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The concept of inductive bias can be broken down 
into the underlying assumptions of the domain, 
the particular implementation choices that restrict 
or order the space of hypotheses considered by the 
learning program (the bias choices), and the in- 
ductive policy that links the two. We define in- 
ductive policy as the strategy used to make bias 
choices based on the underlying assumptions. In- 
ductive policy decisions involve addressing trade- 
offs with respect to different bias choices. With- 
out addressing these tradeoffs, bias choices will be 
made arbitrarily. From the standpoint of induc- 
tive policy, we discuss two issues not addressed 
much in the machine learning literature. First 
we discuss batch learning with a strict time con- 
straint, and present an initial study with respect 
to trading off predictive accuracy for speed of 
learning. Next we discuss the issue of learning 
in a domain where different types of errors have 
different associated costs (risks). We show that by 
using different inductive policies accuracy can be 
traded off for safety. We also show how the value 
for the latter tradeoff can be represented explicitly 
in a system that adjusts bias choices with respect 
to a particular inductive policy. 

Pntroduetion 
In order for an inductive learning program to de- 
fine concepts that generalize beyond its training 
examples, it must incorporate inductive bias - as- 
sumptions that lead it to prefer certain inductive 
steps over others. Mitchell [Mitchell 19801 defined 
bias as “any basis for choosing one generalization 
over another other than strict consistency with the 
observed training instances.” Systems bias their 
learning in many ways, including using restricted 
description languages, heuristics to search the hy- 
pothesis space, and domain knowledge to guide 
the search. The strength of a bias has been de- 
fined as the fraction of hypotheses considered by 

the learner within that bias relative to all possible 
hypotheses [Utgoff 19841. 

More recently, machine learning researchers 
have worked to formalize the notion of inductive 
bias in terms of specific restrictions of or orderings 
to the hypothesis space [Rendell 19861, [Haussler 
19$8], [Dietterich 19911. Such formalisms help to 
shed light on the problem of inductive bias, but 
something from Mitchell’s original definition was 
lost in the process. We are gaining insight into 
the various ways of restricting and ordering hy- 
pothesis spaces. However, the difference between 
the bias choice and the strategy for making a bias 
choice often goes undiscussed. For example, a 
preference for simplicity may lead to the choice 
of a certain ordering (e.g., preferring the shorter 
expression in some language), but they are not 
equivalent. 

In this paper we define inductive policy as the 
strategy used to make inductive bias choices, 
based on underlying assumptions (and prefer- 
ences) in the domain. Inductive policy decisions 
address tradeoffs with respect to different bias 
choices. Without addressing these tradeoffs, bias 
choices will be made arbitrarily. We present ini- 
tial studies of tradeoffs not addressed much in the 
machine learning literature: trading off predictive 
accuracy for speed of learning, and trading off ac- 
curacy for safety in a domain where different er- 
rors have different costs. also show how the 
value for the latter tradeoff can be represented ex- 
plicitly. 

To avoid confusion in the subsequent discussion 
let us call a choice of implementation restricting 
or ordering the space of possible hypotheses (pos- 
sibly dynamically) a bias choice. A particular 
inductive policy is based on underlying assump- 
tions of the learning domain and task and ad- 
dresses the tradeoffs with respect to the different 

Provost and Buchanan 255 

From: AAAI-92 Proceedings. Copyright ©1992, AAAI (www.aaai.org). All rights reserved. 



bias choices. As with bias choices the granular- 
ity of inductive policies can vary, and determining 
the exact boundaries between assumptions, pol- 
icy, and bias choice may provide for interesting 
discussions. However, there is a qualitative differ- 
ence between bias choices and the strategies for 
making them. 

