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Abstract 

A data mining (DM) process involves multiple stages.  A simple, but typical, process might include 

preprocessing data, applying a data-mining algorithm, and postprocessing the mining results.  There 

are many possible choices for each stage, and only some combinations are valid.  Because of the 

large space and non-trivial interactions, both novices and data-mining specialists need assistance in 

composing and selecting DM processes.  We present the concept of Intelligent Discovery Assistants 

(IDAs), which provide users with (i) systematic enumerations of valid DM processes, in order that 

important, potentially fruitful options are not overlooked, and (ii) effective rankings of these valid 

processes by different criteria, to facilitate the choice of DM processes to execute. We use a proto-

type to show that an IDA can indeed provide useful enumerations and effective rankings.  We dis-

cuss how an IDA is an important tool for knowledge sharing among a team of data miners.  Finally, 

we illustrate all the claims with a comprehensive demonstration using a more involved process and 

data from the 1998 KDDCUP competition.  

 

Index Terms 

Data mining, data-mining process, intelligent assistants, knowledge discovery 
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1 Introduction 
Knowledge discovery from data is the result of an exploratory process involving the application of vari-

ous algorithmic procedures for manipulating data, building models from data, and manipulating the mod-

els.  The Knowledge Discovery (KD) process [Fayyad, Piatetsky-Shapiro & Smyth, 1996] is one of the 

central notions of the field of Knowledge Discovery and Data mining (KDD).  The KD process deserves 

more attention from the research community; processes comprise multiple algorithmic components, 

which interact in non-trivial ways.  Even data-mining specialists are not familiar with the full range of 

components, let alone the vast design space of possible processes.  Therefore, both novices and data-

mining specialists are apt to overlook useful instances of the KD process.  We consider tools that will 

help data miners to navigate the space of KD processes systematically, and more effectively. In particu-

lar, this paper focuses on a subset of stages of the KD process—those stages for which there are multiple 

algorithm components that can apply; we will call this a data mining (DM) process (to distinguish it from 

the larger knowledge discovery process).  For most of this paper, we consider a prototypical DM process 

template, similar to the one described by Fayyad et al. [1996] and [Chapman et al., 2000], which is 

shown in Figure 1. We concentrate our work here on three DM-process stages: automated preprocessing 

of data, application of induction algorithms, and automated post-processing of models.  We have chosen 

this set of steps because, individually, they are relatively well understood—and they can be applied to a 

wide variety of benchmark data sets.2  In the final case study, we expand our view to a more involved 

DM process. 
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Figure 1: The KD process (adapted from Fayad et al. [1996]) 

Figure 2 shows three simple, example DM processes.3  Process 1 comprises simply the application of a 

decision-tree inducer.  Process 2 preprocesses the data by discretizing numeric attributes, and then builds 

                                                           
 
2 More generally, because we will assemble these components automatically into complete processes that can be executed by a 
user, the scope of our investigation is necessarily limited to KD-process stages for which there exist automated components, and 
for which their requirements and functions can be specified.  Important but ill-understood stages such as “business process analy-
sis” or “management of discovered knowledge” are not included [Senator, 2000].  We also do not consider intelligent support for 
more open-ended, statistical/exploratory data analysis, as has been addressed by St. Amant and Cohen [St. Amant & Cohen, 
1998]. 
3Descriptions of all of the techniques can be found in a data mining textbook [Witten & Frank, 2000]. 
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a naïve Bayesian classifier.  Process 3 preprocesses the data first by taking a random subsample, then 

applies discretization, and then builds a naïve Bayesian classifier. 
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Figure 2:  Three valid DM processes 

Intelligent Discovery Assistants (IDAs) help data miners with the exploration of the space of valid DM 

processes.  A valid DM process violates no fundamental constraints of its constituent techniques.  For 

example, if the input data set contains numeric attributes, simply applying naïve Bayes is not a valid DM 

process—because (strictly speaking) naïve Bayes applies only to categorical attributes.  However, Proc-

ess 2 is valid, because it preprocesses the data with a discretization routine, transforming the numeric 

attributes to categorical ones.  IDAs take advantage of an explicit ontology of data-mining techniques, 

which defines the various techniques and their properties. Using the ontology, an IDA searches the space 

of valid processes.  Applying each search operator corresponds to the inclusion in the DM process of a 

different data-mining technique; preconditions constrain its applicability and there are effects of applying 

it. Figure 3 shows some (simplified) ontology entries (cf., Figure 2). 

Machine Learning Operators

Feature Selection
  Preconditions:
    Continuous Data
  Incompatibilites:
    <none>
  Effects:
    Categorical Data
  Heuristic Indicators:
    Speed = x * 2
    ...

Random Sampling
  Preconditions:
    Continuous Data
  Incompatibilites:
    <none>
  Effects:
    Categorical Data
  Heuristic Indicators:
    Speed = x * 2
    ...

Pre-Processing

Discretize
  Preconditions:
    Continuous Data
  Incompatibilites:
    <none>
  Effects:
    Categorical Data
  Heuristic Indicators:
    Speed = x * 2
    ...

C4.5
  Preconditions:
    <none>
  Incompatibilites:
    op(Naïve bayes)
  Effects:
    Class Probability Estimator
  Heuristic Indicators:
    Speed = x * 2
    ...

Rule Learner
  Preconditions:
    <none>
  Incompatibilites:
    op(Naïve bayes)
  Effects:
    Class Probability Estimator
  Heuristic Indicators:
    Speed = x * 2
    ...

Induction Algorithm

Naïve bayes
  Preconditions:
    Not(Continuous Data)
    Not(Has missing values)
  Incompatibilites:
    op(classifier)
  Effects:
    Class Probability Estimator
  Heuristic Indicators:
    Speed = 40
    ...

CPE-Threshholding
  Preconditions:
    Continuous Data
  Incompatibilites:
    <none>
  Effects:
    Categorical Data
  Heuristic Indicators:
    Speed = x * 2
    ...

Rule Pruning
  Preconditions:
    Continuous Data
  Incompatibilites:
    <none>
  Effects:
    Categorical Data
  Heuristic Indicators:
    Speed = x * 2
    ...

Post-Processing

Tree Pruning
  Preconditions:
    Tree
  Incompatibilites:
    <none>
  Effects:
    Model Size small
  Heuristic Indicators:
    Speed = x / 2
    ...

 

Figure 3:  Simplified elements of a DM ontology 

 Above we said that an IDA helps a data miner. More specifically, an IDA determines characteristics of 

the data and of the desired mining result, and enumerates the DM processes that are valid for producing 
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the desired result from the given data. Then the IDA assists the user in choosing processes to execute, for 

example, by ranking the process (heuristically) according to what is important to the user.  Results will 

need to be ranked differently for different users. The ranking shown in Figure 2 (based on the number of 

techniques that form the plan) would be useful if the user were interested in minimizing fuss.  A different 

user may want to minimize run time, in order to get results quickly. In that case the reverse of the ranking 

shown in Figure 2 would be appropriate. There are other ranking criteria: accuracy, cost sensitivity, com-

prehensibility, etc., and many combinations thereof.   

In this paper, we claim that IDAs can provide users with three benefits: 

1. a systematic enumeration of valid DM processes, so they do not miss important, potentially fruitful 

options; 

2. effective rankings of these valid processes by different criteria, to help them choose between the 

options; 

3. an infrastructure for sharing knowledge about data-mining processes, which leads to what econo-

mists call network externalities. 

 

We support the first claim by presenting in detail the design of effective IDAs, including a working 

prototype, describing how valid plans are enumerated based on an ontology that specifies the characteris-

tics of the various components.  We then show plans that the prototype produces, and argue that they 

would be useful not only to novices, but even to expert data miners.  We provide support for the second 

claim with an experimental study, using ranking heuristics.  Although we do not claim to give an in-depth 

treatment of ranking methods, we demonstrate the ability of the IDA prototype to rank potential proc-

esses by speed and by accuracy (both of which can be assessed objectively).  We also demonstrate that an 

IDA can perform along the tradeoff spectrum between speed and accuracy.  Finally, we provide addi-

tional support for all the claims with an empirical demonstration, using the KDDCUP 1998 data-mining 

problem, showing how an IDA can take advantage of knowledge about a problem-specific DM process, 

and we discuss how the insertion of such knowledge could improve the performance of a data-mining 

team. For most of the paper we use simple processes, such as those presented in Figure 2, to provide sup-

port for our claims.  The final demonstration goes into more depth (but less breadth) with a particular, 

more complex process. 

2 Motivation and General Procedure 
It has been argued that when engaged in design activities, people rarely explore the entire design space 

[Ulrich and Eppinger, 1995, p. 79]. There is evidence that when confronted with a new problem, data 

miners, even data-mining experts, do not explore the design space of DM processes thoroughly.  For 

example, the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining holds 
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an annual competition, in which a never-before-seen data set is released to the community, and teams of 

researchers and practitioners compete to discover the “best” knowledge (evaluated differently each year).  

KDDCUP-2000 received 30 entrants (teams) attempting to mine knowledge from electronic-commerce 

data. As reported by Brodley and Kohavi [Brodley & Kohavi, 2000], most types of data-mining algo-

rithm were tried by only a small fraction of participants.   

There are several reasons why even expert data miners would ignore the vast majority of approaches.  

They may not have access to the tools; however, readily (and freely) available data-mining toolkits make 

this reason suspect.  More likely, even experts are not facile with many data-mining tools—especially 

those that require additional pre- and post-processing.  Indeed, the only algorithm that was tried by more 

than 20% of the KDDCUP-2000 participants was decision-tree induction, which often performs reasona-

bly well on a wide variety of data with little pre- and post-processing.   

