
Learning from Bad DataFoster John Provost�NYNEX Science & Technology, Inc.400 Westchester Ave.White Plains, NY 10604foster@nynexst.com Andrea Pohoreckyj DanylukWilliams CollegeDepartment of Computer ScienceWilliamstown, MA 01267andrea@cs.williams.eduAbstractThe data describing resolutions to telephonenetwork local loop \troubles," from whichwe wish to learn rules for dispatching tech-nicians, are notoriously unreliable. Anec-dotes abound detailing reasons why a reso-lution entered by a technician would not bevalid, ranging from sympathy to fear to ig-norance to negligence to management pres-sure. In this paper, we describe four dif-ferent approaches to dealing with the prob-lem of \bad" data in order �rst to determinewhether machine learning has promise in thisdomain, and then to determine how well ma-chine learning might perform. We then o�erevidence that machine learning can help tobuild a dispatching method that will performbetter than the system currently in place.1 INTRODUCTIONThe data describing resolutions to telephone networklocal loop \troubles," from which we wish to learnrules for dispatching technicians, are notoriously un-reliable. Anecdotes abound detailing reasons why aresolution entered by a technician would not be valid,ranging from sympathy to fear to ignorance to neg-ligence. Initial attempts at learning from these datawere not promising. However, data are plentiful andthe task is an enormous one. A small increase in ac-curacy can have a large impact on the company's bot-tom line. For example, if we are willing to ignore de-tails for the moment, New York State alone has over300,000 residential trouble reports per month; if an er-roneous dispatch costs the company (on the average)$100, then every 1% decrease in dispatch error ratecan save the company over $3 million annually. Thus,however poor the quality of the data, it is worthwhile�Presented at the workshop on Applying MachineLearning in Practice at IMLC-95.

to investigate methods for increasing the accuracy oflocal loop trouble diagnosis.In this paper, we describe four di�erent approaches todealing with the problem of \bad" data in order �rstto determine whether machine learning has promisein this domain, and then to determine how well ma-chine learning might perform. First, we use an existingexpert system as a model to generate clean data fromwhich we can learn rules that dispatch almost perfectly(with respect to the expert system's model). Second,we gather expert analyses of a small set of data andshow that it is likely machine learning can also modelthe behavior of experts. Third, we show that learningfrom the �eld (technicians') data may, in fact, be bet-ter than we had previously believed. Fourth, we useprior knowledge to \clean up" the �eld data and showthat we can learn quite well from the cleaned-up data.Finally, we o�er evidence that machine learning canhelp to build a dispatching method that will performbetter than the system currently in place.2 NYNEX MAX AND THE LOCALLOOP MAINTENANCE DOMAIN2.1 OVERVIEWMAX (Rabinowitz et al 1991) is an expert systemdeveloped by NYNEX Science and Technology1 forthe purpose of troubleshooting customer-reported tele-phone problems. MAX deals speci�cally with prob-lems in the local loop, the part of the telephone net-work between the central o�ce and the customer'spremises.When a customer of the phone company has di�cultywith his telephone line he calls the phone companyto report the problem (the trouble). A phone com-pany representative creates a trouble report and also1NYNEX is the parent company of NYNEX New Yorkand NYNEX New England, formerly New York Telephoneand New England Telephone.