To illustrate the difference, let us consider a 
learning task where an underlying assumption is 
that the set of features given may not be ade- 
quate for learning the concept with a simple de- 
scription language. Two somewhat different in- 
ductive policies come to mind immediately: (i) 
use a learning system with a more complex de- 
scription language, or (ii) surround the first- or- 
der system with techniques for constructive induc- 
tion (in effect, increasing the complexity of the de- 
scription language). Each of these policies leads 
to different possible sets of bias choices (for ex- 
ample, the choice of a particular constructive in- 
duction implement ation). The sets of bias choices 
are reduced by further, finer grained, policy de- 
cisions. Another example of underlying assump- 
tions in a domain concern the tot al number of 
examples available for learning and the amount 
of processing power. With many examples and 
little computing power, the machine learning re- 
searcher immediately wants to consider different 
strategies than if the opposites were true, e.g., (i) 
use a relatively inexpensive algorithm, (ii) use a 
technique for selecting a subset of examples (in- 
t elligent or random), or (iii) use an increment al 
learning method. 

Decisions at the inductive policy level are made 
with respect to the underlying assumptions of a 
domain (or the preferences of the investigator) 
and the tradeoffs among them. Different induc- 
tive policies, and their associated bias choices, can 
lead to different learning performance. In order to 
make decisions at the policy level we need to un- 
derstand the tradeoffs. 

Explicitly addressing inductive policy is not 
new. Samuel, in his classic checkers program, de- 
cided to use a linear combination of terms from 
the domain realizing that this choice would pro- 
hibit him from expressing interactions among the 
terms, but would provide him with a simpler rep- 
resentation [Samuel 19631. Later he decided to 
move toward the other end of the tradeoff spec- 
trum, choosing the more complicated signature ta- 
bles that would allow him to represent interactions 
among terms. Although previous work in machine 
learning has implicitly addressed such tradeoffs, 

we feel that it is useful to make the distinction 
between bias choice and policy explicit. 

McCarthy argued [McCarthy 19581 that rep- 
resenting knowledge declaratively in a reasoning 
program was a prerequisite for a learning program 
to augment or edit it. Similarly, insofar as the pos- 
sible bias choices of a learning program are explic- 
itly defined, it is conceivable that a second-order 
system can tune them so that the first-order sys- 
tem can learn better or faster [Buchanan et al., 
19781. Different inductive policies apply in dif- 
ferent domains, leading to different bias choices. 
Whether these choices are made by hand or by a 
second-order system, their explicit representation 
facilitates their change. 

ifferent uctive Policies 

Decisions are made at the inductive policy level 
that tie the bias choices to the underlying prefer- 
ences and assumptions. Different bias choices may 
involve different learning programs, or, as far as 
the bias of the learning program has been made 
explicit, different bias choices within a given pro- 
gram. In this section we will investigate how dif- 
ferent inductive policy decisions, reflecting differ- 
ent assumptions about tradeoffs in the learning 
task, can lead to differences in the performance of 
a learning program. More specifically, we show 
how different policies dealing with assumptions 
about the time available for learning can lead to 
differences in the predictive accuracies of the re- 
sultant concept descriptions. Then we illustrate 
how differences in inductive policy with respect to 
different prediction errors can lead to differences 
in the overall cost of using a learned concept de- 
scription. Finally, we show how by using a func- 
tion that represents explicitly the weight given to 
the costs of prediction errors, a system can learn 
a concept description that better satisfies the un- 
derlying cost assumptions. 

The learning program used in this section is 
MC-RL, a multiclass version of the RL4 learn- 
ing system [Clearwater & Provost 19901. MC-RL 
uses an explicit bias representation, its partial do- 
main model (PDM), t o enable easy changes in bias 
choices based on decisions at the inductive policy 
level. In section 3.3 we use the ClimBS system 
[Provost 19921, which automatically adjusts MC- 
RL’s bias based on explicitly represented bias ad- 
justment operators. The focus of this paper is on 
the inductive policies used, rather than the par- 
ticular systems. Space constraints prohibit more 
detailed description. 
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Tradeoff: accuracy vs. time to learn 

One policy decision that must be made is based 
on assumptions about the amount of time avail- 
able for learning. The bias choices made when a 
large amount of time is available will be differ- 
ent from those made when there is a time limit. 
In the literature, one sees analyses of learning pro- 
grams’ efficiencies, both analytically (usually with 
respect to asymptotic computational complexity) 
and empirically (usually on UCI database or artifi- 
cial domains). Such comparisons are usually used 
for explicit or implied comparisons of learning pro- 
grams. These comparisons are the beginning of a 
body of data on which inductive policy decisions 
can be based. 

