-2 ensemble are 0.056 and
0.061 respectively. Any “negative transfer” is implicitly handled by the learning procedure,
meaning that the logistic model will assign a very low or negative parameter if one of the
stage-1 models is not predictive of the target task or would make the performance worse.
Any stage-1 model with a meaningful relationship to the label, positive or negative, should
receive an appropriate weight in the ensemble.

There are two cases where the ensemble learner underperforms the best stage-1 learner.
These are cases where the best stage-1 model already has very high performance. Note
that for illustration (and to be conservative) we compare the stacked-ensemble performance
to the best stage-1 learner as selected on the test (holdout) data, which involves a multiple
comparisons problem (Jensen and Cohen 2000). Choosing the best stage-1 learner via cross-
validation instead should only increase the perceived advantage for the stacked ensemble,
but does not illustrate fully the advantage of the stage-2 learning.

The reader might notice the large variance in AUC across campaigns in both stages of the
transfer process. Such variance is common in this application due to the diversity of brands.
Some are mass market brands, such as well known banks, telephone service providers and
soft drink makers; others are niche brands, such as high-end fashion retailers, luxury travel
destinations and specialized hobbies. Some of the latter yield much greater discrimination
ability. As a brand gets more popular, its resulting customer base becomes more heteroge-
nous and this makes building discriminative models more difficult. Therefore, the absolute
values are less important than the comparisons across methods.

5 Production results

The systematic experiments in the prior section showed the contributions of the two transfer
stages in lab experiments (on real data). We now present two sets of results demonstrating
the system in action. It is worthwhile to consider who are the “customers” of the deployed
machine learning system. The immediate customers of the system are the company officers
(e.g., the CEO) and the Board of Directors. The machine learning system is integral to the
performance of the company, for which they are responsible. Therefore, we first will show
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Fig. 5 Actual performance of the production system across 66 representative campaigns for a representative
time period. The left axis (with wider light colored bars) shows the impression volume in millions, the right
axis the predictive performance in terms of lift on post-view conversions of the targeted campaign over
the (random) control group. The campaigns in the graph are sorted by performance (better to the right).
Every campaign has two bars, a wider but lighter one for volume and a narrower darker one for predictive
performance. The median performance of about 5x is highlighted in the middle. To keep the left side legible,
the performance bars for the right most 9 campaigns are truncated at a lift of 25x

the overall performance results as viewed by these stakeholders. The ultimate customers
of the decisions made by the system are the company’s advertising clients. Therefore, we
also provide testimonials from these clients describing their individual experiences with the
system.

5.1 Results for the CEO and board

M6D tracks a number of key performance indicators (KPI). Typically there is a notable vari-
ation in goals between different campaigns (see cases in Appendix A for examples). To allow
for consistent performance tracking and statistical reliability, M6D computes a lift measure:
the ratio of the number of site-visit conversions on all targeted prospects to the number of
site-visit conversions on the randomly targeted control group that also saw ads for the cam-
paign. Note that we again use site-visit instead of purchase for evaluation (Dalessandro et al.
2012). This is necessary for two reasons: (1) some campaigns have no purchase events for
various reasons, and (2) even if they do, we often have too few post-impression conversions
in the randomly targeted control group to estimate the baseline (random) conversion rate
reliably. In the lab results presented above, we used a targeting threshold of 2 % to compute
the lift. Here we use whatever the targeting threshold actually was for that campaign, which
is determined by a complex constellation of business factors including the targeting budget.
The results in Fig. 5 show that for all the campaigns, model-based targeting outperforms
random targeting; the median lift is close to 5 and for some 15 % of campaigns the lift
easily exceeds a factor of 25.

5.2 Individual client cases

We have included in Appendix A a number of detailed cases reporting on actual reactions
from customers in a variety of industries including retail, travel, automotive, consumer pack-
aged goods, and education. Generally large advertisers such as these engage multiple target-
ing firms, and compare the targeters’ performances using their own internal evaluations.
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Note that we cannot reject the concern that there is a positive bias in the reported results,
as they are not subject to the scientific rigor we might desire and are more likely to be pub-
lished if the customer was satisfied. This being said, the fact that the presented approach can
achieve as impressive results as those reported in the cases is nevertheless testimony to the
value of the machine learning system.

Brands use a number of techniques to assess and compare performance: (1) use multiple
targeting firms (“on the plan”) at the same time and compare for instance the conversion
results (subject to attribution) or the (“effective”) Cost Per Acquisition (CPA or eCPA),
(2) involve a firm like Nielsen to assess the performance of the targeting as well as the causal
impact of the advertisement, and (3) have some internal process to measure ROI based on
the estimated campaign-induced increase in revenue.