An Intelligent Discovery Assistant (IDA) helps a user to explore the space of valid data-mining proc-

esses, expanding the portion of the space that they consider.  The overall meta-process followed by an 

IDA is shown in Figure 4. An IDA interacts with the user to obtain data, metadata, goals and desiderata. 

Then it composes the set of valid DM processes, according to the constraints implied by the user inputs, 

the data, and/or the ontology. This composition involves choosing induction algorithm(s), and appropri-

ate pre- and post-processing modules (as well as other aspects of the process, not considered in this pa-

per).  Next, the IDA ranks the suitable processes into a suggested order based on the user's desiderata.  

The user can select plans from the suggestion list, hopefully aided by the ranking. Finally, the IDA will 

produce code for and can execute (automatically) the suggested processes on the selected data. 

Task
Specification
(includes raw-

data)

DM-Process
Planning

Ontology
(operator descriptions)

Heuristic
Ranking

DM Process
execution

engine
Ranked collection

of valid DM
processes

Collection of
valid DM

processes  

Figure 4: The overall process followed by an IDA 

3 Enumerating Valid Data Mining Processes 
Our first claim is that ontology-based IDAs can enumerate DM processes useful to a data miner.  We 

support our claim in two ways.  First, we describe how the ontology can enable the composition of only 

valid plans.  Second, we describe process instances produced by our prototype (IDEA), in order to pro-
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vide evidence that they can be non-trivial. Later we will describe how problem-specific elements can be 

incorporated into IDAs; for clarity and generality first we concentrate on domain-independent elements 

of the DM process.  For example, when presented with a data set to mine, a knowledge-discovery worker 

(researcher or practitioner) generally is faced with a confusing array of choices [Witten & Frank, 2000]: 

should I use C4.5 or naive Bayes or a neural network? Should I use discretization?  If so, what method?  

Should I subsample?  Should I prune? How do I take into account costs of misclassification?  

3.1 Ontology-based Intelligent Discovery Assistants 

Consider a straightforward example: a user presents a large data set, including both numeric and cate-

gorical data, and specifies classification as the learning task (along with the appropriate dependent vari-

able). The IDA asks the user to specify his/her desired tradeoffs between accuracy and speed of learning 

(these are just two possible desiderata).  Then the IDA determines, of all the possible DM processes, 

which are appropriate.  With a small ontology, there might be few; with a large ontology there might be 

many.  For our example task, decision-tree learning alone might be appropriate. Or, a decision-tree pro-

gram plus subsampling as a pre-process, or plus pruning as a post-process, or plus both.  Are naive Bayes 

or neural networks appropriate for this example? Not by themselves.  Naive Bayes only takes categorical 

attributes.  Neural networks only take numeric attributes.  However, a DM process with appropriate pre-

processing may include them (transforming the data type), and may fare better than the decision tree.  

What if the user is willing to trade some accuracy to get results faster?   

The IDA uses the ontology to assist the user in composing valid and useful DM processes.  In the pro-

totype, the ontology contains for each operator: 

• A specification of the conditions under which the operator can be applied, involving a pre-

condition on the state of the DM process as well as its compatibility with preceding operators. 

• A specification of the operator’s effects on the DM process’s state and on the data. 

• Estimations of the operator’s effects on attributes such as speed, accuracy, model comprehensi-

bility, etc.  

• Logical groups, which can be used to narrow the set of operators to be considered at each stage 

of the DM process.  

• Predefined schemata for generic problems such as target marketing. 

• A help function to obtain comprehensible information about each of the operators. 

Figure 5 shows a structural view of the prototype ontology, which groups the DM operators into three 

major groups: pre-processing, induction, post-processing. Each of these groups is further sub-divided. At 

the leaves of this tree are the actual operators (not shown in the figure, except for two examples: C4.5, 

PART). Specifically important for the empirical demonstrations below, the induction algorithm group is 
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subdivided into classifiers, class probability estimators (CPEs), and regressors. Classifiers are further 

grouped into decision trees and rule learners; the former includes C4.5 [Quinlan, 1993] and the latter 

includes PART [Frank & Witten, 1998]. 

Figure 5: The Data-mining Ontology (partial view) 

We have built an prototype IDA, the Intelligent Discovery Electronic Assistant (IDEA), that uses the 

ontology-based approach. Following the general framework for IDAs (see Figure 4), IDEA first gathers a 

task specification for the DM process, analyzes the data that the user wishes to mine and extracts the 

relevant meta-data, such as the types of attributes included (e.g., continuous, categorical). Using a GUI, 

the user then can complement the gathered information with additional knowledge about the data (such 

as structural attributes IDEA could not derive from the metadata), and can specify the type of informa-

tion/model he/she wishes to mine and desired tradeoffs (speed, accuracy, cost sensitivity, comprehensi-

bility, etc.). IDEA’s first core component, the DM-process planner, then searches for DM processes that 

are valid given the task specification from within the design space of overall possible DM processes, as 

defined by the ontology.  This is described in Section 3.2. 

A collection of valid DM processes typically will contain a series of processes that are undesirable for 

certain user goals? they make undesirable trade-offs, such as sacrificing too much accuracy to obtain a 

model fast, etc. IDEA’s second core component, the heuristic ranker, ranks the valid DM processes using 

one of several possible heuristic functions. The user’s trade-off preferences are defined by weights en-

tered through the GUI. Process ranking is treated in detail in Section 4. IDEA’s GUI allows the user to 

sort the list of plans using any of the rankings (including a combined ranking derived from applying 

weights on the different characteristics), to examine the details of any process plan, and to generate code 

for and to run the process. 

3.2 Enumerating Valid DM Processes: IDEA’s procedure 

Our first claim is that IDAs produce a systematic enumeration of DM processes that will be useful to 

data miners, and will keep them from overlooking important process instances.  The general ontology-

based methodology was outlined above.  Now, we will describe the specific procedure used by the proto-

type IDEA, and will present some example DM processes enumerated for different DM tasks. 

Machine Learning Operators

Induction algorithm

Decision tree

C4.5 (J48)

Rule learner
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Naive Bayes Neural net

Post processing
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thresholding
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To enumerate (only) valid DM processes, IDEA performs a search of the space of processes defined by 

the ontology, constrained by the restrictions on operator application defined in the ontology.  The struc-

ture of the search problem is amenable to more complex, AI-style planning, but so far the search-based 

approach has been sufficient. IDEA solves the search problem by constructing a step-by-step specifica-

tion of DM operators (i.e., a DM process) that move from the start state (which includes some meta-data 

description of the data-set) to the goal state (typically a prediction model with some desired properties). 

Specifically, it starts with an empty process at the start state. At every state it then finds the applicable (or 

compatible) operators using the compatibilities, adds each operator to the partial process that brought it 

to the current state, and transforms the state using the operator’s effects.  From our example above, in 

order to apply Naïve Bayes, the current state must not contain numeric attributes; this would be the case 

only after discretization (or some other preprocessing).  On the other hand, the planning would not apply 

discretization twice, because after the first application, the state no longer would contain numeric attrib-

utes, and thus the preconditions of discretization no longer would apply.  The planner stops pursuing a 

given process when it has either reached the goal state or some “dead-end” state that will not lead to the 

goal state. 

The central difference from traditional, AI planning techniques is that the algorithm does not stop exe-

cuting when it has found a first viable solution, but instead searches for as many valid processes as pos-

sible. This approach is appropriate because knowledge discovery is an exploratory undertaking, and users 

often are not able to express their preferences precisely or completely before seeing possible available 

alternatives.  This brings up a question of computational efficiency: will it be feasible to generate all 

possible processes in a reasonable amount of time?  As long as the number of DM operators that will be 

available to an IDA is not huge, the speed of planning is unlikely to be problematic.  For example, with 

the prototype DM ontology (currently incorporating a few dozen operators), the current DM-process 

planner can generate all valid processes (up to several hundred for problems with few constraints) in less 

than a second. 

The constraints in the ontology are essential.  For example, if we use the ontology whose overall struc-

ture is shown in Figure 5, give the goal of classification, and constrain the search only with the ordering 

of the logical groupings imposed by the prototype ontology (i.e., pre-processing precedes induction 

which precedes post-processing), IDEA generates 163,840 DM processes.  Adding the constraints im-

posed by the pre- and post-conditions of the operators,4 IDEA produces 597 valid process instances—less 

than one-half of one percent of the size of the unconstrained enumeration.  Adding metadata (e.g., the 

data set contains numeric attributes) and/or user desiderata (e.g., the user wants cost-sensitive classifica-

tion) allows the enumeration to be constrained even further.   
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3.3 Enumerating Valid DM Processes: example enumerations from IDEA 

The enumerations of processes produced by IDEA are not trivial.  In many cases they would be valu-

able not only to novice data miners, but even to experts.  As evidence, consider the following processes 

constructed by IDEA. 

Example 1) When IDEA is given the goal of producing a cost-sensitive classifier for a two-class prob-

lem, it produces an enumeration comprising 189 DM processes.  The enumeration includes building a 

class-probability estimator and setting a cost-specific threshold on the output probability.  It includes 

building a regression model and determining (empirically) an effective threshold on the output score.  

The enumeration also includes using class-stratified sampling with any classification algorithm (which 

transforms an error-minimizing classifier into a cost-minimizing classifier).  Novice data miners certainly 

do not consider all these options when approaching a cost-sensitive problem. In fact, we are aware of no 

single published research paper on cost-sensitive learning that considers one of each of these types of 

option [Turney, 1996]. 

