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Abstract

The data describing resolutions to telephone
network local loop “troubles,” from which
we wish to learn rules for dispatching tech-
nicians, are notoriously unreliable. Anec-
dotes abound detailing reasons why a reso-
lution entered by a technician would not be
valid, ranging from sympathy to fear to ig-
norance to negligence to management pres-
sure. In this paper, we describe four dif-
ferent approaches to dealing with the prob-
lem of “bad” data in order first to determine
whether machine learning has promise in this
domain, and then to determine how well ma-
chine learning might perform. We then offer
evidence that machine learning can help to
build a dispatching method that will perform
better than the system currently in place.

1 INTRODUCTION

The data describing resolutions to telephone network
local loop “troubles,” from which we wish to learn
rules for dispatching technicians, are notoriously un-
reliable. Anecdotes abound detailing reasons why a
resolution entered by a technician would not be valid,
ranging from sympathy to fear to ignorance to neg-
ligence. Initial attempts at learning from these data
were not promising. However, data are plentiful and
the task is an enormous one. A small increase in ac-
curacy can have a large impact on the company’s bot-
tom line. For example, if we are willing to ignore de-
tails for the moment, New York State alone has over
300,000 residential trouble reports per month; if an er-
roneous dispatch costs the company (on the average)
$100, then every 1% decrease in dispatch error rate
can save the company over $3 million annually. Thus,
however poor the quality of the data, it is worthwhile
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to investigate methods for increasing the accuracy of
local loop trouble diagnosis.

In this paper, we describe four different approaches to
dealing with the problem of “bad” data in order first
to determine whether machine learning has promise
in this domain, and then to determine how well ma-
chine learning might perform. First, we use an existing
expert system as a model to generate clean data from
which we can learn rules that dispatch almost perfectly
(with respect to the expert system’s model). Second,
we gather expert analyses of a small set of data and
show that it is likely machine learning can also model
the behavior of experts. Third, we show that learning
from the field (technicians’) data may, in fact, be bet-
ter than we had previously believed. Fourth, we use
prior knowledge to “clean up” the field data and show
that we can learn quite well from the cleaned-up data.

Finally, we offer evidence that machine learning can
help to build a dispatching method that will perform
better than the system currently in place.

2 NYNEX MAX AND THE LOCAL
LOOP MAINTENANCE DOMAIN

2.1 OVERVIEW

MAX (Rabinowitz et el 1991) is an expert system
developed by NYNEX Science and Technology! for
the purpose of troubleshooting customer-reported tele-
phone problems. MAX deals specifically with prob-
lems in the local loop, the part of the telephone net-
work between the central office and the customer’s
premises.

When a customer of the phone company has difficulty
with his telephone line he calls the phone company
to report the problem (the trouble). A phone com-
pany representative creates a trouble report and also
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and New England Telephone.



initiates electrical tests on the customer’s line, called
the Mechanized Loop Test (MLT).2 The MLT mea-
sures the electrical signature of the customer’s line
and gives such information as voltages and resistances.
This information is then interpreted by a primitive
rule-based system called the Screening Decision Unit
(SDU), which gives a diagnosis based upon a summary
of the MLT results. All this information is then sent to
a Maintenance Administrator (MA) who determines a
high-level diagnosis for the trouble.

MAX (Maintenance Administrator EXpert) plays the
role of an MA. It gives a high-level diagnosis of a trou-
ble based upon MLT results, the SDU recommenda-
tion, and other information about the customer. The
high-level diagnosis determines roughly in which part
of the customer’s line the trouble lies. There are five
possible diagnoses: (1) dispatch to the cable; (2) dis-
patch to the distribution wiring; (3) handle the trouble
in the central office; (4) do further testing; or (5) send
to a human MA for diagnosis.

2.2 APPLYING MACHINE LEARNING

MAX is a rule-based system of approximately 150
rules.> It has been used successfully throughout
NYNEX’s phone companies in New York and New
England. To handle regional differences as well as dif-
ferences over time, MAX’s developers built into the
system a set of parameters that may be tuned for
different locations. The parameters essentially define
thresholds for rule application. While the parameters
are a valuable concept in theory, they are difficult to
tune in practice, largely due to their subtle interactions
in the rules.