Little research addresses explicit limits on the 
time available for learning (other research in AI 
addresses resource bounded reasoning, see e.g., 
[Bratman et al. 19881). The tradeoff of time spent 
learning versus prediction quality is discussed in 
[desJardins 19911; desJardins describes a method 
for using probabilistic background knowledge to 
select maximally relevant features to describe con- 
cept s (for increment al learning). Also with respect 
to incremental learning, [Pazzani & Sarrett 19901 
discusses predictive accuracy as a function of the 
number of examples for conjunctive learning al- 
gorithms. [Clearwater et al. 19891 discusses in- 
cremental batch learning as a way of presenting 
intermediate results when a time limit is reached, 
and saving the “best rules so far” in case the time 
limit is less than the time to process a single batch. 
[Holder 19901 h s ows how the PEAK system can 
address the problem of a time limit on the use of 
a learned concept (and the use of EBL to speed 
it up). We discuss trading off predictive accuracy 
for short learning time for a batch learning system 
as a preliminary study. Qur goal is to be able to 
learn a good concept description within a specified 
time limit. 

If a basic assumption of a given learning task is 
that there will only be x time units for learning, 
the inductive policy followed will be different from 
that followed when there is no such limit. One in- 
ductive policy that might be followed in such a 
situation is: use a heuristic search that is guaran- 
teed to terminate in x time units and return the 
best concept description the system could learn 
in that time. We have begun to investigate the 
relationship between the beam width of MC-RL’s 
search of the space of syntactically defined rules, 
the time taken to learn, and the accuracy of the 
resultant concept description. 
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Figure 1: Increased search with increased beam 
width in mushroom domain. 

beam width 

Figure 2: Increased accuracy with increased beam 
width in mushroom domain. 

Analytic results predict that the search time for 
the MC-RL system will grow linearly with the 
beam width. Figure 1 shows the actual relation- 
ships found in the mushroom domain from the 
UCI repository (points show mean values over 10 
runs with randomly selected training sets, error 
bars show 95% conhdence interval using Student’s 
0 These relationships are sublinear (note the 
logarithmic scales); the analysis could not take 
into account the contribution of some of MC-RL’s 
heuristics for pruning the search space. 

Figure 2 shows the corresponding classification 
accuracies of the result ant rule sets (points, as 
above; tested on separate test sets). Similar re- 
sults were found in the automobile-domain. The 
graceftpl degradation of the classification perfor- 
mance with smaller beam width indicates that it 
may indeed be profitable to determine the maxi- 
mum beam width such that the search is guaran- 
teed to terminate within the given x time units. 
Such a calculation would involve a determination 
of the time to search a single node on a given ma- 
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chine with a given PDM and number of examples, 
and a curve that is guaranteed to bound (from 
above) the actual run times (the analytically de- 
rived curve may suffice, with the determination of 
the constants). 

Once the performance of the system within 
given time limits has been characterized, it can 
be compared with that of other approaches and 
higher level tradeoffs can be studied. For exam- 
ple, even if enough space is available for batch 
learning it might be found that it is better to use 
an incremental learning system for a certain class 
of time constrained learning tasks-i.e., the gain 
in speed by using a policy of incremental learn- 
ing outweighs the gain by using a quick heuristic 
search in a batch algorithm, to yield a concept 
description with the same accuracy (or perhaps 
a combination of the two policies gives the best 
results). 