Example 2) When we give IDEA the goal of producing comprehensible classifiers, the top-ranked DM 

process5 is: subsample the instances à feature selection à use a rule 

learner à prune the resultant rule set (see Figure 6a).  Although comprehensibility 

is a goal of much machine-learning research, we are not aware of this process being used or suggested.  

This process is interesting because each component individually has been shown to yield more compre-

hensible models; why shouldn’t the composition yield even more comprehensible models? As another 

DM process highly ranked by comprehensibility, which in addition has a high accuracy ranking, IDEA 

suggests: build a decision tree à convert tree to rules à prune rule set 

(see Figure 6b).  This also is a non-trivial suggestion: it is the process introduced by Quinlan [1987] and 

shown to produce a combination of comprehensibility and high accuracy. Although the addition to the 

ontology of convert tree to rules certainly was influenced by Quinlan's work, we did not "pro-

gram" the system to produce this process instance. IDEA composed and ranked processes only based on 

knowledge of individual operators.  This is particularly valuable, because the addition of a new operator 

to the ontology can have far-reaching effects (e.g., adding the “convert trees to rules” operator results in 

this plan being suggested strongly for comprehensible classification). 

                                                                                                                                                                           
4These are not shown here, but are straightforward constraints such as: neural networks require numeric attributes, decision-tree 
pruning can only apply to decision trees, etc. (see the appendix). 
5 We discuss ranking next.  Here it is sufficient to understand that these rankings are created by combining scores, included in the 
ontology, for the different operators that compose a KD process. 
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b)
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Figure 6: Two Plans for producing a comprehensible classifier 

Example 3) Consider the case where the user is interested in classification, but wants to get results 

fast.  As described in detail below, IDEA can rank processes quite well by speed, but does the enumera-

tion contain particularly useful (fast) processes?  Indeed it suggests processes that use fast induction al-

gorithms, such as C4.5 (shown to be very fast for memory-resident data, as compared to a wide variety of 

other induction algorithms [Lim et al., 2000]).  It also produces suggestions not commonly considered 

even by researchers studying scaling up inductive algorithms [Provost & Kolluri, 1999].  For example, 

the enumeration contains plans that use discretization as a preprocess. Research has shown that discreti-

zation as a preprocess can produce classifiers with comparable accuracy to induction without the pre-

process [Kohavi & Sahami, 1996]; but with discretization, many induction algorithms run much faster.  

For example, as described by Provost and Kolluri, most decision tree inducers repeatedly sort numeric 

attributes, increasing the computational complexity considerably; discretization eliminates the sorting.  

IDEA’s suggestions of fast plans also include plans that use subsampling as a preprocess.  Most re-

searchers studying scaling up have not considered subsampling explicitly, but of course it produces clas-

sifiers much faster—and for large data sets it has been shown to often produce classifiers with 

comparable accuracies [Oates & Jensen, 1997].   

In sum, for a variety of types of tasks, IDEA’s enumerations of DM processes are non-trivial: certainly 

for novices, and arguably even for expert data miners.  In Section 6 we will present an extended example 

giving further support. 

4 IDAs can produce effective rankings 
The foregoing section argued that enumerating DM processes systematically is valuable, because it can 

help data miners to avoid missing important process instances.  However, such enumerations can be un-

wieldy.  It is important not only to produce an enumeration, but also to help the user choose from among 

the candidate processes.  IDAs do this by first enumerating DM processes systematically, and then rank-
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ing the resulting processes by characteristics important to the users (speed, accuracy, model comprehen-

sibility, etc.). 

Rankings of DM processes can be produced in a variety of ways.  For example, static rankings of proc-

esses for different criteria could be stored in the system.  We believe that flexible rankings also are im-

portant—so that as new ontological knowledge is added, the system can take advantage of it 

immediately.  IDEA allows both static rankings and dynamic rankings.  In particular, it produces rank-

ings dynamically by composing the effects of individual operators.  The ontology contains (in the form of 

scoring functions) estimations of the effects of each operator on each goal.  For example, an induction 

algorithm may be estimated to have a particular speed (relative to the other algorithms).  Taking a 10% 

random sample of the data as a preprocess might be specified to reduce the run time by a factor of 10 

(which would be appropriate for algorithms with linear run times).  Correspondingly, sampling might be 

specified to reduce the accuracy by a certain factor (on average), and to increase the comprehensibility by 

a different factor (cf., the study by Oates and Jensen [1997]).  For a given DM process plan, an overall 

score is produced as the composition of the functions of the component operators. 

The systematic enumeration of DM processes allows yet another method for ranking the resulting proc-

esses: because the processes are represented explicitly and reasoned about, the system can undertake 

auto-experimentation to help it produce rankings.  Specifically, the system can run its own experiments 

to determine appropriate rankings by constructing processes, running them, and gathering statistics on 

their efficacy. Of course, it does not make sense to run a large number of processes to find out which 

would give results fast.  On the other hand, if accuracy is crucial and speed is not a concern, it may make 

sense to run some or all of a process enumeration (e.g., automatically conducting a cross-validation study 

such as would be performed by an expert data miner). 

Our next goal is to provide support for our claim that IDAs can provide useful rankings.  We make no 

claim about what are the best ranking procedures. 

4.1 Details of ranking experiments 

In order to provide a demonstration to support our claim, we implemented a code generator for IDEA 

that exports any collection of DM processes, which then can be run (automatically). Currently it gener-

ates code for the Weka data-mining toolkit [Witten and Frank, 2000], and it generates Java code for exe-

cuting the plans, as well as code for evaluating the resulting models based on accuracy and speed of 

learning.  We chose to assess IDEA’s ability to rank processes by speed and by accuracy, because these 

are criteria of general interest to users and for which there are well-accepted evaluation metrics (which is 

not the case for comprehensibility, for example).  Furthermore, one expects a rough tradeoff between 

speed and accuracy [Lim, et al., 2000], and a user of an IDA may be interested in points between the 

extremes—e.g., trading off some speed for additional accuracy. We return to this tradeoff in section 4.4. 
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For the experiments in this section, we restricted the ontology to a subset for which it is feasible to 

study an entire enumeration of plans thoroughly.  The ontology subset uses seven common pre-

processing, post-processing, and induction techniques (for which there were appropriate functions in 

Weka, see below). The experimental task is to build a classifier, and has as its start state a data set con-

taining at least one numeric attribute (which renders some inducers inapplicable without preprocessing).  

Table 1 shows on the left the list of 16 valid process plans IDEA created for this problem; on the right is 

a legend describing the 7 operators used.6  Even this small ontology produces an interesting variety of 

DM-process plans. For example, the ontology specifies that naïve Bayes only considers categorical at-

tributes, so the planner needs7 to include a preprocessor that transforms the data. Indeed, although the 

ontology for the experiments is very small, the diversity of plans is greater than in many research papers. 

credit-g 
accuracy

composition 
accuracy

credit-g 
speed

composition 
speed

Plan # 1 c4.5 3 6 13 13 acronym name/algorithm
Plan # 2 part 9 1 16 16
Plan # 3 rs, c4.5 14 14 2 5
Plan # 4 rs, part 4 9 8 10
Plan # 5 fbd, c4.5 5 8 12 11
Plan # 6 fbd, part 10 4 15 14
Plan # 7 cbd, c4.5 6 7 11 12
Plan # 8 cbd, part 8 2 14 15
Plan # 9 rs, fbd, c4.5 12 16 4 3
Plan # 10 rs, fbd, part 15 12 6 8
Plan # 11 rs, cbd, c4.5 7 15 5 4
Plan # 12 rs, cbd, part 16 10 6 9
Plan # 13 fbd, nb, cpe 1 4 8 6
Plan # 14 cbd, nb, cpe 2 2 10 7
Plan # 15 rs, fbd, nb, cpe 11 13 1 1
Plan # 16 rs, cbd, nb, cpe 13 11 3 2

rs
Random sampling (result 
instances = 10% of input inst.)

fbd Fixed-bin discretization (10 bins)

cbd
Class-based discretization 
(Fayyad & Irani's MDL method)

c4.5

part

C4.5 (using Witten & Frank's J48 
implementation)
Rule Learner (PART, Frank & 
Witten)

nb

cpe

Naïve Byes (John & Langley)

CPE-thresholding post-processor

Legend for operators used in plans

steps heuristic rank

 

Table 1: 16 process plans and rankings 

In Table 1, the first column ranks the plans by the number of operators in the plan. This may be inter-

esting to users who will be executing plans manually, who may be interested in minimizing fuss. Not 

surprisingly decision-tree learning is at the top of the list, echoing the observation from the KDDCUP 

2000 [Brodley & Kohavi, 2000].  We will not consider this ranking further except to reference plans by 

number. 