initiates electrical tests on the customer's line, calledthe Mechanized Loop Test (MLT).2 The MLT mea-sures the electrical signature of the customer's lineand gives such information as voltages and resistances.This information is then interpreted by a primitiverule-based system called the Screening Decision Unit(SDU), which gives a diagnosis based upon a summaryof the MLT results. All this information is then sent toa Maintenance Administrator (MA) who determines ahigh-level diagnosis for the trouble.MAX (Maintenance Administrator EXpert) plays therole of an MA. It gives a high-level diagnosis of a trou-ble based upon MLT results, the SDU recommenda-tion, and other information about the customer. Thehigh-level diagnosis determines roughly in which partof the customer's line the trouble lies. There are �vepossible diagnoses: (1) dispatch to the cable; (2) dis-patch to the distribution wiring; (3) handle the troublein the central o�ce; (4) do further testing; or (5) sendto a human MA for diagnosis.2.2 APPLYING MACHINE LEARNINGMAX is a rule-based system of approximately 150rules.3 It has been used successfully throughoutNYNEX's phone companies in New York and NewEngland. To handle regional di�erences as well as dif-ferences over time, MAX's developers built into thesystem a set of parameters that may be tuned fordi�erent locations. The parameters essentially de�nethresholds for rule application. While the parametersare a valuable concept in theory, they are di�cult totune in practice, largely due to their subtle interactionsin the rules.The problem of tuning MAX for local conditions is aparticularly promising application for machine learn-ing for the following reasons: (1) Diagnosis in this do-main is a static problem. That is, all data are gatheredand a diagnosis (or classi�cation) is then based on thevalues given. Di�cult problems such as incorporatingtime into the solution are not an issue here. (2) Dataare abundant. (3) A knowledge base already exists,providing a wealth of information about the domain.The appeal of learning in this domain is its potentialfor generating dispatch knowledge that captures localdi�erences. Learning is also appealing because of itspotential for tracking changes in dispatch knowledgeas the network equipment degrades or is replaced withnew equipment.Several approaches to the problem of tuning MAXhave been investigated: (1) The application of induc-tive learning to generate completely new knowledge2MLT is a product of AT&T.3It is di�cult to give an accurate estimate of the size assome rules are fairly short while others are quite complexand are essentially the equivalent of many smaller rules.

bases for speci�c locations (Danyluk & Provost 1993a).(2) The application of analytic and inductive learningto modify the existing knowledge base for speci�c lo-cations (Pazzani & Brunk 1993; Goodman 1989). (3)The application of techniques to perform parametertuning (Merz et al 1994). This paper discusses the�rst of these only.2.3 MACHINE LEARNING RESULTSREPORTED IN THIS PAPERAll results reported in this paper were generated us-ing C4.5 (Quinlan 1992) with default settings.4 Re-sults given are after pruning. C4.5 is trained and thentested on MAX data, where speci�c class labels havecome from a variety of sources: MAX itself, techni-cians who have been dispatched to solve a problem, orexperts in the domain of trouble dispatch. Success ofC4.5 on the training set is measured in two ways: (i)we measure error rate on independent test sets; and(ii) we measure the percentage decrease in error rate(PDER) of the learned concept description over the er-ror rate of the default class. This indicates the extentto which the learned decision tree decreases the errorrate that would result from always selecting a defaultclass. The default class is taken to be the most fre-quently occurring class in any particular training set.Numbers of test examples are given with each set ofruns. All results reported have been averaged over10 runs with training and test sets chosen randomly.Unless indicated otherwise, all data used in the runs inthis paper are taken from a single site during a periodof approximately 8 months.3 RESULTSIn this section we report results of running C4.5 ondata for this domain. We discuss the performance ofC4.5 when considering 3 di�erent sources for the classlabels given to training and test examples. In the runsreported, 22 features have been used to describe ex-amples (though results with a subset of 14 featureshave been similar). The 22 features used are, withone exception, the features used by MAX for diagno-sis. Throughout this section, we use \the default" asa shorthand for \classifying all cases identically usingthe most frequently occurring class."3.1 MODELING MAXAs reported previously (Danyluk & Provost 1993a, b),in order to evaluate the potential of machine learning4Earlier results were obtained with other systems (seeSection 2.2), but C4.5 consistently has yielded results thatare at least as good as the other systems and has done somore e�ciently.