The problem of tuning MAX for local conditions is a
particularly promising application for machine learn-
ing for the following reasons: (1) Diagnosis in this do-
main is a static problem. That is, all data are gathered
and a diagnosis (or classification) is then based on the
values given. Difficult problems such as incorporating
time into the solution are not an issue here. (2) Data
are abundant. (3) A knowledge base already exists,
providing a wealth of information about the domain.

The appeal of learning in this domain is its potential
for generating dispatch knowledge that captures local
differences. Learning is also appealing because of its
potential for tracking changes in dispatch knowledge
as the network equipment degrades or is replaced with
new equipment.

Several approaches to the problem of tuning MAX
have been investigated: (1) The application of induc-
tive learning to generate completely new knowledge

2MLT is a product of AT&T.

31t is difficult to give an accurate estimate of the size as
some rules are fairly short while others are quite complex
and are essentially the equivalent of many smaller rules.

bases for specific locations (Danyluk & Provost 1993a).
(2) The application of analytic and inductive learning
to modify the existing knowledge base for specific lo-
cations (Pazzani & Brunk 1993; Goodman 1989). (3)
The application of techniques to perform parameter
tuning (Merz et al 1994). This paper discusses the
first of these only.

2.3 MACHINE LEARNING RESULTS
REPORTED IN THIS PAPER

All results reported in this paper were generated us-
ing C4.5 (Quinlan 1992) with default settings.* Re-
sults given are after pruning. C4.5 is trained and then
tested on MAX data, where specific class labels have
come from a variety of sources: MAX itself, techni-
cians who have been dispatched to solve a problem, or
experts in the domain of trouble dispatch. Success of
C4.5 on the training set is measured in two ways: (i)
we measure error rate on independent test sets; and
(ii) we measure the percentage decrease in error rate
(PDER) of the learned concept description over the er-
ror rate of the default class. This indicates the extent
to which the learned decision tree decreases the error
rate that would result from always selecting a default
class. The default class is taken to be the most fre-
quently occurring class in any particular training set.

Numbers of test examples are given with each set of
runs. All results reported have been averaged over
10 runs with training and test sets chosen randomly.
Unless indicated otherwise, all data used in the runs in
this paper are taken from a single site during a period
of approximately 8 months.

3 RESULTS

In this section we report results of running C4.5 on
data for this domain. We discuss the performance of
C4.5 when considering 3 different sources for the class
labels given to training and test examples. In the runs
reported, 22 features have been used to describe ex-
amples (though results with a subset of 14 features
have been similar). The 22 features used are, with
one exception, the features used by MAX for diagno-
sis. Throughout this section, we use “the default” as
a shorthand for “classifying all cases identically using
the most frequently occurring class.”

3.1 MODELING MAX

As reported previously (Danyluk & Provost 1993a, b),
in order to evaluate the potential of machine learning

*Farlier results were obtained with other systems (see
Section 2.2), but C4.5 consistently has yielded results that
are at least as good as the other systems and has done so
more efficiently.



in this domain, we used the existing MAX expert sys-
tem to create a “clean” data set from which to learn.
MAX is currently in regular use across the NYNEX
corporation for the dispatch of technicians for local-
loop troubles. We ran a series of experiments with the
goal of showing that given good data we could learn to
dispatch well. The major assumption of this approach
is that MAX is dispatching correctly.

As the results in Table 1 show, given a large enough
quantity of data, using machine learning we can dupli-
cate MAX’s performance almost perfectly. One study
in which experts were asked to analyze the troubles on
which C4.5 failed to model MAX indicated that C4.5’s
decision was better than MAX’s in approximately 50%
of the cases. Although these results show promise for
machine learning as a method of creating the knowl-
edge base for a dispatch system, they do not offer a
solution to the problem of generating knowledge that
will necessarily increase the performance of MAX.

Table 1: C4.5 results: Classes = MAX dispatches. Size
of test set = 4874. ER = Error Rate

| Training Set | ER on Test Set [ StDev |

100 29.18 2.20
1000 9.60 0.69
10000 2.54 0.25

3.2 MODELING EXPERTS

In order to evaluate the potential of machine learning
as a tool to build a better MAX, we enlisted the help
of several experts in local loop trouble-shooting. The
experts were phone company veterans with many years
of experience in the areas of maintenance and repair
of the local loop.