The heuristic rank columns of Table 1 show two pairs of rankings computed by heuristics, one pair for 

accuracy and one for speed.  The “credit-g” rankings are static rankings created by running all the plans 

                                                           
6The last operator in Table 1, cpe, which places an appropriate threshold on a class-probability estimator, becomes a no-op for 
Naïve Bayes (nb) in the Weka implementation, because Weka’s implementation of nb thresholds automatically.  
7 This is not strictly true for the Weka implementation, for which naïve Bayes is augmented with a density estimator for process-
ing numeric attributes.  For this study, we considered strict naïve Bayes.  The Weka implementation, to IDEA, would be consid-
ered naïve Bayes plus a different sort of numeric preprocessor.  
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on one, randomly selected data set (viz., credit-g8).  A static ranking makes practical sense if the flexibil-

ity to add new operators is not of primary importance.  Adding new operators (or otherwise changing the 

ontology) changes the space of plans, in which case a static ranking would have to be updated or recom-

puted.  The “composition” rankings were generated by a functional composition based on the accuracy 

and speed functions contained in the ontology.  More specifically, to generate the heuristic rankings, the 

ontology specifies a base accuracy and speed for each learner, and specifies that all the preprocessing 

operators will reduce accuracy and will increase speed, by different amounts.  The heuristic functions are 

subjective, based on our experience with the different data-mining techniques and on our reading of the 

literature (e.g., [Lim et al., 2000]).  The ranking functions were fixed before we began using Weka’s 

particular implementations, with one exception: because speed ratings differ markedly by implementa-

tion, we ran Weka on one data set (again, credit-g) to instantiate the base speed for the three learning 

algorithms and the speed improvement factors for sampling and for discretization.  

Our experiments are designed to assess the feasibility of using an IDA to provide rankings by speed 

and by accuracy.  Specifically, the experiments compare the proposed rankings to rankings generated by 

actually running the plans on the data sets.  For the experiments, we used 23 data sets from the UCI Re-

pository [Blake & Merz, 2001], each containing at least one numeric attribute.  The data sets and their 

total sizes are listed in Table 2.  Unless otherwise specified, for each experiment we partitioned each data 

set randomly into halves (we will refer to these subsets as D1 and D2).  We used ten-fold cross-validation 

within D2 to compute average classification accuracy and average speed—which then are used to assess 

the quality of the ex-ante rankings, and to construct the “actual” (ex-post) rankings for all comparisons. 

(We will use the D1s, later, to construct auto-experimentation rankings; the {D1, D2} partitioning ensures 

that all results are comparable.) 

                                                           
8 We did not use credit-g as a testing data set in our experiments. 
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Dataset name Size
heart-h 294
heart-c 303
ionosphere 351
balance-scale 625
credit-a 690
diabetes 768
vehicle 846
anneal 898
vowel 990
credit-g 1000
segment 2310
move 3029
dna 3186
gene 3190
adult10 3256
hypothyroid 3772
sick 3772
waveform-5000 5000
page 5473
optdigits 5620
insurance 9822
letter 20000
adult 32561  

Table 2: Data set names and sizes 

4.2 Ranking by Speed 

Our first experiments examine whether the heuristics can be effective for ranking DM processes by 

speed.  Since being able to rank well by speed is most important for larger data sets, let us consider the 

largest of our data sets: adult.  Table 3 shows the two rankings from Table 1 and the actual (ex-post) 

ranking based on the average run times for all the plans.  The table is sorted by the actual ranking, and 

the table entries are the positions of each plan in each ranking (i.e., 1 is the first plan in a ranking, 2 the 

next, and so on).  Both heuristics rank very well.  Using Spearman's rank-correlation statistic, rs (recall 

that a perfect rank correlation is 1, no correlation is 0, and a perfectly inverted ranking is -1), to compare 

with the ideal ranking, we can examine just how well.  For the credit-g ranking (on the adult data set), rs 

= 0.93 and for the composition ranking, rs = 0.98.  
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Plan Name
credit-g 
ranking

composition 
ranking

D2 ("actual") 
ranking

Plan # 2 16 16 16
Plan # 6 15 14 15
Plan # 8 14 15 14
Plan # 1 13 13 13
Plan # 7 11 12 12
Plan # 4 9 10 11
Plan # 5 12 11 10
Plan # 14 10 7 9
Plan # 10 7 8 8
Plan # 12 7 9 7
Plan # 3 2 5 6
Plan # 13 9 6 5
Plan # 11 5 4 4
Plan # 9 4 3 3
Plan # 16 3 2 2
Plan # 15 1 1 1  

Table 3: Adult data set rankings by speed 

Table 4 shows for all the domains the correlations between the rankings produced by the heuristics and 

the ranking based on the actual speeds.  Here and in the subsequent tables, the data sets are presented in 

order of increasing size (large ones toward the bottom).  Highlighted in bold are the cases where rs > 0.5 

(all but the smallest data set).9   Neither heuristic is superior, but both are effective; for both ranking heu-

ristics, the average is approximately rs = 0.85.  These results show convincingly that it is possible for an 

IDA to rank DM processes well by speed.  

                                                           
9 The choice of 0.5 was ad hoc, but was chosen before running the experiment.  Examining hand-crafted rankings with various rs 
values seemed to indicate that 0.5 gave rankings that looked good. 
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credit-g ranking
composition 

ranking
heart-h 0.39 0.30
heart-c 0.62 0.59
ionosphere 0.80 0.70
balance-scale 0.82 0.81
credit-a 0.94 0.91
diabetes 0.55 0.64
vehicle 0.94 0.95
anneal 0.98 0.92
vowel 0.90 0.93
segment 0.89 0.92
move 0.90 0.95
dna 0.98 0.94
gene 0.92 0.95
adult10 0.97 0.97
hypothyroid 0.95 0.91
sick 0.95 0.89
waveform-5000 0.90 0.94
page 0.86 0.85
optdigits 0.89 0.87
insurance 0.95 0.93
letter 0.90 0.96
adult 0.93 0.98

mean 0.86 0.85
median 0.90 0.92

 

Table 4: Spearman ranks for ranking heuristics for speed 

4.3 Ranking by Accuracy 

Ranking by speed is useful, but what about ranking DM processes in terms of the accuracy of the mod-

els they will produce? Our next set of experiments examines whether the IDA can be effective for rank-

ing DM processes by accuracy.   Note that one would not expect to be able to do nearly as well at this 

task as for ranking by speed.  Nevertheless, it would be helpful to be able to give users guidance in this 

regard, especially when a system proposes a process containing a component with which the user is not 

familiar.  If the process were ranked highly by accuracy, it would justify learning about this new compo-

nent. 

Credit-g and Composition Rankings 

As in the speed experiments, we use the heuristic rankings to predict how the different DM processes 

would fare in terms of accuracy.  Table 5 shows the correlations (using Spearman’s rs) between the heu-

ristic rankings and the ranking determined empirically through cross-validation using D2.  As above, the 

table presents the test domains sorted by size.  As expected, the accuracy results are less impressive than 
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the speed rankings (above).  The mean rs is 0.28 for the credit-g ranking and 0.53 for the composition 

heuristic.  Examining the correlations for the composition ranking more closely, we see that in all but 3 

(of 23) cases, the ranking is better than random, and in most cases it ranks surprisingly well by accuracy 

(17 of 23 have rs > 0.5).  However, for the diabetes data set the ranking is strikingly poor (rs = -0.52),10 

pulling down the means (cf., the medians).  We reiterate that our purpose was not to study the production 

of the best heuristic ranking functions; we believe that these could be improved considerably with further 

research.  Nevertheless, these results clearly support our claim that IDAs can rank DM process plans 

(heuristically) by expected accuracy, and therefore can provide valuable assistance in choosing between 

different processes. 

credit-g heur composite heur
heart-h -0.23 0.12
heart-c 0.46 0.62
ionosphere 0.36 0.76
balance-scale -0.16 -0.20
credit-a -0.18 -0.15
diabetes -0.64 -0.52
vehicle 0.54 0.77
anneal 0.51 0.66
vowel 0.64 0.73
segment 0.55 0.86
move 0.42 0.82
dna 0.50 0.72
gene 0.50 0.91
adult10 0.32 0.75
hypothyroid 0.34 0.62
sick 0.62 0.70
waveform-5000 0.46 0.81
page 0.00 0.23
optdigits 0.28 0.54
insurance -0.14 0.31
letter 0.58 0.84
adult 0.35 0.80
mean 0.28 0.53
median 0.42 0.70

 

Table 5: Spearman ranks for heuristic ranking for accuracy 

Auto-experimentation ranking 

There is another option for producing accuracy rankings, which was not available for speed rankings.  

Specifically, an IDA can perform auto-experimentation, composing process plans and running its own 

                                                           
10 Investigating this further we find that the differences between the accuracies of the different plans are statistically insignificant 
resulting in a high variance in the actual rankings. 
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experiments to produce a ranking of the plans by accuracy.11  Although this may initially seem ideal (al-

beit time consuming), we must remember that even careful experimental evaluations of the accuracies of 

predictive models are still only estimation procedures, with respect to the accuracy of the models on un-

seen data.  The quality of the rankings of DM processes produced by such estimation will vary (e.g., by 

data-set size), and for any particular domain must be determined empirically.  However, we know of no 

method of ranking by accuracy that performs better generally.  Therefore, the auto-experimentation rank-

ings can be considered an upper bound against which other ranking procedures can be compared. 

We now present the results of an experiment to assess the effectiveness of such a procedure.   For each 

domain, IDEA composed the DM process plans and generated Weka code for the plans (and for their 

evaluations via cross-validation).  For each data set, the cross-validation was performed on data subset D1 

to produce an estimation of the accuracy that would result from running the plan on a data set from the 

domain.  These accuracies were used to construct a ranking of the DM-process plans by accuracy for 

each data set.  These rankings then were compared to the ranking produced on data set D2 (identically to 

all previous experiments).  Table 6 lists the resulting rank correlations.  As expected, the auto-

experimentation outperforms the other two rankings considerably.  Notably, the empirically determined 

rankings are considerably better for the larger data sets.  Consider the data sets with 5000 or more re-

cords.  Averaged over these data sets, rs = 0.86 for the empirically determined ranking, as compared to rs 

= 0.59 for the heuristic ranking. A t test shows the difference in these means to be statistically significant 

at the p< 0.05 level (p=0.011), and the win:loss ratio of 6:0 also is significant (at p<0.016 by a sign test).  