These case study results show that on a number of campaigns the machine learning sys-
tem’s targeting performs extremely well and, in particular, notably better than the competi-
tors. Ultimately M6D has able to achieve very high customer satisfaction in terms of ad
impact, ROI, cost per customer acquisition (CPA), and ultimately consistent campaign re-
newals for M6D.

6 Conclusion

This paper presents the detailed problem formulation incorporated by a massive-scale, real-
world, production machine learning system for targeted display advertising. The problem
formulation involves the use of labels and sampling distributions different from the target
task, in order to deal with the practical inability to acquire sufficient data from the target
environment. The system learns models with different “source” sampling distributions and
training labels, and then transfers that knowledge to the target task. Experimental results
show that the conscious use of biased proxy populations for training can improve model
performance in situations where data are scarce.

More specifically, sampling data from the target task is expensive and positive outcomes
are quite scarce, especially considering the very high dimensionality of the feature repre-
sentation (specifically, comprising data on visitation to a massive set of anonymized URLs).
The system trains the full-fledged high-dimensional models on proxy populations where ex-
amples are cheaper and labels are more abundant. Then, it trains a much lower-dimensional,
stacked ensemble model, with the previous model scores as features, on a smaller sample
from the actual target sampling distribution. The experimental results show that each com-
ponent of the multi-stage transfer learning system improves over not using that component.

The results and approaches presented in this paper represent the result of years of devel-
opment of the massive-scale machine learning system that is deployed and in regular use by
M6D. Some of the most important lessons learned from this experience are presented above
and can be summarized and synthesized as follows:

1. In building machine learning applications, thinking explicitly about the subtleties in the
definitions of E, P (E), and Y can allow significant improvements in the result of ma-
chine learning. For example, in this application we see that drawing data from distribu-
tions other than the target distribution as well as using labels different from the target
label both can improve performance. Combining source models and adjusting to the tar-
get distribution can improve performance further.

2. This transfer learning approach has additional practical benefits that we have not empha-
sized. It addresses directly the “cold-start” problem: in cases where no advertisements
have been shown, one cannot learn models directly for the target task. However, the
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source models do not depend on advertisements being shown, and they can be used di-
rectly when there are too few training data from the target domain.3 In addition, a multi-
stage approach like that applied here—learning multiple, biased, source models and then
combining and correcting them—is especially attractive in production settings where new
modeling methods can be added more easily than existing production procedures can be
changed. New machine learning methods operating on the super-high-dimensional data
can be added in easily, and they immediately become additional features in the stage-2
stacking procedure. The system seamlessly evaluates them, via the stage-2 learning, and
if they add value (as determined empirically) then they get significant weights in the
resultant stage-2 model.

3. Acquiring a large amount of data that is not from the optimal data generating distribution
can be better than acquiring only a small amount of data from the optimal data gen-
erating distribution. It is always important to weigh the cost of getting data from other
source tasks versus the benefit of having more of that data. M6D explicitly conducts eval-
uations of the cost/benefit tradeoff of acquiring data from each data partner, based on the
improvement (or lack thereof) of adding it in as a new source domain.

4. When building an automated system that (i) learns many models simultaneously and au-
tomatically, (ii) updates those models on an ongoing basis, and (iii) needs to be scalable,
it is important to make design decisions that benefit the majority of the models without
severely damaging any of them.

5. The idea of progressive dimensionality reduction, building successively lower-dimen-
sional models, is useful in its own right (separate from these production constraints)
whenever data are available at multiple resolutions. It is ineffective to mix features such
as browser characteristics (or demographics, if a targeter wished to acquire such data) di-
rectly with millions of binary URL indicators. On the other hand, such a low-dimensional
feature set integrates smoothly with the low-dimensional stage-2 feature set of stage-1
model outputs.

We hope that these lessons will be useful to other researchers in their efforts to study im-
portant problems in Machine Learning, and to other practitioners in their efforts to apply
machine learning, especially in situations where they seek to build an automated machine
system that regulates itself with minimal human intervention. We believe that in real ap-
plications, learning from distributions and/or with labels that do not match the target task
exactly is much more common than is apparent in the machine learning research litera-
ture. This has been noted explicitly for sales targeting (Rosset and Lawrence 2006). For
credit scoring, models often are built at least in part from data on a credit issuer’s cus-
tomers, which is a significantly different distribution from that of the target task (credit ap-
plicants); similarly, in targeted marketing, predicting response level generally is done based
on those customers who have responded, even when the target task is to estimate the re-
sponse level across the prospect population. Both of these are instances of learning under
selection bias, which has been studied extensively (Zadrozny 2004). In fraud detection data
often are drawn from different sources and composed into training data, without (necessar-
ily) careful consideration of the target sampling distribution (Fawcett and Provost 1997). For
webpage classification for safe advertising, data on the very rare classes of interest are drawn
from all manner of sources different from the actual target task (Attenberg and Provost 2010;

