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Abstract—Research on scalable machine learning algorithms
has gained a considerable amount of traction since the exponen-
tial growth in data assets during the past decades. Many Big
Data applications resort to somewhat ”simple” data modelling
techniques due to the computational constraints associated with
more complex models. Simple models, while being very efficient
to estimate, often fail to capture some of the finer details of
more complex datasets. In this manuscript, we explore the idea
that complex large scale classification can be tractable using a
process of iterative refining. In such a process, we focus on non-
linearities of the data only after having first found an approximate
linear model. This knowledge is then incorporated into the non-
linear model implicitly, allowing the non-linear model to focus on
important parts of the data after a rough first estimation. This in
turn reduces overall training time and allows for a richer model
representation, eventually leading to more predictive power.

Index Terms—SVM; iterative refining; big data; prior

I. INTRODUCTION

In a standard classification problem the goal is to discrim-
inate between points of opposing class in a certain input
space. Many classification techniques have been developed
during the past decades, ranging from simple linear models
to very elaborate procedures. One notable example that we
will build upon in the centre of this spectrum is the well-
known Support Vector Machine [1]. Like many other tech-
niques, the SVM allows for variations in the complexity of
feature representations through the introduction of kernels.
Applying the richer kernels variants (e.g., RBF) naively to
large datasets can become prohibitively expensive as either the
number of instances or the number of features increases. In
these situations we are therefore often limited to using simple
(linear) models, even though richer representations might be
more appropriate.

To this end, much effort has been geared towards improving
performance of such heavy duty classifiers. For instance, the
default approach to optimizing an SVM is to formulate it as
a Quadratic Programming problem. While relatively fast off-
the-shelve solvers exist for QP problems, they are known to
not scale well (O(n3)) as the amount of input n increases. In
consequence, algorithmic variants have been developed to cope
with this limitation such as online gradient descent methods
(including the well known SMO algorithm [2] and Pegasos [3],
the design of sparse variants of the techniques, low-order/high-
order information usage and parallelization [4].

We argue that very often, we can relieve the heavy duty
kernel of a great part of its work by first making a lin-
ear approximation and only using the more complex kernel

for those parts in space that are not approximately linearly
separable. That is, most of the signal in the dataset can be
recovered using a simple representation and it is only after
recovering this signal, that one ought to focus on the more
difficult parts of the signal. The key insight here will be that
we do not need to identify these regions manually, but we can
incorporate them implicitly in the modelling procedure using
a step-wise classification. The main focus of this manuscript
is thus to show how one can include prior knowledge into a
more complex model, leading to an iterative procedure where
we refine the decision boundary in each step.

II. ITERATIVE REFINING

A. Notation

We begin by introducing the problem using standard nota-
tion: given a dataset {xi, yi}ni=1 of n input vectors xi ∈ Rm

and associated target class labels yi ∈ {0, 1}, we want to
be able to predict yi from xi using a function u(x) with
u : Rm → R (the real value is then afterwards converted to a
binary decision). For instance, for a linear SVM the scoring
functions would simply be a linear function:

u(xi) = u · xi − b (1a)
= 〈u,xi〉 (1b)

Here, u is a parameter vector that must be sought during
training and b is the bias which we can drop without loss of
generality (for more details we refer the reader to the relevant
literature [5]). The continuous output value from u(xi) is
then converted to a discrete class label (in the simplest case,
based on the sign of the score). If the data is not linearly
separable, one can look at more complex relations. These
functions usually incorporate some modified form of the inner
product 〈·, ·〉 and an associated Hilbert space U to incorporate
a metric of similarity between input vectors.