Also of note, considering the auto-experimentation results as an upper bound places the results of the 

composition ranking in a much better light. 

                                                           
11 This is not an option for speed rankings, because the auto-experimentation process itself may be (very) time consuming. 
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D1 credit-g ranking
composition 

ranking
heart-h -0.06 -0.23 0.12
heart-c 0.06 0.46 0.62
ionosphere 0.20 0.36 0.76
balance-scale 0.55 -0.16 -0.20
credit-a 0.71 -0.18 -0.15
diabetes 0.49 -0.64 -0.52
vehicle 0.91 0.54 0.77
anneal 0.90 0.51 0.66
vowel 0.90 0.64 0.73
segment 0.92 0.55 0.86
move 0.87 0.42 0.82
dna 0.91 0.50 0.72
gene 0.88 0.50 0.91
adult10 0.86 0.32 0.75
hypothyroid 0.96 0.34 0.62
sick 0.18 0.62 0.70
waveform-5000 0.94 0.46 0.81
page 0.74 0.00 0.23
optdigits 0.84 0.28 0.54
insurance 0.84 -0.14 0.31
letter 0.96 0.58 0.84
adult 0.86 0.35 0.80
average 0.70 0.28 0.53
median 0.86 0.42 0.70  

Table 6: Spearman rank correlation coefficient for the three different ranking methods 

These results show that ranking by accuracy (not surprisingly) is difficult, but that via various methods 

an IDA can provide guidance as to which methods are expected to be more accurate.  For small data sets, 

the composition heuristic and estimation via auto-experimentation perform comparably.  For larger data 

sets, auto-experimentation outperforms the composition heuristic, but one pays a considerable run-time 

price as the data-set size grows. 

4.4 Trading off Speed and Accuracy 

Our long-term goal is not simply to be able to rank by speed or by accuracy, but to allow users to specify 

desired tradeoffs between different criteria.  For example, consider larger data sets.   For these, as shown 

in the previous section, auto-experimentation provides significantly better rankings than does the compo-

sition heuristic—but the auto-experimentation is time consuming.  Presumably, as data sets get larger and 

larger, the accuracy of auto-experimentation will increase, but so will the computational cost.  What if a 

user is willing to trade off some speed for a better accuracy ranking, but does not have the time for full-

blown auto-experimentation (i.e., running all the plans on all the data)? 
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 An alternative is to perform auto-experimentation on subsamples of the data for the purpose of estimat-

ing the accuracy ranking for the full data set.  Presumably, as the estimation samples get larger the accu-

racy of the rankings improves, as does the computational cost.  Our next experiment tests whether this in 

fact is the case—if it is, it will demonstrate that IDAs can allow users to trade off quality of assistance (in 

particular, the ranking of DM-process plans by expected accuracy) for timeliness of assistance. 

  For the experiment, IDEA ran the process plans for the six largest data sets (each having 5000 or more 

total records) on increasingly larger subsets of the data.  Specifically, for each domain’s D1, we selected 

random subsets of 10%, 20%, …, 100% of the data.  For each subset, IDEA performed cross-validation 

to determine empirically an expected accuracy ranking, identically to the previous experiment.  For this 

experiment, we consider only the eight DM-process plans that do not contain random sampling. 
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Figure 7: Rank correlations and sample size 

Figure 7 plots the rank correlations as the size of the sample grows, for the six largest data sets, and in 

bold shows the average rank correlation as size grows. Clearly the largest samples give better rankings 

than the smallest ones.  For the 100% sample, all are above 0.5, and all but optdigits are above 0.8.  On 

the other hand, for several of the data sets (page, adult, letter) the rankings with the 10% sample are not 

much better than random.  Recall from above that on these six (largest) data sets the composition ranking 

gives an average rank correlation of 0.59; comparing this with the results in Figure 7 suggests that even 

this rudimentary heuristic ranking is competitive with auto-experimentation until (on average) 20-30% of 

the data are used. 
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With one notable exception, the rank correlations become relatively stable when about half of the data 

have been seen.  The optdigits curve is unusual: the rank correlations do not increase and do not become 

more stable as more data are used.  Further investigation shows that optdigits is, in an important sense, 

“too easy.”  Specifically, all methods perform extremely well, even with small training sets, so it is not 

possible to rank them meaningfully beyond a certain level (this still is substantially better than random).  

Figure 8 shows the graph without the optdigits data, showing that the average performance is as desired 

(generally increasing, but with decreasing marginal benefits). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

% of data sampled

S
p

ea
rm

an
s 

r s waveform-5000
page
insurance
letter
adult
average

 

Figure 8: Rank correlations and sample size without the optdigits dataset 

 These results show clearly that it is possible to trade off longer response time for higher accuracy of 

recommendations (rankings).  In particular, using fewer data reduces the (average) quality of the rankings 

produced, but does so considerably faster.  Using more data improves the quality of the rankings, up to 

the maximally accurate ranking (the full-blown auto-experimentation ranking). 

5 Knowledge Sharing and Network Effects 
As we have argued, IDAs are particularly useful because they are systematic in their exploration of the 

design space of DM processes.  Without such a tool users, even experts, seldom are systematic in their 

search of the DM-process space; it is unlikely that any user will consider all possible process plans.  

Therefore, users may overlook important, useful DM processes.   

Up to this point for emphasis we have discussed novice users and expert users.  However, this is not a 

true dichotomy—there is a spectrum of expertise along which users reside.  For the most novice, any help 
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with DM process planning will be helpful.  For the most expert, an IDA could be useful for double-

checking his/her thinking, and for automating previously manual tasks, as well as for suggesting addi-

tional processes.  For others along the expertise spectrum, IDAs will have both types of benefits.  Fur-

thermore, even among experts, different users have different expertise: a data miner trained in the 

statistics community and a data miner from the machine-learning community can be experts and novices 

with respect to different methods.  An IDA may help to educate any user.  For example, when the system 

produces a highly ranked plan that a user had not considered previously, the user can examine the ontol-

ogy, and become educated on some new aspect of the DM process.   

A unique benefit of an IDA based on an explicit ontology is the synergy it can provide between teams 

of users.  If users contribute to the ontology, other users instantly receive the benefit of their contribu-

tions.  Thus, IDAs exhibit what economists call network externalities or network effects: users get posi-

tive value from other people using the "network," and therefore the value of the network to each user 

increases as the network gets more users.  In this case, an IDA becomes more valuable to each user as the 

number of contributing users grows.  All users get the benefit of contributors’ work automatically.  Fur-

thermore, no single member of the group has to be an expert in the entire body of data-mining technol-

ogy. 

Consider the following example of network effects in action.  Georgia is a member of a large team of 

data miners, with several on-going projects.  While reading the statistics literature she discovers a tech-

nique called dual scaling [Nishisato, 1994], a preprocessing operator that transforms categorical data into 

(scaled) numeric data, in a manner particularly useful for classification.  Georgia codes up a new pre-

processor (call it DS) and uses it in her work.   

Such discoveries normally are isolated; they do not benefit a team's other projects.  However, consider 

what happens if Georgia simply adds DS into the IDA, including adding the appropriate entry to the on-

tology.  If another team member, Samuel, uses the system, DM-process plans may be generated that use 

DS (when appropriate). In some cases, these plans will be highly ranked (when DS is likely to do a good 

job satisfying the user's criteria).   In such cases, Sam could experiment with DS immediately, or could 

read about it (using the documentation Georgia added), or could follow pointers to the literature, or could 

call Georgia directly and talk to her about it.  Thereby, the tool brings to bear shared knowledge in the 

context of a particular need. 

6 Demonstration with more complex DM process 
We now present the results of a final set of experiments, to demonstrate further the power of IDAs.  

The prototypical DM-process template that we used for the discussions and experiments above was 

straightforward—as was necessary to introduce IDAs and to run experiments on a large number of 

benchmark data sets.  However, in some real-world situations the DM process can be more complex 
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[Agrawal, 1998].  We assert that the potential value of IDAs is even greater in such cases, because there 

is even greater need for expertise in technique and in process itself. 

The data we use for our demonstration were the subject of the 1998 KDDCUP. In 1998 the KDDCUP 

problem was to select a subset of a customer base to whom to mail solicitations, in order to maximize 

“profit” (revenues minus the cost of mailing).  Participants built models from the training data, using a 

wide variety of different methods.  To determine the “winners,” the organizers evaluated (on a separate 

test set for which the true answers were hidden) how much profit each team’s model would have gar-

nered.  More specifically, the 1998 KDDCUP was based on data from a fund-raising campaign under-

taken by a national veterans association. The customer base was a set of individuals who donated in prior 

campaigns, and the goal was to select those from whom to solicit donations in the current campaign.  

Each observation in the data set is an individual, and includes (for example) the response to the prior 

campaign.  