We ran a set of experiments testing the ability to learn
dispatch knowledge from expert-classified data. The
rationale behind this set of experiments is that if ma-
chine learning can create knowledge that models the
behavior of human experts well, then it may be pos-
sible, albeit resource consuming, to have local experts
analyze large numbers of troubles and learn new dis-
patch knowledge from these data.

As the results in Table 2 show, for one expert who an-
alyzed 500 troubles from a site with which the expert
is very familiar, C4.5 can model the expert’s behav-
ior fairly well as compared to the default. A similar
analysis of other experts’ answers have yielded com-
parable results. Results are given for one expert only
for several reasons: 1) No two experts, of the 5 experts
surveyed, agreed upon diagnoses more than 65% of the
time. This might be evidence for the differences that
exist between sites, as the experts surveyed had gained
their expertise at different locations. If not, however,

it raises questions about the correctness of the expert
data. 2) Troubles analyzed by the experts were taken
from 2 different sites. Experts who had been given
data from one of the sites indicated that the electrical
readings appeared to be questionable, probably due to
a problem with MLT. Results given in Table 2 are for
the better site.

Unfortunately, the size of the data set in these ex-
periments was limited. The results shown in Table 1
suggest that 400 examples may be too few for effective
learning. Analysis of the concept description learned
by MAX explains why many examples are needed:
very small disjuncts comprise a large portion of the
concept description (Danyluk & Provost 1993a). How-
ever, the results of these experiments are promising
with respect to the potential for machine learning to
model the behavior of human experts.

Table 2: C4.5 results: expert classes. Size of test set
= 100. Error rate with default class = 57.8.

| Training Set | ER on Test Set | StDev | PDER |

100 38.6 4.22 33.22
200 35.9 5.20 37.89
300 34.4 3.17 40.48
400 35.3 3.68 38.93

3.3 MODELING THE FIELD DATA

Questions as to the ability of MAX and the experts
to dispatch accurately (see Sections 3.2 and 5) led us
to revisit learning from the field (technicians’) data.
We wanted to characterize how well machine learning
would perform on these data, and whether we could do
anything to increase the performance. As the results in
Table 3 show, the performance of the learned decision
trees is less than inspiring. However, the learned trees
do perform slightly better than the default.’

Table 3: C4.5 results: classes = technicians’ results.
Size of test set = 863. Error rate of default = 61.6

| Training Set | ER on Test Set | StDev | PDER |

100 60.98 3.26 1.01
500 59.27 1.81 3.78
1000 58.80 1.12 4.54
5000 57.54 1.23 6.59

Quite surprisingly, we were able to significantly in-

® Although MAX may classify a trouble in one of 5 ways,
there are only 4 dispatch classes that correspond to the
field technicians’ diagnoses. (MAX can send a trouble to a

human MA for dispatch.)



crease our ability to dispatch accurately by reducing
the feature set to a single feature: vercode. Vercode
is essentially a summary of the electrical readings pro-
duced by MLT. MAX was originally designed with the
goal of using additional information to increase the
performance of vercode alone. As the results in Ta-
ble 4 show, the decision stumps (Holte 1993) learned
by C4.5 on the field data perform much better than
those learned with larger feature sets.

Table 4: C4.5 results: classes = technicians’ results;
vercode only. Error rate of default = 61.6

| Training Set | ER on Test Set | StDev | PDER |

100 62.40 4.47 -1.30
500 54.42 1.45 11.65
1000 53.43 1.64 13.26
5000 51.74 0.87 16.01

4 CLEANING UP THE DATA

4.1 MODELING CLEANED-UP FIELD
DATA

By analyzing the different trouble resolutions reported
by the field technicians, it becomes clear that machine
learning programs would have a difficult time model-
ing the data. For some borderline resolutions, it is
not clear what the correct dispatch should have been,
either because the resolution does not provide a diag-
nosis or because the diagnosis cannot be unambigu-
ously mapped to a dispatch. Furthermore, there are
many cases for which the resolution is a “Test OK.”
This resolution indicates that the technician retested
the line in the process of attempting to locate the trou-
ble, and found that there was not a problem. These
cases are particularly troublesome for a machine learn-
ing program because it is impossible to know what the
“correct” dispatch should have been. For example, if
the trouble is a short due to water in a cable that
has dried by the time the technician retests the line,
the correct dispatch should be “dispatch to cable,” be-
cause the trouble is very likely to reoccur during the
next heavy rain. Unfortunately, it is impossible to tell
the difference between cases where there was no prob-
lem to begin with and cases where the problem was
transient. These cases are placed together with cases
where there are not enough data (and thus a retest is
needed) into a catch-all “retest” dispatch.