B. Iterative refining as a convex combination of functions

A toy example to explain the process of iterative refining
is shown in Figure 1. The example dataset is an artificial
combination of a linear function and a Gaussian, the task is
to learn a separating hyperplane that maximizes the margin
between the red and green input data points.

a) Basic idea: As explained in the introduction, we will
first train a simple linear model that operates on the input
vectors to reach an initial solution and refine this solution
afterwards:



Fig. 1: A toy example in which the combination (right) of the prior model (left) and the complex model (middle) is able to
almost perfectly separate between objects of the green and red class. The scoring function is shown by the gradient color in
the background.

u(x) = 〈u,x〉 (2)

We will call this the prior, because u will not be allowed to
change after it has been found and can thus be considered to
be a non-subjective fixed prior. In a next step, we refine this
initial estimate by including non-linearities using a model that
operates in another reproducing kernel Hilbert space V on top
of the prior. The final model then combines both of these as
a convex combination:

w(x) = u(x) + v(x) (3a)
= 〈u,x〉+ 〈v,x〉V (3b)

Note how, very often, one will introduce the Reproducing
Kernel Hilbert Space (RKHS) through either a feature map
Φ : X → V or a kernel function K with 〈φ(x1), φ(x2)〉 =
〈x1, x2〉V = K(x1,x2).

b) Generalization: More generally, one can see this pro-
cess as learning in increasingly more complex (independent)
subspaces of a larger Hilbert space at different iterations. Let
us call these individual Hilbert subspaces U (for the prior, U
is Rm) and V (for the non-linear model, possibly infinitely
dimensional). It is then possible to represent the iterative
process as happening in a larger spaceW which is the Hilbert
space direct sum of the subspaces (defined by the ⊕ operator):

W : U ⊕ V = {u⊕ v : u ∈ U , v ∈ V} (4)

Note how this leads to the Equation 3b in our case because
the inner product associated with the resulting Hilbert space
can be distributed accordingly:

〈(u⊕ v), (x⊕ x)〉U⊕V = 〈u,x〉U + 〈v,x〉V (5)

It is of course possible to generalize this to the sum of a finite
set of J Hilbert spaces {(hj) : hj ∈ Hj} as follows:

W =

J⊕
j=1

Hj

〈h, g〉W =

J∑
j=1

〈hj , gj〉Hi

||h||W =

 J∑
j=1

||hn||2
−1/2

For our specific purpose, it will suffice to stick to the combi-
nation of two spaces for the remainder of this manuscript (i.e.,
a linear prior and subsequent RBF-based model). We envision
the development of more complex combinations; e.g., in text
mining many distance metrics exist and one could iteratively
add kernels based on these different prior metrics (Hamming,
Euclidian, . . . ).

C. The iterative refining optimization

We will formulate the learning mechanism as a generic
regularization functional, where we aim to minimize the usual
trade-off between complexity and accuracy:

minimize
w∈W

Q(w) + µΩ(w)

Here, Q is a loss function which measures the empirical
loss of the previously defined w-function (Eq. 3a), Ω is
the smoothness of the solution and µ controls the trade-off
between both (and can be found using cross-validation).

The main particularity of the way in which iterative refining
works is that after building a prior part of the model (u), only
the remainder of the model may be changed (this is of key
importance). In the formulation of the previous section, this
means that u is considered to be constant in the optimization
procedure. Since we cannot update u at this stage, we only



need to control for the smoothness of the new part (v), the
functional to minimize then becomes:

minimize
v

Q(w) + µ ||v||2V (6)

Choosing the SVM loss for Q leads us to the following
optimization functional for the second step of our iteration:

minimize
v

n∑
i=1

max{0, 1− yiw(x)}+ µ ||v||2V (7)

Of course, one might choose other loss function where appro-
priate.