The training set from the competition consists of 95412 records and the test set consists of 96367 re-

cords.  The mailing cost is $0.68 and the average donation is $15.60 with a range of $1-$200.  The dona-

tion frequency is about 5% of the population.  Using the default strategy of mailing to everyone, the 

average profit over the test set is $10,560.  The results of the 1998 KDDCUP competition are presented 

in Table 7.  For this experiment, we use the variables used in a study reported by Zadrozny and Elkan 

[Zadrozny and Elkan, 2001].12 

Participants Profit %Gain 
Urban Science $14,712 39.32
SAS $14,662 38.84
#3 $13,954 32.14
#4 $13,825 30.92
#5 $13,794 30.63
#6 $13,598 28.77
#7 $13,040 23.48
#8 $12,298 16.46
#9 $11,423 8.17
#10 $11,276 6.78
#11 $10,720 1.52
#12 $10,706 1.38
#13 $10,112 -4.24
#14 $10,049 -4.84
#15 $9,741 -7.76
#16 $9,464 -10.38
#17 $5,683 -46.18
#18 $5,484 -48.07
#19 $1,925 -81.77
#20 $1,706 -83.84
#21 ($54) -100.51  

Table 7: Results of 1998 KDDCUP  

                                                           
12 Note that selection and construction of features also is part of the KD process.  We do not treat them in this paper, except in 
Limitations, below. 
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This was a challenging competition: the spread between the different competitors is quite large.  No-

tice that 9 of 21 entries produced lower profits than did the default strategy of mailing to everyone.  In 

fact, the last-place entry actually lost money.  The winners achieved a 39% increase in profit over the 

default strategy.  Notice also that the winners are experts in this sort of data mining: Urban Science spe-

cializes in building models for target marketing (and in fact, they also won the 1997 KDDCUP).  Close 

behind in second place is SAS, who also have extensive experience with this sort of modeling.  The com-

petitors with the lower scores most likely applied data mining tools in the manner typical of data-

mining/machine-learning research.  As we will demonstrate, the straightforward application of existing 

tools is insufficient for high-level performance on these data.  However, the inclusion of application-

specific, DM-process-related knowledge is.   

We followed a methodology intended to mimic the algorithmic portion of the process that KDDCUP 

competitors would have taken.  Specifically, we create rankings of DM processes considering only the 

training set (estimating the profit that would be obtained).  To assess the quality of a ranking, we calcu-

late the “actual” profits on the test set. The 1998 KDDCUP focused on a problem of cost-sensitive classi-

fication: classify into one of two categories, solicit or do not, taking into account the cost of false 

positives (the mailing costs) and the cost of false negatives (the lost revenue).  We use a larger set of 

induction algorithms than in the experiments above, but for clarity, for this experiment we do not con-

sider pre- and post-processing explicitly. 

 
Process NN: Create dummies à Neural Network à Classification by regression  

Process Lin: Create dummies à Linear Regression à Classification by regression 

Process Log(CPE): Create dummies à Logistic Regression(CPE) à CPE-Threshholding 

Process NB(CPE): Discretization à Naïve Bayes (CPE) à CPE-Threshholding 

Process Rule(CPE): Rule Learner(CPE) à CPE-Threshholding 

Process DT(CPE): Decision Tree(CPE) à CPE-Threshholding 

Figure 9: DM processes generated for cost-sensitive classification 

Figure 9 shows 6 DM processes generated for cost-sensitive classification.  As mentioned above, a 

wider variety of learning algorithms (from Weka) is used here, and only one process with each algorithm 

is generated.  Specifically, the first two processes produce regression models: process “NN” is the appli-

cation of a neural network learner and process “Lin” is the application of linear regression.  As men-

tioned in section 3.3, regression models can be converted to cost-sensitive classification models by a 

postprocessor which chooses (by experimenting with the training data) an appropriate threshold on the 
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predicted (output) value (“classification by regression”).  Both of these algorithms require categorical 

variables to be preprocessed into a set of binary “dummy” variables.  The last four processes use algo-

rithms that create “class probability estimators,” which give an estimation of the probability that a new 

example belongs to the class in question (here, “will donate”).  Such a model can be converted to a cost-

sensitive classifier with a postprocessor that chooses a threshold decision-theoretically, taking into ac-

count the misclassification costs.  Process Log(CPE) uses logistic regression, which also requires pre-

processing of categorical variables into dummies.  Process NB(CPE) uses naïve Bayes, for which 

discretization is required as a preprocess.  Processes Rule(CPE) and DT(CPE) build rule-based and deci-

sion-tree models, respectively; these do not require the preprocessing of numeric or categorical variables. 

Table 8 shows the ranking of these processes by estimated profit, the actual profit calculated on the test 

set, and the resulting percentage gain over the default strategy of mailing to everyone.  The profit was 

estimated by auto-experimentation (using cross-validation, as above) on the training data.  Note that ex-

cept for the neural network classifier, the ranking by estimated profit is perfect.  Unfortunately, even 

without the error, the procedure would have placed only 9th (of 21) in the competition.  What’s worse, 

only one of the processes actually beats the default strategy of mailing to everyone.  To be fair, this was a 

very difficult problem for data miners not intimate with modeling for problems such as target marketing.  

Indeed, the participants in the contest were serious data-mining researchers and tool vendors, and only 

half were able to do significantly better than the default strategy. 

Plan Rank Profit %Gain 
NN 1 $6,919 -34.48
Lin 2 $11,968 13.33
Log(CPE) 3 $10,520 -0.37
Rule(CPE) 4 $9,924 -6.02
NB(CPE) 5 $9,538 -9.68
DT(CPE) 6 $8,496 -19.54

    

Legend for Operators Used in Plans
acronym
j48
Log
NB Naive Bayes 
Rule
Lin
NN

Linear Regression
Neural Network

name/algorithm
Decision Tree 
Logistic Regression

Rule Learner 

 

Table 8:  Process plans ranked by estimated profit, showing actual profit and gain over default strategy  

What did the winners do differently?  They did not use more complicated mining algorithms.  Rather, 

they used a different DM process, one that is known by specialists to be particularly effective for target 

marketing.  Specifically, as shown in Figure 10, a class probability estimator (CPE) is built to estimate 

the probability of donation; separately, a regression model is built (from the donors in the training set) to 

estimate the amount to be donated conditioned on the presence of a donation.  These two models are used 

in combination: the product of the two, for any individual, estimates his/her expected donation.  If the 

expected donation is greater than the cost of the promotion to that individual, in this case $0.68, then a 
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mailing should be sent.  Otherwise it should not.  This is the strategy used by the winner in the 1998 

KDDCUP. 

Training
data

Pre-
processing

Regression
learner

Expected
Donation

= CPE * Regr

Prediction
data

CPE
model

Regression
model

R

Regression
prediction

CPE
predictionCPE learner

Model Construction Model Use

Pre-
processing

 

Figure 10:  Target Marketing Process 

We claim that such process knowledge, in this case about how to combine techniques to form effective 

special-purpose DM processes, can be added to an IDA’s ontology by specialists, subsequently to be 

brought to bear by others.  To the ontology we can add a template process for target marketing. Note that 

there still is a large degree of freedom, even given such a process template.  What type of learner should 

be used for class-probability estimation?  What type of regressor?  Given the learner, what type of pre-

/post-processing is required?  The IDA will construct DM processes within the constraints imposed by 

this template, in addition to the simpler, default template (which we used in previous sections). 

For our final experiment, we considered the cost-sensitive plans built with the default template and the 

plans built with the target-marketing template.  In order not to bias the ranking with our prior knowledge 

(we know what the winners did), we use only auto-experimentation (cross-validation) to rank processes.  

In addition to the six process plans produced with the default (linear) DM process template, using the 

target-marketing template produces eight additional plans: the cross product of the available CPE learn-

ers (four) and the available regression learners (two). All the plans then are ranked by their estimated 

profit, produced via cross-validation on the training set.  If one plan were to be submitted to a contest 

such as the KDDCUP competition, it would be the highest-ranking plan.  Of course, we have the luxury 

of examining the entire list. 
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Plan Rank Actual Profit %Gain 
Log(CPE) + NN 1 $14,914 41.23
Log(CPE) + Lin 2 $14,778 39.95
Rule(CPE) + NN 3 $13,672 29.47
Rule(CPE) + Lin 4 $13,456 27.42
DT(CPE) + NN 5 $11,055 4.69
NN 6 $6,919 -34.48
DT(CPE) + Lin 7 $10,843 2.68
Lin 8 $11,968 13.33
Log(CPE) 9 $10,520 -0.37
NB(CPE) + NN 10 $10,070 -4.64
RULE(CPE) 11 $9,924 -6.02
NB(CPE) 12 $9,538 -9.68
NB(CPE) + Lin 13 $10,113 -4.23
DT(CPE) 14 $8,496 -19.54     

Legend for Operators Used in Plans
acronym
DT
Log
NB Naive Bayes 
Rule
Lin
NN
CPE

Linear Regression

Class Prob. Estimator

name/algorithm
Decision Tree 
Logistic Regression

Rule Learner 

Neural Network

 

Table 9:  Process plans ranked by estimated profit, showing actual profit and gain over default strategy  

The fourteen process plans, ranked by cross-validated estimated profit, are listed in Table 9 along with 

their test-set profits and the percentage gain (loss) over the default mailing strategy.  The estimated rank-

ing reflects the actual profit ranking quite well (with a couple notable glitches; Spearman’s rs = 0.798).  

Indeed, the range of gains is remarkably similar to the actual ranking of submissions to the contest (note 

that we excluded processes such as: (just) build a simple decision tree, which produce 

zero profit).  The top-ranked plans indeed are competitive with the winners’ submissions.  The penulti-

mate plan is the one used by the winning submission, and performs comparably in terms of profit.  We 

did not expect the IDA to perform this well, because we figured SAS and Urban Science must have left 

some tricks up their sleeves (e.g., proprietary twists on the modeling algorithms).  The top-ranked process 

actually would have beaten the winning submission. 