In order to evaluate how machine learning might per-
form on reliable field data, we used prior knowledge of
trouble resolutions and dispatches to remove sources
of confusion from the field data. We ran a set of ex-
periments to test the hypothesis that cleaning up the
data will elicit better learning performance (lower er-

ror rates).

As the learning results in Tables 5 and 6 show, the
performance on the cleaned-up data is considerably
better than the performance on the original field data.
It is important to note that the cleaned-up data have
only 3 classes instead of 4, and using the default yields
a lower error rate than on the previous data. However,
as the results in Table 5 and Table 6 show, the per-
centage decrease in error rate (PDER) for the learned
concept descriptions (in particular, for the vercode de-
cision stump as shown in Table 6) is larger on the
cleaned-up data than on the original data. This in-
dicates that, in both absolute terms and relative to
the performance of the default, we can learn more ac-
curate concept descriptions from the cleaned-up field
data than from the original data.

Table 5: C4.5 results: Cleaned data. Size of test set
= 686. Error rate of default = 47.13

| Training Set | ER on Test Set | StDev | PDER |

100 41.46 3.92 12.03
500 38.00 3.08 19.37
1000 37.35 1.90 20.75
2000 36.17 1.63 23.25

Table 6: C4.5 results: Cleaned data; vercode only

| Training Set | ER on Test Set | StDev | PDER |

100 38.11 4.31 19.14
500 34.62 1.58 26.54
1000 34.51 1.20 26.77
2000 34.16 1.52 27.52

4.2 MODELING A TWO-CLASS
PROBLEM: IN VS. OUT

In the previous section we cleaned up the field data us-
ing prior knowledge, in order to reduce the confusion
between the three dispatch classes: dispatch to the
central office, dispatch to a cable technician, and dis-
patch to an outside repair technician. The latter two
dispatches address problems in the “outside plant.”
There are a priori reasons why it might be desirable
to combine these classes into a single “dispatch out”
class. One such reason is that often a repair techni-
cian can fix a minor cable problem without operating
on the cable (e.g., by “swapping pairs”). A common
practice is to dispatch to the repair technician first;
if he cannot fix the problem he reroutes it to a cable
technician. Experts have suggested that being able
confidently to differentiate between dispatching “in”
versus “out” is desirable.



In order to test the hypothesis that we could differenti-
ate accurately between dispatching in and dispatching
out, we combined the two outside plant dispatches in
the cleaned-up dataset. This modification also allowed
us to reinsert the cases that were borderline between
repalr and cable, so the example sets were larger than
those in the previous section.

As the results in Tables 7 and 8 show, C4.5 was able to
learn decision trees that dispatch very accurately. In
particular, the vercode decision stumps have an aver-
age error rate of less than 7%. As in the previous sec-
tion, it is important to note that by combining classes
the default error rate decreased. In this case, the er-
ror rate for the default is just over 9%. The tables
show the percentage decrease in error rate over the er-
ror rate of the default dispatch for these experiments.
In sum, although the absolute decrease in error rate is
smaller for the In vs. Out data than for the cleaned-up
data of the previous section, the percentage decrease
is comparable.

Table 7: C4.5 results: In vs Out. Size of test set =
738. Error rate of default = 9.4.