D. Interpretation as a prior

So far we have not really used the fact that the previous
stage model (u) is a prior, besides noting that it does not
change during optimization. Interestingly, Equation 6 can also
be interpreted as a regularization procedure ’towards’ the
linear prior. This is easily seen after substituting v = w − u
(cfr. 3b) for two linear models defined by parameter vectors
u and v:

minimize
w

Q(w) + µ ||w − u||2 (8)

For the case of two linear models, the regularization com-
ponent is essentially penalizing for excessive dissimilarity
from u. In the special case of u = 0, we recover the usual
maximal margin classification functional:

minimize
v

Q(v) + µ ||v||2 (9)

In this light, our procedure can thus be seen as a generalization
of the typical SVM optimization procedure, but with inclusion
of a prior.

E. Implementation

We will use the Pegasos [3] online stochastic gradient
descent method to optimize the functional in Equation 7. In
an online stochastic gradient descent method, at each iteration
t, a parameter vector wt is updated according to the loss
with respect to a randomly chosen input sample. Taking into
account the fact that u is constant, we can rewrite wt as
follows:

wt(x) = 〈wt,x〉 (10a)
= 〈u,x〉U + 〈vt,x〉V (10b)

Our goal functional then becomes:

minimize
v

G(vt) =
λ

2
||vt||2V +

1

n

n∑
i=1

max{0, 1− yiwt(xi)}

(11)

At each step t we follow the gradient with respect to this
functional after seeing one example {xit , yit}:

∇tG(vt) = λ(vt) +

{
0 if yitwt(xit) ≥ 1

−yitxit otherwise

(12)

The update rule for v then becomes:

vt+1 ← vt − ηt · ∇tG(vt) (13a)

← η

n∑
i=1

γiyixi (13b)

γi =
∑

k<t+1

I [ik = i ∧ yiwk(xi) < 1] (13c)

With η = 1/(λt) and γi a counter which counts how often the
prediction for an example was wrong (yiwk(xi) < 1) when it
was picked (ik = i) at a prior time (k < t + 1). Leading to
our final model after convergence:

wt(x) = u(x) + vt(x) (14)

The latter function is of course the same as the linear combina-
tion stated in the beginning of this manuscript (Equation 3b).
Thus this method indeed optimizes the linear combination,
albeit in an iterative manner where prior information is taken
into account yet remains unchanged.

III. EXPERIMENTS

A. An illustrated example

Recall that the main idea behind the iterative inclusion of
priors within the SVM is that a great part of the necessary
modelling can be learned rather fast and one needs to focus
on subtleties only at a later stage.

To illustrate this problem experimentally, consider the
dataset displayed in Figure 1, where the objective is to
discriminate objects of two classes (green, red). The ideal
decision-boundary contains both a linear and a non-linear part
by design. As can be seen from Figure 1, the linear model
(left) was able to distinguish the two zones quite well, but it
misclassified some of the object in the central zone at the same
time. We thus proceeded by iterating on this model using the
algorithm from Section II-E (where we used an RBF kernel
SVM for the second iteration). In the middle of the figure we
show only the RBF-SVM part. Note how it has focussed on the
non-linear regions and did not have to bother about some of the
already correctly identified regions. This has two advantages
(a) by not having to focus on the other regions, the model
converged faster and (b) the bandwidth of the RBF kernel was
tuned to fit only the non-linear region, avoiding a bandwidth
that is too wide. The combination of both (rightmost figure)
shows the final, combined model which is superior to either
one individually (Eq. 3b).

B. Big Data

To show the practical usefulness on Big Data, we consider
a few datasets from different domains containing up to a few
million input entries (see Table I). The resulting set-up is as
follows:

1) Prior learner: A linear SVM model that has access to
a large sample of the dataset.

2) Pegasos: An RBF-SVM model that has access to a
limited (smaller) subset of the original training data for
training purposes.



Dataset n m Source Description

a9a 48,842 123 [6] predict income based on census data
w8a 64,700 300 [6] web pattern detection
gisette 13,500 5,000 [7] handwritten digit recognition problem
MiniBooNE 130,065 50 [8] distinguish electron neutrinos (signal)

from muon neutrinos (background)
ijcnn 141,691 22 [9] IJCNN 2001 challenge
cod-rna 488,565 8 [10] detection of non-coding RNAs
protein-homology 145,752 75 [6] protein homology detection
SUSY 5,000,000 18 [11] supersymmetric particle detection

TABLE I: Overview of large-scale datasets used in the experiments, most come from real problem domains and were acquired
from the UCI learning repository [6].