These results illustrate not only the power of the IDA generally to enumerate and to rank processes ef-

fectively, but also the power of the IDA as a knowledge-sharing device.  If one specialist includes knowl-

edge about the target-marketing process, and another includes knowledge about neural networks, and yet 

another includes knowledge about logistic regression,13 other users would benefit from the IDA’s compo-

sition of these to form a top-performing DM process. 

7 Related Work 
IDAs provide users with non-trivial, personalized “catalogs” of valid DM-processes, tailored to their 

task at hand, and help them to choose among the processes in order to analyze their data. We know of 

little work that directly studies IDAs for the overall DM-process, although some have argued that they 

are important [Brazdil, 1998; Morik 2000]. There is, however, quite a long tradition of work that ad-

                                                           
13 As was the case with us. 
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dresses some of the same goals (such as recommending and ranking) or using similar techniques (e.g., 

planning, auto-experimentation, and the use of ontologies) for recommending and for ranking individual 

induction algorithms.  

7.1 The Use of IDAs 

Especially in the European community, researchers have argued for the importance of IDAs. Morik 

[2000], for example proposes to use a case-based repository to store successful chains of pre-processing 

operators.14  As pre-processing chains are partial DM processes, the insights gained should complement 

our work, and ideally could be integrated with a system such as IDEA.  The European MetaL project15 

has as one of its foci IDA-like systems; we are not aware of any existing system that uses background 

knowledge and/or experimentation to compose and rank DM processes, although Brazdil argues that it is 

important to do so [Brazdil, 1998].  

The only implemented IDA-like system we are aware of was presented by Engels et al., who describe a 

user-guidance module for DM processes called CITRUS ([Engels, 1996], [Engels et al., 1997], [Wirth et 

al., 1997], and [Verdenius and Engels, 1997]).  In particular, the user-guidance module uses a 

task/method decomposition [Chandrasekaran et al., 1992] to guide the user through a stepwise refine-

ment of a high-level DM process, in order to help the user to construct the best plan using a limited 

model of operations. Finished plans are compiled into scripts for execution. The system is implemented 

by extending SPSS Inc.’s Clementine® system, which provides a visual interface to construct DM-

processes manually. 

This work is similar to our approach as it provides the user with assistance when constructing DM 

processes, and uses AI planning techniques. In contrast, our approach is based on two notions that have 

led us in a different direction.  First, even with a well-specified goal it is very difficult to discern the one 

best plan, because the results of running data-mining methods are difficult to predict.  Secondly, users' 

goals and desired tradeoffs often cannot be specified easily or completely at the onset of an investigation.  

This is because many desiderata are tacit and difficult to specify precisely (e.g., one may have an aver-

sion to certain representations, based on experience with the domain experts).  Moreover, knowledge 

discovery is an exploratory process; users must be given as much flexibility as possible.  An IDA pre-

sents the user with many valid plans to choose from and helps him/her to choose among them, via rank-

ings based on different criteria (and on combinations thereof).  The user has no obligation to choose the 

highest-ranked plan in any given ranking—all of the plans in the ranking will be valid.  

                                                           
14 see http://www-ai.cs.uni-dortmund.de/FORSCHUNG/PROJEKTE/MININGMART/index.eng.html 
15 MetaL stands for “Meta-Learning,” the process of learning models of the performance of learning algorithms as a function of 
characteristics of data sets; see http://www.cs.bris.ac.uk/Research/MachineLearning/metal.html. 
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7.2 Projects with Related Goals: Recommending and Ranking 

A variety of research projects address issues regarding recommending/selecting optimal induction algo-

rithms (rather than processes) and ranking induction algorithms. The MLT-Consultant [Craw 1992] was 

one of the first such systems. It used a MYCIN-type knowledge base [Davis 1984] with a Hypertext-

based GUI to recommend to a user an algorithm to choose (from a machine-learning library). Several 

projects have since studied the selection of individual induction algorithms or subcomponents of algo-

rithms based on certain forms of background knowledge.  For example, Brodley [1995] chooses subcom-

ponents to form a hybrid decision tree, based on expert knowledge of algorithm applicability.  In Europe 

the StatLog project16 [Michie et al., 1994] has investigated what induction algorithms to use given par-

ticular circumstances. Brazdil et al. [1994], Gama & Brazdil [1995], and others, use meta-rules drawn 

from experimental studies, to help predict which algorithms will be better; the rules consider measurable 

characteristics of the data (e.g., number of cases, number of attributes, kurtosis).  This notion of “meta-

learning” is the basis for the MetaL project, mentioned above. Finally, Hilario & Kalousis [2001] use a 

case-based system to advise users regarding which induction algorithm (and its respective parameter 

settings) to choose given a particular data-mining task. 

A different tradition of meta-level systems for data mining [Buchanan et al., 1978], sometimes called 

"automatic bias selection," involves the selection of one of the following, based in part on feedback from 

the performance of the learner: vocabulary terms, the induction algorithm itself, components of the in-

duction algorithm, parameters to the induction algorithm [desJardins and Gordon, 1995]. Bias-selection 

work generally assumes the goal is accuracy maximization, but also applies to other desiderata (excep-

tional examples include the work of Tcheng et al. [1989], who consider accuracy and speed, and that of 

Provost and Buchanan [1995], who consider accuracy, speed, and cost sensitivity). 

Addressing the need for improved ranking methods, several research projects have studied the use of 

experimental comparison to rank individual induction algorithms.  Brazdil [1998] summarizes some prior 

methods.  This work is closely related to our ranking of DM processes (especially since one may put a 

conceptual box around a DM process and call it an induction algorithm, although this obscures important 

issues regarding the composition of processes).  More recently, Brazdil and Soares have studied the rank-

ing of individual induction algorithms, based on (functions of) their performances on previously seen 

data sets [Brazdil & Soares, 2000; Soares and Brazdil, 2000].  They compare various methods for rank-

ing, which perform comparably, and they consider ranking combining accuracy and speed.   

Generally, the knowledge generated from these and closely related projects could help to populate an 

IDA’s ontology, as well as to inform the construction of more advanced heuristic functions for ranking 

DM processes. 

                                                           
16 see http://www.ncc.up.pt/liacc/ML/statlog/index.html 
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7.3 Projects using similar techniques: Landmarking, Planning, Knowledge Management, 
and Ontologies 

As we have seen, many of the component methods necessary for building IDAs have been the subject 

of recent study, especially in the European community.  Several researchers have studied the notion of 

using fast processes (of different sorts) to help estimate the performance of less efficient ones. Pfahringer 

et al. [2000] and Fürnkranz and Petrak [2001] provide overviews of such “landmarking” techniques.  In 

particular, Petrak [2000] presents a convincing analysis of the effectiveness of using subsamples from the 

data set in question to predict which learning algorithm will yield the lowest error on the entire data set; 

the technique works remarkably well—although it should be noted that for large data sets often one can 

achieve high accuracy with a surprisingly small subset of the data (cf., progressive sampling [Provost et 

al., 1999]).  On the other hand, the relative performance of algorithms can change markedly with the 

amount of data [Perlich, et al., 2001]. 

St. Amant and Cohen [1998] study intelligent, computer-based support for open-ended, statisti-

cal/exploratory data analysis, which is akin to our approach. While focusing on somewhat different ap-

plication areas—St.   Amant’s and Cohen’s approach on statistical, exploratory data analysis and ours on 

the DM process—both approaches employ mixed-initiative planning, where an AI-planner proposes dif-

ferent courses of action. The two approaches differ, however, in how the human and the machine share 

control of the process. The application area of St. Amant’s and Cohen’s system, statistical/exploratory 

analysis, necessitates step-by-step guidance, where the user can (re-)evaluate each step and get advice on 

what to do next. Our approach, on the other hand, presents the user with all possible plans and forecasts 

of their (relative) performance. The user would then choose one (or more) of the plans, for example using 

those forecasts, run it, and then may re-run the system based on insights gained. This latter approach 

seems better suited in a domain (like knowledge discovery) where algorithms may run for extended peri-

ods of time. It would interesting, however, to explore a hybrid approach that would combine step-by-step 

guidance with overall planning allowing for the support of both integrated exploratory/ad-hoc and ex-

tended/long-running data analysis. 

Kerber et al. [1998] document the DM process using active links to DM processes (that have been 

visually programmed) and to the rationale for major design choices. They collect these descriptions in a 

repository. This approach facilitates the reuse of DM processes, resulting in a knowledge management 

system for DM processes. It is complementary to our approach, as it emphasizes the documentation and 

retrieval of past knowledge, which could be integrated well with our notion of active support as repre-

sented by IDAs. 

The only work of which we are aware that uses an explicit ontology within a meta-level machine-

learning system is described by Suyama & Yamaguchi [1998].  As far as we can tell, this system uses the 
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ontology to guide the composition, by genetic programming, of fine-grained induction algorithm compo-

nents (version space, star, entropy, entropy+information-ratio, etc.) 

8 Limitations and Future Work 
IDAs should not been viewed as automating the DM process totally.  In contrast, intricate user interac-

tion is critical to successful discovery.  It is possible to provide automated, knowledge-based assistance 

for certain aspects of DM process design—as we have shown.  We only have covered a few aspects so 

far, and for the most part only in the prototypical linear process.  For example, our current prototype does 

not produce cyclic processes and our code generator does not yet produce code for more-complicated 

components, such as iterative feature selection (e.g., around a subprocess) or progressive sampling.  This 

is the subject of on-going work—we do not believe that there are fundamental roadblocks.  However, it 

should be clear that the space of DM processes will grow, and more knowledge or interaction may need 

to be brought to bear than is evident in the demonstrations we have provided here.  On the other hand, 

this difficulty faces human data miners as well as IDAs, and the result seems to be that even expert hu-

mans end up using only a small set of tools, those with which they are familiar.  Even moderately effec-

tive IDAs would expand this set. 