3In cases where source task predictions are not combined via learning with an appropriate target task, M6D
will run multiple prediction algorithms simultaneously in a champion/challenger framework. Budget alloca-
tions will be reset according to which algorithms show better in campaign performance.
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Fig. 6 Sneaker campaign
performance

Attenberg et al. 2011; Ipeirotis et al. 2010). In some of these applications, such as the afore-
mentioned credit scoring and traditional targeted marketing, long experience has led some
practitioners to think about certain issues of transfer learning explicitly (even if they don’t
call it that). In other domains practitioners proceed without carefully thinking about issues
of transfer. Further, as we have illustrated, often the transfer is much more nuanced than is
accounted for by the common corrections for selection bias.

This paper illustrates how transfer learning can lead to measurable improvements, and
we assert that, at least in our case, thinking explicitly about the transfer aspects of such
applications has led to more improvement than if such transfer were simply done based on
modeling intuition.

Acknowledgement Foster Provost thanks NEC for a Faculty Fellowship.

Appendix A: Performance case studies

In this appendix we present case studies for particular campaigns that we ran for individual
customers using the system presented in the body of this article. We have run thousands of
these campaigns for major marketers and these case studies present a few campaigns where
marketers were willing to go on the record and present their results along with some of the
metrics that they used to evaluate campaign success. Additional cases are available at the
M6D website. The data and analyses presented in this appendix were made by M6D clients
without the consultation of the authors or any employee of M6D. As a result, specific details
on methodology are unavailable.

A.1 Online retail: Sneakers

Over the decades, this casual footwear brand has become the true American staple for can-
vas sneakers. The brand’s goal was to drive a large volume of revenue while delivering an
efficient ROI. As a result, M6D was a top performer on the plan, exceeding the client’s ROI
goal by 220 % for the entirety of the campaign. M6D was given a 50 % increase in spend
per month for the remainder of 2012, and at its peak was exceeding the ROI goal by 10x.
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Fig. 7 Finish campaign performance

Fig. 8 Cosmopolitan campaign performance

A.2 Customer packaged goods: Finish

Finish, (Dishwashing Detergent) was looking to drive offline sales and online coupon down-
loads at scale without wasting impressions. M6D was evaluated on two performance criteria
for this campaign: coupon downloads and in-store sales. To measure in-store sales, mea-
surement leader Nielsen was commissioned to perform their Sales Effect study. By analyz-
ing the implicit site visitation patterns that emerged for Finish customers, M6D was able to
improve performance and find more new prospects as the campaign progressed. From week
1 to week 6, M6D was able to drive down weekly CPD (cost per download) by 70 %. In the
same time period, CPR (cost per registration) decreased by 48 %. Households that were in
the exposed group purchased more total Finish detergent than those that were not exposed,
driving an 8 % sales lift and resulting in an estimated $1.7 Million in offline incremental
sales. M6D drove the highest incremental revenue per thousand impressions that Nielsen
has seen among its Sales Effect studies for Reckitt Benckiser, and drove the highest ROI
among all vendors.

Quote: “With RB being a flagship branding partner with M6D, it was very refreshing
to find such a new, innovative company truly engaged and eager to figure out, while
working in lockstep with a client, how to crack the branding code by re-jiggering
what was considered to be an industry leading DR-platform and technology. The
willingness and drive of M6D to re-work their toolkit for custom needs of RB as a
representative branding client was an exciting and very rewarding undertaking.”
Media Director, North America, Reckitt Benckiser

A.3 Travel: Cosmopolitan of Las Vegas

The Cosmopolitan collaborated with Nielsen to measure the ad effectiveness of the M6D
campaign along a number of dimensions. Research actions are user visit (page view) to
cosmopolitanlasvegas.com or a brand-related search term. A brand explorer is a person
who engages in at least one Research Action. As measured by a Nielsen Response Effect

http://cosmopolitanlasvegas.com
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Fig. 9 Infiniti campaign performance. The three measures are, left to right, the numbers of lead requests, the
click-through-rate, and a compilation of brand-specific performance indicators

Fig. 10 New School campaign performance

study, M6D increased Cosmopolitan Hotel online brand explorers by 690 % and the number
of research actions per explorer by 61 %.