Other inductive policies take advantage of the 
relative speed with which a large portion of the 
target concept description can be learned. For 
example, part of an inductive policy might be: 
use a quick heuristic search, then switch to a 
more time consuming search using the knowledge 
gained with the quick search to guide and restrict 
subsequent learning. In addition, a quick search is 
useful for exploratory work in making other bias 
choices. 

Better Safe than Sorry 

Another set of assumptions that affect inductive 
policy decisions addresses the costs of making in- 
correct predictions or of failing to make a pre- 
diction (errors of comrnission or omission). Ma- 
chine learning work usually treats these costs as 
equal and concentrates solely on predictive accu- 
racy. One exception to this is the CRL system 
[Tcheng et al. 19891, which allows the user to 
specify domain dependent error metrics, which 
can then be used to guide the learning (results 
as to the method’s efficacy are not presented). 
Another exception is the work of [Etzioni 19911, 
which studies the introduction of decision analytic 
techniques (which take into account costs, bene- 
fits and likelihoods) into an agent’s control policy 
(and the use of learning to aid estimation). The 
decision to learn with sensitivity to prediction cost 
is an inductive policy decision that affects induc- 
tive bias choices (similar to the decision to be sen- 
sitive to the cost of measuring features, as in [Tan 
and Schlimmer 19901). 

We have investigated different inductive policies 

using MC-RL in the mushroom domain. MC-RL 
learns a set of rules, some of which predict that a 
mushroom mat thing the antecedent is poisonous, 
others predict that the mushroom is edible. This 
rule set is used as part of the knowledge base for 
an inference engine that gathers evidence from the 
rules that fire on an example, and combines the 
evidence to make its prediction. The inference 
engine simply finds all the rules that match the 
example and uses an evidence gathering function 
supplied for the domain when more than a single 
concept is predicted by the fired rules. The default 
evidence gathering function has the rules vote to 
determine the concept to predict. 

In the mushroom domain the cost of making a 
mistake is lopsided. Under normal circumstances, 
no harm is done when an edible mushroom is clas- 
sified as poisonous. In contrast, classifying a poi- 
sonous mushroom as edible is dangerous. In this 
domain, the assumption that a certain prediction 
is more costly than another should lead to a differ- 
ent inductive policy than that taken when one can 
assume that all mistakes can be weighted equally. 
Obviously, a completely safe policy would be not 
to even use a learning program; instead use a con- 
cept description that always predicts a mushroom 
is poisonous- dangerous predictions would never 
be made. However, this approach would never al- 
low any mushroom to be eaten. The policy used 
by mushroom experts varies from expert to ex- 
pert. A very conservative policy requires consid- 
erably more evidence, for example, than a less con- 
servative one [Spear 19921. 

Table 1 lists the results of several experiments in 
this domain with different inductive policies and 
associated bias choices. The experiments are de- 
scribed in detail below. The table lists the number 
of rules learned for a given experiment, the pre- 
dictive accuracy (on a test set), and the percent of 
predictions that classify a poisonous mushroom as 
edible (% dangerous) when using the voting strat- 
egy and a “better safe than sorry” strategy in the 
inference engine. Better safe than sorry (BSTS) 
simply predicts that a mushroom is poisonous if 
any rule in the rule set classifies it so. A repre- 
sentative set of 1015 examples (every eighth) was 
chosen from the database for efficiency reasons; 
this was split randomly into training sets of size 
100 and test sets of size 915. The results in Ta- 
ble 1 are averages over 10 runs; 95% confidence 
intervals are given. 