in this domain, we used the existing MAX expert sys-tem to create a \clean" data set from which to learn.MAX is currently in regular use across the NYNEXcorporation for the dispatch of technicians for local-loop troubles. We ran a series of experiments with thegoal of showing that given good data we could learn todispatch well. The major assumption of this approachis that MAX is dispatching correctly.As the results in Table 1 show, given a large enoughquantity of data, using machine learning we can dupli-cate MAX's performance almost perfectly. One studyin which experts were asked to analyze the troubles onwhich C4.5 failed to model MAX indicated that C4.5'sdecision was better than MAX's in approximately 50%of the cases. Although these results show promise formachine learning as a method of creating the knowl-edge base for a dispatch system, they do not o�er asolution to the problem of generating knowledge thatwill necessarily increase the performance of MAX.Table 1: C4.5 results: Classes = MAX dispatches. Sizeof test set = 4874. ER = Error RateTraining Set ER on Test Set StDev100 29.18 2.201000 9.60 0.6910000 2.54 0.253.2 MODELING EXPERTSIn order to evaluate the potential of machine learningas a tool to build a better MAX, we enlisted the helpof several experts in local loop trouble-shooting. Theexperts were phone company veterans with many yearsof experience in the areas of maintenance and repairof the local loop.We ran a set of experiments testing the ability to learndispatch knowledge from expert-classi�ed data. Therationale behind this set of experiments is that if ma-chine learning can create knowledge that models thebehavior of human experts well, then it may be pos-sible, albeit resource consuming, to have local expertsanalyze large numbers of troubles and learn new dis-patch knowledge from these data.As the results in Table 2 show, for one expert who an-alyzed 500 troubles from a site with which the expertis very familiar, C4.5 can model the expert's behav-ior fairly well as compared to the default. A similaranalysis of other experts' answers have yielded com-parable results. Results are given for one expert onlyfor several reasons: 1) No two experts, of the 5 expertssurveyed, agreed upon diagnoses more than 65% of thetime. This might be evidence for the di�erences thatexist between sites, as the experts surveyed had gainedtheir expertise at di�erent locations. If not, however,

it raises questions about the correctness of the expertdata. 2) Troubles analyzed by the experts were takenfrom 2 di�erent sites. Experts who had been givendata from one of the sites indicated that the electricalreadings appeared to be questionable, probably due toa problem with MLT. Results given in Table 2 are forthe better site.Unfortunately, the size of the data set in these ex-periments was limited. The results shown in Table 1suggest that 400 examples may be too few for e�ectivelearning. Analysis of the concept description learnedby MAX explains why many examples are needed:very small disjuncts comprise a large portion of theconcept description (Danyluk & Provost 1993a). How-ever, the results of these experiments are promisingwith respect to the potential for machine learning tomodel the behavior of human experts.Table 2: C4.5 results: expert classes. Size of test set= 100. Error rate with default class = 57.8.Training Set ER on Test Set StDev PDER100 38.6 4.22 33.22200 35.9 5.20 37.89300 34.4 3.17 40.48400 35.3 3.68 38.933.3 MODELING THE FIELD DATAQuestions as to the ability of MAX and the expertsto dispatch accurately (see Sections 3.2 and 5) led usto revisit learning from the �eld (technicians') data.We wanted to characterize how well machine learningwould perform on these data, and whether we could doanything to increase the performance. As the results inTable 3 show, the performance of the learned decisiontrees is less than inspiring. However, the learned treesdo perform slightly better than the default.5Table 3: C4.5 results: classes = technicians' results.Size of test set = 863. Error rate of default = 61.6Training Set ER on Test Set StDev PDER100 60.98 3.26 1.01500 59.27 1.81 3.781000 58.80 1.12 4.545000 57.54 1.23 6.59Quite surprisingly, we were able to signi�cantly in-5Although MAXmay classify a trouble in one of 5 ways,there are only 4 dispatch classes that correspond to the�eld technicians' diagnoses. (MAX can send a trouble to ahuman MA for dispatch.)



crease our ability to dispatch accurately by reducingthe feature set to a single feature: vercode. Vercodeis essentially a summary of the electrical readings pro-duced by MLT. MAX was originally designed with thegoal of using additional information to increase theperformance of vercode alone. As the results in Ta-ble 4 show, the decision stumps (Holte 1993) learnedby C4.5 on the �eld data perform much better thanthose learned with larger feature sets.Table 4: C4.5 results: classes = technicians' results;vercode only. Error rate of default = 61.6Training Set ER on Test Set StDev PDER100 62.40 4.47 -1.30500 54.42 1.45 11.651000 53.43 1.64 13.265000 51.74 0.87 16.014 CLEANING UP THE DATA4.1 MODELING CLEANED-UP FIELDDATABy analyzing the di�erent trouble resolutions reportedby the �eld technicians, it becomes clear that machinelearning programs would have a di�cult time model-ing the data. For some borderline resolutions, it isnot clear what the correct dispatch should have been,either because the resolution does not provide a diag-nosis or because the diagnosis cannot be unambigu-ously mapped to a dispatch. Furthermore, there aremany cases for which the resolution is a \Test OK."This resolution indicates that the technician retestedthe line in the process of attempting to locate the trou-ble, and found that there was not a problem. Thesecases are particularly troublesome for a machine learn-ing program because it is impossible to know what the\correct" dispatch should have been. For example, ifthe trouble is a short due to water in a cable thathas dried by the time the technician retests the line,the correct dispatch should be \dispatch to cable," be-cause the trouble is very likely to reoccur during thenext heavy rain. Unfortunately, it is impossible to tellthe di�erence between cases where there was no prob-lem to begin with and cases where the problem wastransient. These cases are placed together with caseswhere there are not enough data (and thus a retest isneeded) into a catch-all \retest" dispatch.In order to evaluate how machine learning might per-form on reliable �eld data, we used prior knowledge oftrouble resolutions and dispatches to remove sourcesof confusion from the �eld data. We ran a set of ex-periments to test the hypothesis that cleaning up thedata will elicit better learning performance (lower er-