A.4 Automotive: Infiniti

By using M6D’s targeting rather than more traditional targeting methods, Infinity was able
to reach audiences that are more receptive to their brand’s message. The marketing network
for Infiniti-branded vehicles now includes over 230 dealers in over 15 countries. Infiniti
pitted M6D against two ad networks measuring three main performance criteria, presented in
Fig. 9. Left to right the figure shows the comparison with the competitors in terms of: Lead
requests include online events such as dealer locator, vehicle configurator, contact retailer,
contact dealer pre-order, CPO contact dealer confirm, quote requests, and test drives. Click-
thru rate (CTR) is the traditional percentage of clicks on the ads. Other performance
indicators (OPI) are directed at in-markets users and includes certified pre-owned (CPO)
search results, credit inquiries, CPO dealer locator and retail locator. In terms of OPI, M6D
performed better than the other two video networks. OPI conversions were 2x better than
the competition. Per DART reporting, M6D generated a CTR that was 3x better than the
competition. In terms of Lead Requests, M6D was the top performer with almost 8x more
conversions than the closest competitor.

Quote: “By using M6D’s targeting rather than more traditional targeting methods,
Infiniti was able to reach audiences that are more receptive to their brand’s message.”
Strategist, OMD Digital

A.5 Education: The New School

Parsons The New School for Design is known for cultivating outstanding artists, designers,
scholars, business people, and community leaders for over a century. Looking to reach a
large audience of qualified new prospects without sacrificing ROI, The New School was
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Fig. 11 Bonobos campaign
performance

looking to M6D to drive efficient leads and applications. The results showed not only in-
creased leads, but also an increase in delivering qualified applicants to The New School.
M6D delivered 11 leads (information requests)—more than 2.5 times the number delivered
by the competing network. M6D delivered 28 completed applications, more than three times
the number delivered by the competing network.

Customer Quote: “M6D helped us reach beyond the audience that was already on
our site and find new prospects who were interested in the university; the results speak
for themselves.”
Digital Marketing Manager, The New School

A.6 Online retail: Bonobos

Bonobos has built a reputation for service, quality, style, and most of all, fit. They were
asking how can an innovative retailer with extensive knowledge of its customer life cycle
use prospecting to grow its client base and drive sales? M6D drove a CPA 63 % better than
the client’s goal for finding new prospects. Due to M6D’s strong performance, the client re-
newed for the following quarter, doubling its monthly spending. We also presented the client
with our proprietary Non-Invasive Causal Estimation (NICE) analysis, demonstrating that
M6D prospecting could drive a significant lift in conversions for the brand (cf., Stitelman
et al. 2011). The team also used the NICE analysis to highlight the portion of conversions
attributable to our targeting (vs. those that would have happened organically).

Quote: “M6D provided a unique combination of avant-garde technology and insight
that helped us to effectively use their prospecting engine to expand our customer base
without over-spending on wasted impressions. With the correct attribution strategy in
place, they quickly became our top performer for our holiday campaign.”
Head of Customer Acquisition, Bonobos

Appendix B: Definition of the tasks and datasets

Stage 1 (high-dimensional training) The objective of this first task is to provide as many
positives as possible to allow estimation of complex and high-dimensional models on a
representation of the user’s browsing history, with each URL hashed into its own binary
feature. The resulting feature space is very large (≈10 Million) and extremely sparse. For the
experiments, we use all brand action events from a given time period as positive examples
and include a random sample of other browsing events as negative.

– Sample: Union of all online activity including general browsing events and all brand
action events. Users who are in both are assigned to action events.

– Features Xbinary : binary URL indicators for approximately 10 million URLs.
– Label: YStage1 = [0,1]; 0 for browsing events and 1 for action events.
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Stage 2 (low-dimensional training) Stage-1 modeling learns an accurate high-dimensional
model on a biased sample. The stage-2 task uses the output of our stage-1 models as part of
a much-lower-dimensional model on the target sample PT (ET ). Like our final target task,
it uses future brand actions as the label YT . The lower dimensionality allows us to learn
effectively with the small number of positives in the correct population.

– Sample: A set of users who have seen a random (untargeted) ad. All users who have
previously taken a brand action are removed. This sample PT (ET ) is consistent with the
ultimate target task.

– Features X = (Xinf o,XStage1): Some basic cookie statistics Xinf o (cookie age, number
of interactions, user agent) along with the predictions of the stage-1 models XStage1 =
[f1(Xbinary), f2(Xbinary), . . .] where each fs(X∗) is the application of learned function of
the first stage.

– Label: YT = [0,1]: Did the consumer visit the brand site/make a purchase within seven
days of being exposed to an ad? This is consistent with the target label.

Target task The ultimate goal of our learning system is to predict, using ALL the infor-
mation that we have on a user, whether or not that user will buy something within seven
days. We obtain far too few positives in this space to model it directly, but it is useful for
evaluation.

– Sample PT (ET ): A set of users who have seen a random (untargeted) ad. All users who
have previously taken a brand action are removed.

– Features XT = (Xinf o,Xbinary): Union of all features including basic browser/cookie stats
and binary URL indicators that are transformed into second-stage features using the mod-
els estimated in stage 1.

– Target: YT = [0,1] Did the user visit the brand site/make a purchase within seven days of
the ad impression?
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