Experiment 1 used a bias chosen empirically to 
give a high predictive accuracy. With the voting 
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Table 1: Experiments comparing (%) accuracy 
(correct predictions/total * 100) and (%) risk 
(dangerous predictions/total * 100) associated 
with rules learned with different policies and bi- 
ases in the mushroom domain. Experiments l-6 
are described in the text (below). 

strategy approximately half of the incorrect pre- 
dictions made were of the dangerous type-over 2 
percent of the test examples. With BSTS this 
fraction is reduced to approximately 1 percent. 
The rest of the experiments tested different in- 
ductive policies (and the associated bias choices) 
designed to lower the fraction of predictions that 
were dangerous. In Experiment 2, MC-RL was 
run as in Exp. 1 for the rules predicting mush- 
rooms to be poisonous; however, the rules for ed- 
ibility were restricted not to cover any negative 
training examples and to be simpler in form (only 
3 conjuncts allowed instead of 5) to avoid possible 
fitting of the data. The result was that the frac- 
tion of dangerous predictions was reduced slightly, 
without a significant decrease in the predictive ac- 
curacy. Experiment 3 was identical to Experiment 
2, except that each edibility rule was forced to 
cover a larger fraction of the positive examples 
(403 instead of 20%). The fraction of danger- 
ous predictions was reduced again, accompanied 
by a decrease in predictive accuracy. Forcing each 
edibility rule to cover an even larger fraction of 
positive examples (Exp. 4-60%) did not decrease 
the dangerous predictions, but did decrease the 
predictive accuracy. 

Experiments 2 through 4 took the policy that 
the poisonous classification accuracy should be 
high, but that only rules that are in some sense 
“safe” should be learned for the edibility class. 
Experiments 5 and 6 combine this with a differ- 
ent policy. While edibility rules are learned as 
in Exp. 2, when searching for rules for the poi- 
sonous class MC-RL is instructed to learn a large, 
highly redundant set by turning off its heuristic 
for selecting a small “good” rule set. The hope 

is that many alternative descriptions of poisonous 
mushrooms will do a better job of catching the few 
examples that had previously slipped by. This is 
in fact seen to be the case, especially when used in 
the BSTS inference engine. The final experiment 
combines the best of the two inductive policies- 
learning only “good” rules for edibility (by set- 
ting the positive threshold for edibility rules to 
0.4) while learning a highly redundant set of rules 
for the poisonous class. When used in the BSTS 
inference engine, the fraction of dangerous predic- 
tions is reduced to 0.04 percent (in all but 1 of 10 
runs it was zero) and the predictive accuracy was 
still 84.5 percent. 

These experiments show how different policies 
can lead to different tradeoffs of accuracy for 
safety of predictions. They show particular poli- 
cies that are useful in the mushroom domain; their 
utility in other domains has yet to be shown. 
Specifying a priori the specific bias choices that 
will perform best given a high level specification 
of a policy is a matter for further investigation. 
The method used above was to determine empir- 
ically a good set of bias choices, guided by the 
inductive policy. The next section shows how the 
tradeoff of accuracy for safety can be represented 
explicitly, and a system for bias adjustment can 
determine the bias choices that yield a good con- 
cept description. 

Explicit Specificat ion of Inductive Policy 
ias Adjustment System 

The ClimBS system [Provost 19921 performs a hill 
climbing search in MC-RL’s bias space, incremen- 
tally constructing a concept description across bi- 
ases (using a greedy rule set pruning heuristic, 
similar to that described in [Quinlan 19871) and 
using the learned knowledge to guide and restrict 
\its bias space search. ClimBS is provided with a 
starting bias, bias transformation operators, and 
a rule set evaluation function. It uses the trans- 
formation operators to create tentative candidate 
biases, learns rules with each, combines these with 
the previously learned rule set, and chooses the 
best of the tentative sets with respect to the eval- 
uation function. The current bias is set to the 
bias with which the best rule set was learned; and 
the process iterates until one of several stopping 
criteria is met. 