ror rates).As the learning results in Tables 5 and 6 show, theperformance on the cleaned-up data is considerablybetter than the performance on the original �eld data.It is important to note that the cleaned-up data haveonly 3 classes instead of 4, and using the default yieldsa lower error rate than on the previous data. However,as the results in Table 5 and Table 6 show, the per-centage decrease in error rate (PDER) for the learnedconcept descriptions (in particular, for the vercode de-cision stump as shown in Table 6) is larger on thecleaned-up data than on the original data. This in-dicates that, in both absolute terms and relative tothe performance of the default, we can learn more ac-curate concept descriptions from the cleaned-up �elddata than from the original data.Table 5: C4.5 results: Cleaned data. Size of test set= 686. Error rate of default = 47.13Training Set ER on Test Set StDev PDER100 41.46 3.92 12.03500 38.00 3.08 19.371000 37.35 1.90 20.752000 36.17 1.63 23.25Table 6: C4.5 results: Cleaned data; vercode onlyTraining Set ER on Test Set StDev PDER100 38.11 4.31 19.14500 34.62 1.58 26.541000 34.51 1.20 26.772000 34.16 1.52 27.524.2 MODELING A TWO-CLASSPROBLEM: IN VS. OUTIn the previous section we cleaned up the �eld data us-ing prior knowledge, in order to reduce the confusionbetween the three dispatch classes: dispatch to thecentral o�ce, dispatch to a cable technician, and dis-patch to an outside repair technician. The latter twodispatches address problems in the \outside plant."There are a priori reasons why it might be desirableto combine these classes into a single \dispatch out"class. One such reason is that often a repair techni-cian can �x a minor cable problem without operatingon the cable (e.g., by \swapping pairs"). A commonpractice is to dispatch to the repair technician �rst;if he cannot �x the problem he reroutes it to a cabletechnician. Experts have suggested that being ablecon�dently to di�erentiate between dispatching \in"versus \out" is desirable.



In order to test the hypothesis that we could di�erenti-ate accurately between dispatching in and dispatchingout, we combined the two outside plant dispatches inthe cleaned-up dataset. This modi�cation also allowedus to reinsert the cases that were borderline betweenrepair and cable, so the example sets were larger thanthose in the previous section.As the results in Tables 7 and 8 show, C4.5 was able tolearn decision trees that dispatch very accurately. Inparticular, the vercode decision stumps have an aver-age error rate of less than 7%. As in the previous sec-tion, it is important to note that by combining classesthe default error rate decreased. In this case, the er-ror rate for the default is just over 9%. The tablesshow the percentage decrease in error rate over the er-ror rate of the default dispatch for these experiments.In sum, although the absolute decrease in error rate issmaller for the In vs. Out data than for the cleaned-updata of the previous section, the percentage decreaseis comparable.Table 7: C4.5 results: In vs Out. Size of test set =738. Error rate of default = 9.4.Training Set ER on Test Set StDev PDER100 9.37 0.82 0.36500 9.46 0.97 - 0.601000 8.48 1.61 9.822000 7.06 0.65 24.923000 7.27 0.63 22.69Table 8: C4.5 results: In vs Out; vercode onlyTraining Set ER on Test Set StDev PDER100 9.39 0.83 0.15500 9.39 0.83 0.151000 9.39 0.83 0.152000 7.41 1.39 21.203000 6.71 0.78 28.655 COMPARISON WITH EXISTINGMETHODSA comparison with existing methods will be a majorcomponent of NYNEX's �nal decision as to whetherlearned knowledge can help with the local-loop dis-patch problem. Table 9 shows a comparison of theperformance of the vercode decision stumps with theMAX expert system on the same �eld data. The addi-tional possible dispatches for the MAX expert systemcomplicate the comparison; MAX can opt to route acase to a human (PSH) or can request additional tests