3) Pegasos with prior: A RBF-SVM model that has access
to the same limited (smaller) subset of the training data,
but that also has access to the prior model.

By increasing the amount of available data, we can generate
so called learning curves which demonstrate the characteristics
of the classifier under varying data conditions. The results are
displayed in Figure 2 and demonstrate how the Pegasos with
prior performs better in most regions of the learning curves
than a traditional Pegasos model. This was to be expected for
the leftmost part of the learning curve because we intentionally
added knowledge through the prior 1. More interestingly, this
advantage continues after the complex model has crossed the
prior model’s performance for many datasets.

C. Discussion

The empirical results confirm that our primary goal of
reaching better performance with less data is being achieved,
given that we have a good prior. We use a non-subjective
prior trained on the data here for reasons of consistency in
comparison, but it is reasonable to assume that other sources
of priors could be used instead. While not shown explicitly
here, the models that included prior information took less time
to reach convergence as well. When interpreting the results
from our empirical section, we must of course also keep in
mind that if bigger and more complex datasets were to be
used, the variance and scaling problems of the RBF Pegasos
model would most likely worsen. We thus expect even better
results in the future when applying these methods to even
larger datasets.

IV. COMPARISON WITH PREVIOUS WORK

The easiest way to compare the work presented in this
manuscript to the existing literature is to consider the special
case of two models as stated in Section II-D. We will per-
form the comparison along two equally important dimensions.
First, we can study the differences with various theoretical
frameworks that use their own formulations to include prior
information. Second, we can contrast our application context
to other’s by looking at studies that end up using a model that
is very close to ours in definition, but not in application.

1While not a necessary condition, it might be plausible that for some
problems one is able to train a linear classifier only on a larger portion of the
data.

A. Prior inclusion in the QP

In order to position our research in the broad body of
work on inclusion of priors in SVMs, we will use an existing
comparison table from a recent survey [12]. The survey
identifies three types of ways to include prior information into
SVM:
• Sample methods: incorporate prior knowledge by gener-

ating new data or reweighing existing data
• Kernel methods: adapt the kernel function to include prior

information
• Optimization methods: include prior information into the

optimization problem itself which then optimizes with
respect to this prior knowledge

Our model falls in the optimization-based category. The dis-
tinction with prior literature can then be made as to how these
methods alter the optimization problem. The general form of
prior inclusion is given below:

minimize JC = JSVM + JPrior

s.t. cSVM ≤ 0

cPrior ≤ 0,

where JSVM and cSVM corresponds to the usual SVM con-
straints and regularization and JPrior and cPrior corresponds
to the new components based on the prior. An overview of
the most closely related existing literature is given in Table II
(based on [12]).

B. Applications of prior inclusion

1) Incremental OLR: In a previous research on credit
scoring, [13] studied the inclusion of non-linear components
on top of a linear model, in order to achieve better performance
while keeping transparency. Their logistic model is defined as
follows (using their notation):

P (y ≤ i) =
1

1 + exp(−θi − z)
z = (−β1x1 − . . .− βmxm)

+ (−βm+1f(xm+1)− . . .− βnf(xn))

+ (−w1φ1(x)− . . .− wpφp(x))

The first term group of z is a pure linear model, the second is
still intrinsically linear because after the (possibly non-linear)



Method JC cPK ≤ 0

Virtual samples JSV M + C
∑nV

i=1 ξ̂i ŷi(〈w, x̂i〉+ b) ≥ 1− ξ̂i
Asymetric margin JSV M + (C+ − C)

∑
i∈P ξi + (C− − C)