Our experiments with rankings serve to demonstrate that valid processes can be ranked effectively.  As 

stated above, we have not yet studied the production of rankings in depth.  The related work on ranking 

induction algorithms should be very useful, as noted above, but also provides important caveats.  For 

example, our use of the Spearman rank-correlation coefficient in effect weights equally the positions 

throughout a ranking.  However, for our purposes, the processes near the top of the ranking probably 

would be the critical ones (especially for large number of generated process plans).  Soares et al. [Soares, 

Costa & Brazdil, 2001] introduce a weighted modification to Spearman’s coefficient, that takes into ac-

count position in the ranking.  This same group of researchers also point out [Soares, Brazdil & Costa, 

2000] other challenges in comparing rankings, stemming from the fact that the “ideal” ranking typically 

is based only on estimates of the true error rates.  For example, one must deal with effective “ties” due to 

the lack of a demonstrable (statistically significant) difference between different ranked entities (algo-

rithms for them, processes for us); Brazdil and Soares [2000] deal with this by averaging the Spearman’s 

coefficients from the different folds of the cross-validation procedure (rather than using average accura-

cies from the folds to generate the ideal ranking).  We will have to consider issues such as these if we 

want to study the ranking of process plans in more depth.  

Furthermore, we only have considered here parts of the process that are relatively well understood.  

Preprocessing, induction algorithms, and post-processing have received relatively much attention in the 

literature.  The existence of this body of knowledge has allowed us to construct an effective ontology.  

Other parts of the process are not as well understood or documented.  For example, although feature con-
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struction has received research attention for years, our understanding of when and how to use it effec-

tively pales in comparison with our understanding of these other parts of the process.  Consider the 

KDDCUP problem we presented above.  We ignored the issue of feature construction, which (we as-

sume) was crucial to success in the competition.  Does enough knowledge exist to provide an IDA an 

ontology that will be effective to assist a user with feature construction?  To our knowledge, this has yet 

to be shown convincingly.  However, if generally effective methods or problem-specific heuristics exist, 

an IDA should be able to incorporate them.  We also have assumed that the user will perform the selec-

tion of the discovery task(s) to perform.  A future task is to extend the intelligent assistance to the part of 

the process involving the selection of discovery tasks.  This typically is ignored in discussions of the 

knowledge discovery process, but was addressed in early knowledge discovery work by Lenat [1982] and 

recently by Livingston, Rosenberg, and Buchanan [2001a,b]. 

Finally, we believe that although studies such as this are necessary for the development of useful IDAs, 

we also need well-designed (and executed) user studies to assess whether IDAs actually are effective in 

helping real data miners.  Such studies could, furthermore, also provide some indications what features of 

IDAs are most effective in supporting the knowledge discovery process and, therefore, provide guidance 

for further improvements of IDAs.  We believe that the IDEA/WEKA combination will be sufficient to 

undertake such studies and hope to follow this path of investigation in future work. 

9 Conclusion 
Both novices and specialists need assistance in navigating the space of possible DM processes.  We have 

introduced ontology-based IDAs, arguing that they can generate valid, non-trivial, and sometimes surpris-

ingly interesting DM-process instances. Further, we have given empirical evidence that it is possible for 

IDAs to rank process instances effectively by various user criteria.  Finally, we have argued that IDAs 

can be particularly useful as a knowledge-sharing environment for teams of data miners, creating network 

effects wherein the tool becomes increasingly valuable as it gets more and more users. 

 The knowledge discovery process has been a key concept in the field of KDD for a decade, but very 

little research addresses it explicitly.  After having undertaken this work, we understand better why.  

Treating the DM process requires a tremendous breadth of knowledge of research and practical tech-

nique.  Even most researchers in the area know only a fraction of what is necessary to do a comprehen-

sive job of building an ontology (and we certainly have mistreated certain topics, although we have been 

careful).  In retrospect, we believe even more strongly that in order for research on the knowledge dis-

covery process to advance, systems like IDAs are essential—they document and automate parts of the 

process that are better understood, in order for research to concentrate on the large areas that are not well 

understood. 
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Appendix A: Operators used by IDEA 

Record Sampling 

Random Sampling 
Preconditions 

Large Number of Records 
Postconditions 

NOT( Large Number of Records) 
Indices 

Speed: 30 
Accuracy: -50 
Model Comprehensibility: 10 

Stratified Sampling 
Preconditions 

Large Number of Records 
Postconditions 

NOT( Large Number of Records) 
Binary Classification Task 

Indices 
Speed: 20 
Accuracy: 0 
Model Comprehensibility: 0 

Progressive Sampling 
Preconditions 

Large Number of Records 
Postconditions 

NOT( Large Number of Records) 
Indices 

Speed: 10 
Accuracy: 0 
Model Comprehensibility: 1 

Categorical attribute transformation 

Categorical to binary 
Preconditions 

Continous 
Postconditions 

NOT( Continous) 
Large Number of Attributes 

Indices 
Speed: -5 
Accuracy: -10 
Model Comprehensibility: -10 

Dual Scaling 
Preconditions 

Categorical 
Postconditions 

Continous 
NOT( Categorical) 
NOT( Speed) 
In Comprehensible Vocabulary 

Indices 
Speed: -50 
Accuracy: -1 
Model Comprehensibility: -50 

Continous attribute transformation 

Fixed Bin Discretization 
Preconditions 

Continous 
Postconditions 

NOT( Continous) 
Categorical 

Indices 
Speed: 21 
Accuracy: -5 
Model Comprehensibility: 0 

Class Based Discretization 
Preconditions 

Continous 
Postconditions 

NOT( Continous) 
Categorical 

Indices 
Speed: 20 
Accuracy: -1 
Model Comprehensibility: -10 
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Principle Component Analysis 
Preconditions 

NOT( Categorical) 
NOT( Large Number of Records) 
Large Number of Attributes 

Postconditions 
Continous 
NOT( Large Number of Attributes) 
NOT( Speed) 
ModelSizeSmall 
In Comprehensible Vocabulary 

Indices 
Speed: -50 
Accuracy: -1 
Model Comprehensibility: -5 

Feature Selection 

Feature Selection 
Preconditions 

Large Number of Records 
Postconditions 

NOT( Large Number of Records) 
NOT( Speed) 

Indices 
Speed: -50 
Accuracy: 10 
Model Comprehensibility: 20 

Speed Sampling (Features/Attributes) 
Preconditions 

Large Number of Attributes 
Postconditions 

NOT( Large Number of Attributes) 
Indices 

Speed: 100 
Accuracy: -20 
Model Comprehensibility: 10 

Induction algorithm 

C4.5 
Preconditions 
Postconditions 

Speed 
Comprehensible Model 
Classifier 
Tree 
NOT( Large Number of Attributes) 
AND NOT( Large Number of Re-
cords) 

Indices 
Speed: 30 
Accuracy: 20 
Model Comprehensibility: 40 

Naive Bayes 
Preconditions 

NOT( Continous) 
NOT( Has Missing Values) 

Postconditions 
Speed 
ModelSizeSmall 
Comprehensible Model 
Class Probability Estimator 
Equation 

Indices 
Speed: 30 
Accuracy: 30 
Model Comprehensibility: 20 

Logistic Regression 
Preconditions 

NOT( Categorical) 
NOT( Has Missing Values) 

Postconditions 
Speed 
ModelSizeSmall 
Comprehensible Model 
Class Probability Estimator 
Equation 

Indices 
Speed: -10 
Accuracy: 30 
Model Comprehensibility: 20 
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Rule Learner 
Preconditions 
Postconditions 

Speed 
Comprehensible Model 
Classifier 
Rule Set 

Indices 
Speed: -20 
Accuracy: 30 
Model Comprehensibility: 50 

Neural Net 
Preconditions 

Continous 
NOT( Categorical) 

Postconditions 
NOT( Speed) 
NOT( ModelSizeSmall) 
NOT( Comprehensible Model) 
Regressor 

Indices 
Speed: -50 
Accuracy: 50 
Model Comprehensibility: -50 

Post Processing 

Decision Tree to rules 
Preconditions 

Tree 
Postconditions 

NOT( Tree) 
Rule Set 

Indices 
Speed: -1 
Accuracy: 0 
Model Comprehensibility: 5 

Tree Pruning 
Preconditions 

Tree 
Postconditions 

ModelSizeSmall 
Comprehensible Model 

Indices 
Speed: -10 
Accuracy: 10 

Model Comprehensibility: 10 

Rule Set Pruning 
Preconditions 

Rule Set 
Postconditions 

NOT( Speed) 
ModelSizeSmall 
Comprehensible Model 

Indices 
Speed: -20 
Accuracy: 10 
Model Comprehensibility: 20 

CPE-thresholding post-processor 
Preconditions 

Class Probability Estimator 
Postconditions 

Cost Sensitive 
Classifier 
NOT( Class Probability Estimator) 

Indices 
Speed: 0 
Accuracy: 0 
Model Comprehensibility: 0 

Classification Via Regression 
Preconditions 

Regressor 
Postconditions 

Cost Sensitive 
Classifier 
NOT( Regressor) 

Indices 
Speed: 5 
Accuracy: 0 
Model Comprehensibility: 0 
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