(PDT). Of the three data sets included in Table 9,only Field Data contains PDT as a possible correctdispatch, and none contains PSH. Fortunately for thecomparison, on these data MAX chose PSH less than1% of the time. However, MAX chose PDT often.To facilitate comparison, in Table 9 we report the er-ror rate of MAX when compared against all data ineach data set. An answer of PDT is considered tobe an error if the �eld result is labeled with a dis-patch (PDI, PDO, or PDF). Since no PDTs appearin Cleaned Field Data or In vs Out Only, MAX isconsidered to be in error if it chose not to make a dis-patch. To temper the harshness of this comparison, wealso compared the error rate for MAX when it chose tomake a dispatch (PDI, PDO, or PDF). ColumnMAXDgives MAX's error rate on those cases where it choseone of the three dispatches. Column MAXD-C givesthe percentage of examples in each data set on whichMAX chose one of the three dispatches. Please notethat these �gures are for one preliminary study andare intended to suggest that there may be room forimprovement in the existing system. They should notbe interpreted as a comprehensive evaluation of theperformance of the existing system.Table 9: Comparison of error rates of Learned Deci-sion Stumps (LDS), MAX, and MAX when it issues adispatch (MAXD) on Field Data, plus the coverage ofdata by MAX's dispatches (Cov)Data LDS MAX MAXD CovField Data 51 67 68 53Cleaned Data 34 67 41 56In vs Out Only 7 46 4 56These results show that the learned knowledge is sig-ni�cantly better than MAX at predicting the dispatchcorresponding to the resolution reported by the �eldtechnician. The only situation in which MAX per-forms better than the learned knowledge is on In vsOut Only, only considering the cases where MAX choseto dispatch. In this scenario, MAX is incorrect only4% of the time. The learned decision stump is incor-rect 7% of the time, but it chooses a dispatch for everycase. Note that these were all cases where a technicianreported a resolution that mapped unambiguously toa dispatch. Preliminary results show that if we use thelearned stump to dispatch only when the con�dence ishigh, the error rate scales gracefully with the cover-age. For example, the learned knowledge can achievea 4% error rate and cover 86% of the data. When thecoverage of the learned knowledge decreases to 56%, itis incorrect only 2% of the time. The increase in per-formance using the learned vercode mapping over theMAX system is one piece of evidence supporting theconclusion that by looking at the data we can extractdispatch knowledge that can improve MAX's perfor-



mance.A second piece of evidence comes from a similar com-parison of the dispatch error rate of the experts as com-pared to that of the learned vercode decision stump.Table 10 shows that the learned vercode mapping out-performs the experts on the �eld data.Table 10: Comparison of error rates of Learned Deci-sion Stumps (LDS), Expert (Exp), and Expert whenhe chose a dispatch (ExpD) on Field Data, plus thecoverage of data by Exp's dispatches (Cov)Data LDS Exp ExpD CovField Data 51 67 61 50Cleaned Data 34 69 42 53In vs Out Only 7 53 8 51A potential criticism of the above argument is thatthe learning is �tting error in the data, and the expertsand MAX are actually better at dispatching. However,when MAX and the �ve experts are compared witheach other, there is very little agreement. No expertagrees with MAX's dispatch more than 65% of thetime. The average agreement is less than 50%. Theagreement between any pair of experts is in the samerange. These results suggest that the problem is muchmore di�cult that previously thought, and the datamay not be as full of errors as conventional wisdomwould have you believe.Further support for the contention that the learnedknowledge is not just modeling errors in the datacomes from a comparison of the e�ectiveness of thelearned knowledge for dispatch in other areas. Wetook the best decision stump learned from one loca-tion's data and used it for dispatch in four other areas.As shown in Table 11, in three of the four comparisons,the knowledge learned in one area transfers well to theother areas.Table 11: Comparison of error rates of knowledgelearned from location X when applied to other loca-tions. Location Field Cleaned In vs OutX 52 34 7A 54 25 5B 57 38 7C 56 21 3D 64 51 18It is important also to consider that error rate is notthe only basis for comparison of dispatching knowl-edge. Di�erent errors have di�erent costs (e.g., a