Training Set | ER on Test Set | StDev | PDER

(PDT). Of the three data sets included in Table 9,
only Field Data contains PDT as a possible correct
dispatch, and none contains PSH. Fortunately for the
comparison, on these data MAX chose PSH less than
1% of the time. However, MAX chose PDT often.
To facilitate comparison, in Table 9 we report the er-
ror rate of MAX when compared against all data in
each data set. An answer of PDT is considered to
be an error if the field result is labeled with a dis-
patch (PDI, PDO, or PDF). Since no PDTs appear
in Cleaned Field Data or In vs Out Only, MAX is
considered to be in error if it chose not to make a dis-
patch. To temper the harshness of this comparison, we
also compared the error rate for MAX when it chose to
make a dispatch (PDI, PDO, or PDF). Column MAXD
gives MAX’s error rate on those cases where it chose
one of the three dispatches. Column MAXD-C gives
the percentage of examples in each data set on which
MAX chose one of the three dispatches. Please note
that these figures are for one preliminary study and
are intended to suggest that there may be room for
improvement in the existing system. They should not
be interpreted as a comprehensive evaluation of the
performance of the existing system.

Table 9: Comparison of error rates of Learned Deci-

Table 8: C4.5 results: In vs Out; vercode only

Training Set | ER on Test Set | StDev | PDER

100 9.39 0.83 0.15
500 9.39 0.83 0.15
1000 9.39 0.83 0.15
2000 7.41 1.39 21.20
3000 6.71 0.78 28.65

5 COMPARISON WITH EXISTING
METHODS

A comparison with existing methods will be a major
component of NYNEX’s final decision as to whether
learned knowledge can help with the local-loop dis-
patch problem. Table 9 shows a comparison of the
performance of the vercode decision stumps with the
MAX expert system on the same field data. The addi-
tional possible dispatches for the MAX expert system
complicate the comparison; MAX can opt to route a
case to a human (PSH) or can request additional tests

100 9.37 0.82 0.36 sion Stumps (LDS), MAX, and MAX when it issues a
500 9.46 0.97 [ -0.60 dispatch (MAXD) on Field Data, plus the coverage of
1000 8.48 1.61 9.82 data by MAX’s dispatches (Cov)
2000 7.06 0.65 24.92
3000 7.27 | 0.63 | 22.69 [Data [LDS [ MAX | MAXD [ Cov |
Field Data 51 67 68 53
Cleaned Data 34 67 41 56
In vs Out Only 7 46 4 56

These results show that the learned knowledge is sig-
nificantly better than MAX at predicting the dispatch
corresponding to the resolution reported by the field
technician. The only situation in which MAX per-
forms better than the learned knowledge is on In vs
Out Ouly, only considering the cases where MAX chose
to dispatch. In this scenario, MAX is incorrect only
4% of the time. The learned decision stump is incor-
rect 7% of the time, but it chooses a dispatch for every
case. Note that these were all cases where a technician
reported a resolution that mapped unambiguously to
a dispatch. Preliminary results show that if we use the
learned stump to dispatch only when the confidence is
high, the error rate scales gracefully with the cover-
age. For example, the learned knowledge can achieve
a 4% error rate and cover 86% of the data. When the
coverage of the learned knowledge decreases to 56%, it
is incorrect only 2% of the time. The increase in per-
formance using the learned vercode mapping over the
MAX system is one piece of evidence supporting the
conclusion that by looking at the data we can extract
dispatch knowledge that can improve MAX’s perfor-



mance.

A second piece of evidence comes from a similar com-
parison of the dispatch error rate of the experts as com-
pared to that of the learned vercode decision stump.
Table 10 shows that the learned vercode mapping out-
performs the experts on the field data.

Table 10: Comparison of error rates of Learned Deci-
sion Stumps (LDS), Expert (Exp), and Expert when
he chose a dispatch (ExpD) on Field Data, plus the
coverage of data by Exp’s dispatches (Cov)

| Data | LDS | Exp | ExpD | Cov |
Field Data 51 67 61 50
Cleaned Data 34 69 42 53
In vs Out Only 7 53 8 51

A potential criticism of the above argument is that
the learning is fitting error in the data, and the experts
and MAX are actually better at dispatching. However,
when MAX and the five experts are compared with
each other, there is very little agreement. No expert
agrees with MAX’s dispatch more than 65% of the
time. The average agreement is less than 50%. The
agreement between any pair of experts is in the same
range. These results suggest that the problem is much
more difficult that previously thought, and the data
may not be as full of errors as conventional wisdom
would have you believe.