∑
i∈N ξi

WSVM JSV M +
∑n

i=1(Ci − C)ξi
Unlabeled samples JSV M +

∑nU
i=1(Ci − C)ξi ŷi(〈w, x̂i〉) ≥ 1− ξ̂i

Iterative refining µ||w − u||2

TABLE II: Overview of most closely-related research on incorporating prior knowledge with an optimization or sampling-based
approach. Sampling methods generate a new number of data instances (nv using known labels, nu if the label is not known).
Reweighing methods include some form of class prior constants C+ and C−.

transformation f is applied, a linear model is still being used
to fit the terms. The third term group contains the truly non-
linear SVM terms. If we remove the second term group and
use the Nyrström approximation for the SVM component, we
can rewrite the equation as follows:

zIL+SVM = −β · x−
n∑

i=1

wiφi(x)

φi(x) =

√
n
√
vi

n∑
k=1

ukiK(xk,x)

zIL+SVM = 〈v̂,x〉+ 〈ŵ,x〉H
with eigenvectors uk, eigenvalues vi and φi(x) = 0 whenever
vi = 0. This last form similar to our Equation 3b, so one might
conclude our method to be a generalization of the OLR-based
method. Due to the difference in application, there are some
important design characteristics that separate our method from
the latter though. The main advantage of this form over our
formulation is transparency: we can still inspect the weights
and determine the importance of each factor. Unfortunately,
the fact that both the eigenvector decomposition and Nyrström
sampling need to be computed greatly increases computational
expensiveness. In fact, our set-up is to be used in situations
in which such operations can no longer be applied (and thus
neither the decomposition or the sampling can be computed
in reasonable amounts of time).

2) Iterative model updating: Also closely related, is the
work on iterative model updating by Chapelle [14]. The
problem they tackle, is the iterative updating of a model used
for display advertising that goes out of sync over time. Their
solution is to iteratively update the model using new data, each
time updating w as the minimizer of:

1

2

d∑
i=1

qi(wi −mi)
2 +

n∑
j=1

log(1 + exp(−yjwTxj))

Here, each weight wi has a prior N (mi, q
−1
i ) initially. In next

iterations, mi is set to be equal to wi−1 and qi is updated
accordingly as well. Unlike in our work, their hypothesis space
stays the same in each iteration.

3) Other related literature: The applications of such types
of techniques are vast and the difference subtle, but important.
We cannot cover all of the related literature here, but want to
point out that our work shares links with multi-task learning
[15], where - different from our scenario - the goals is to

optimize multiple tasks at the same time (taking away the
iterative aspect). Also related, is some of the literature in
transfer learning [16] in which knowledge from a source
domain is ”transferred” to the target domain using a similar
approach as Chapelle’s [14]. Here again the main difference
is that the hypothesis space remains static over all learning
iterations whereas ours changes.

V. CONCLUSION

We started by positing a general way of combining Hilbert
spaces iteratively, after which we used this framework in order
to improve classification performance. More precisely, we
iteratively scaled up complexity by incorporating prior infor-
mation implicitly in the algorithm design. We then showed the
relationship of this new framework to more traditional learning
functionals and existing literature. The proposed implementa-
tion using Pegasos scales to datasets of up to billions of input
samples while still achieving state-of-the-art performance in
mere minutes. In future work we would like to investigate
the interplay of more exotic function families. Furthermore,
it could be interesting to investigate theoretical convergence
limits of the proposed algorithms as well.
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Fig. 2: Experiments on big datasets to study the convergence behaviour of Pegasos with prior. The green line represents the
prior knowledge from the heuristic (in this case a linear Pegasos trained in less than 5 seconds on the full training set). For
each dataset we show a full learning curve (top of panel) and a zoomed-in version (zoom on the y-axis; bottom of panel). The
model with prior (RBF Pegasos+prior) performs better than the original model (RBF Pegasos) in most regions of the learning
curve.