very costly error would be to dispatch a cable tech-nician when a retest would have revealed that therewas no problem). Recent and current work is address-ing learning knowledge for cost-e�ective local loop dis-patch (Pazzani, et al. 1994; Provost 1994; Turney1995).6 CONCLUSIONSThe results presented here suggest that one of the fol-lowing two conclusions is true: (i) by modeling thedata we can �nd a vercode-to-dispatch mapping thatcan improve the performance of MAX, or (ii) machinelearning is modeling systematic error in the data andthe error is systematic with respect to the vercode.Conclusion (i) is based on the apparent decrease indispatch error rate of the learned vercode mappingover MAX. The learned vercode mapping also has asmaller error rate than that of the experts, when theexperts are compared to the resolutions reported fromthe �eld.Conclusion (ii) is based on the fact that if the error inthe data were random with respect to the vercode, itwould be virtually impossible to learn to �t the error.We assert that conclusion (i) is more likely than con-clusion (ii), because conclusion (ii) rules out most ofthe forms of error generally believed to exist in thedata.7 MACHINE LEARNING INPRACTICE: LESSONS LEARNEDThe �rst lesson learned from our e�orts to apply ma-chine learning in practice is that real data are unre-liable. They can be �lled with errors that reach farbeyond the noise that machine learning work tradi-tionally assumes. The errors in real data do not onlyexceed researchers' expectations in terms of their vol-ume, but also in their quality. Researchers typicallymodel noise as random perturbations of correct data.Errors in real data, while including random noise ofthis sort, may also include systematic errors that mayoccur for a variety of reasons ranging from miscalibra-tion of measuring devices to management pressuresto report particular results. These \non-traditional"sources of error make the results of learning corre-spondingly unreliable. If the learning techniques can-not model the data well, it is not clear whether it isdue to the quality of the data, or it is due to the inade-quacy of the description language. On the other hand,if the learning can model the data better than existingtechniques, it is not clear that the increase in perfor-mance is not due to modeling some systematicity inthe error.We have investigated several approaches to dealing



with poor data:� Obtain data from multiple sources. In thecase of local loop troubleshooting, we were ableto obtain classi�cations from the existing expertsystem, from experts in the �eld of dispatch, andfrom technicians. The fact that machine learn-ing is able to model the existing expert systemsupports the viability of machine learning in thisdomain. Using expert knowledge provides someadditional evidence for this. It also, however, in-dicates the complexity of this domain, evidencedby the lack of agreement among experts.� Use domain knowledge to clean data. Wehave used domain knowledge to \clean up" thedata available for learning. In our case, \cleaningup" occurs by removing examples where classi�-cations might be ambiguous or otherwise di�cultto interpret. While this yields better learning re-sults, it might be the case that we have simplyeliminated the di�cult parts of the domain fromthe data set (and therefore from the model).� Get what you can from the data. Though wecannot claim a machine learning success story, wehave unearthed interesting properties of the do-main, and more speci�cally about the data. Forinstance, given the data available, decision stumpsappear to beat full-blown learning and the exist-ing system.Overall, in this domain, we have not been able to claimmachine learning as a successful solution to the prob-lem, but there is promise. Though we cannot de�ni-tively say that a learned concept description is moreaccurate than MAX, our results indicate that we arelikely to be able to increase MAX's performance. Thisdomain also brings the issue of learning in the pres-ence of systematic error to the fore, something thathas lacked attention in the research community.AcknowledgementsKim Tabtiang performed the runs reported in this pa-per. Tom Fawcett helped in developing new mappingsfrom �eld-technicians' resolutions to dispatches (forthe cleaned-up and In vs. Out data), performed manyof the initial c4.5 runs using the new mappings, andcontributed to many lively discussions on learning andlocal loop dispatch.ReferencesDanyluk, A. P. & Provost, F. J. (1993a). Small Dis-juncts in Action: Learning to Diagnose Errors in theLocal Loop of the Telephone Network. In Proceed-ings of the Tenth International Conference on MachineLearning, 81-88. San Mateo, CA: Morgan KaufmannPublishers, Inc.
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