Further support for the contention that the learned
knowledge is not just modeling errors in the data
comes from a comparison of the effectiveness of the
learned knowledge for dispatch in other areas. We
took the best decision stump learned from one loca-
tion’s data and used it for dispatch in four other areas.
As shown in Table 11, in three of the four comparisons,
the knowledge learned in one area transfers well to the
other areas.

Table 11: Comparison of error rates of knowledge
learned from location X when applied to other loca-
tilons.

| Location | Field | Cleaned | In vs Out |

X 52 34 7
A 54 25 5
B 57 38 7
C 56 21 3
D 64 51 18

It is important also to consider that error rate is not
the only basis for comparison of dispatching knowl-
edge. Different errors have different costs (e.g., a

very costly error would be to dispatch a cable tech-
nician when a retest would have revealed that there
was 1o problem). Recent and current work is address-
ing learning knowledge for cost-effective local loop dis-
patch (Pazzani, et al. 1994; Provost 1994; Turney
1995).

6 CONCLUSIONS

The results presented here suggest that one of the fol-
lowing two conclusions is true: (i) by modeling the
data we can find a vercode-to-dispatch mapping that
can improve the performance of MAX, or (ii) machine
learning is modeling systematic error in the data and
the error is systematic with respect to the vercode.

Conclusion (i) is based on the apparent decrease in
dispatch error rate of the learned vercode mapping
over MAX. The learned vercode mapping also has a
smaller error rate than that of the experts, when the
experts are compared to the resolutions reported from

the field.

Conclusion (ii) is based on the fact that if the error in
the data were random with respect to the vercode, it
would be virtually impossible to learn to fit the error.

We assert that conclusion (i) is more likely than con-
clusion (ii), because conclusion (ii) rules out most of
the forms of error generally believed to exist in the
data.

7 MACHINE LEARNING IN
PRACTICE: LESSONS LEARNED

The first lesson learned from our efforts to apply ma-
chine learning in practice is that real data are unre-
liable. They can be filled with errors that reach far
beyond the noise that machine learning work tradi-
tionally assumes. The errors in real data do not only
exceed researchers’ expectations in terms of their vol-
ume, but also in their quality. Researchers typically
model noise as random perturbations of correct data.
Errors in real data, while including random noise of
this sort, may also include systematic errors that may
occur for a variety of reasons ranging from miscalibra-
tion of measuring devices to management pressures
to report particular results. These “non-traditional”
sources of error make the results of learning corre-
spondingly unreliable. If the learning techniques can-
not model the data well, it is not clear whether it is
due to the quality of the data, or it is due to the inade-
quacy of the description language. On the other hand,
if the learning can model the data better than existing
techniques, it is not clear that the increase in perfor-
mance is not due to modeling some systematicity in
the error.

We have investigated several approaches to dealing



with poor data:

e Obtain data from multiple sources. In the
case of local loop troubleshooting, we were able
to obtain classifications from the existing expert
system, from experts in the field of dispatch, and
from technicians. The fact that machine learn-
ing 1s able to model the existing expert system
supports the viability of machine learning in this
domain. Using expert knowledge provides some
additional evidence for this. It also, however, in-
dicates the complexity of this domain, evidenced
by the lack of agreement among experts.

e Use domain knowledge to clean data. We
have used domain knowledge to “clean up” the
data available for learning. In our case, “cleaning
up” occurs by removing examples where classifi-
catlons might be ambiguous or otherwise difficult
to interpret. While this yields better learning re-
sults, it might be the case that we have simply
eliminated the difficult parts of the domain from
the data set (and therefore from the model).

e Get what you can from the data. Though we
cannot claim a machine learning success story, we
have unearthed interesting properties of the do-
main, and more specifically about the data. For
instance, given the data available, decision stumps
appear to beat full-blown learning and the exist-
ing system.

Overall, in this domain, we have not been able to claim
machine learning as a successful solution to the prob-
lem, but there is promise. Though we cannot defini-
tively say that a learned concept description is more
accurate than MAX, our results indicate that we are
likely to be able to increase MAX’s performance. This
domain also brings the issue of learning in the pres-
ence of systematic error to the fore, something that
has lacked attention in the research community.
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