ClimBS is a second-order system for automati- 
cally adjusting inductive bias of a fist-order sys- 
tem (MC-RL). ClimBS allows for an (partial) ex- 
plicit specification of bias choices corresponding 
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Table 2: Experiments comparing the accuracy and 
risk of rules learned with different inductive poli- 
cies represented as bias evaluation functions in the 
ClimBS bias adjustment system. Experiments 7- 
10 are described in the text (below). Accuracy 
and risk are defined as in Table 1. 

to bias adjustment policies. The particular set 
of bias transformation operators, combined with 
ClimBS’ hill climbing search and the bias evalu- 
ation function, correspond to a policy for chang- 
ing fist-order bias choices based on an evaluation 
of the results of learning. The set of operators 
used to generate the results below operated on 
the positive threshold for individual rule perfor- 
mance, the negative performance threshold, the 
complexity of the description language (the maxi- 
mum number of conjuncts allowed in a rule), and 
the beam width of the heuristic search. The ini- 
tial bias was very restrictive (the parameters listed 
above were set at 0.9, 0, 1, and 1, respectively), 
and the operators weakened the bias along the 
several dimensions. This corresponds to a policy 
of trying to learn “good” rules first, and subse- 
quently reducing the standards to complete the 
concept description. 

Table 2 shows the results of several experiments 
in which ClimBS was used to learn rules for the 
mushroom domain. The bias evaluation function 
was varied across the experiments to reflect dif- 
ferent assumptions about the tradeoff of accuracy 
vs. the cost of making dangerous errors. The 
table lists the number of rules learned, the pre- 
dictive accuracy of the rule set, and the percent 
of the predictions that are dangerous. As above, 
the results are averaged over 10 trials, 95% confi- 
dence intervals are given; 100 (randomly selected) 
examples were used for learning, 400 for bias eval- 
uation, and 515 for testing. 

In Experiment 7, the default evaluation func- 
tion (only consider predictive accuracy, use vot- 
ing strategy) was used. As in Experiment 1, al- 
though the classification accuracy is impressive, 
over two percent of the examples were dangerously 
classified as edible, when they were actually poi- 
sonous. In Experiment 8 the evaluation function 

compared biases based on predictive accuracy, us- 
ing the BSTS evidence gathering function. The 
accuracy of the resultant descriptions are not de- 
graded much, while the fraction of dangerous pre- 
dictions is reduced to one-third its previous value. 
Recall that switching to the BSTS engine provided 
a significant reduction in dangerous predictions. 

Experiments 9 and 10 use a linear combination 
of predictive accuracy and number of dangerous 
predictions to evaluate the rule sets learned with 
different biases. In particular, the function used 
was: f = number of correct predictions - w * num- 
ber of dangerous predictions. I[n Experiment 9, w 
= 10; in Experiment 10, w = 50. One can see 
the tradeoff of classification accuracy for safe pre- 
dictions that is manifest in the rule sets learned 
by ClimBS. The 0.16 percent dangerous predic- 
tion rate obtained in Experiment 10 is still four 
times that of Experiment 6. However, ClimBS 
was not equipped with an operator that would 
turn off the heuristic for selecting a small “good” 
rule set (as was done in Section 3.2); this heuris- 
tic was always on. ChmBS performance is com- 
patible with that of Experiment 3. Note that 
the variance of the classification accuracy is larger 
when the more complicated evaluation functions 
are used. This may be a side effect of the conver- 
gence criterion used. (If over the last 5000 (MC- 
RL) nodes searched the concept description had 
not improved, ClimBS terminated its search). 

ClimBS allows for the specification of the rela- 
tive value of different rule sets with respect to their 
performance. This explicit represent ation of how 
the system should deal with the accuracy/safety 
tradeoff allows the system to adjust the first-order 
bias to find a concept description that gives a good 
score with respect to this function, and thereby 
performs well with respect to the tradeoff. The 
problem of specifying the bias evaluation function 
(in light of a particular inductive policy) remains. 
Bowever the faction from Experiment 10 was the 
first chosen. We assert that specifying this func- 
tion and letting ClimBS automatically adjust the 
bias is easier than the manual bias adjustment, 
because its specification is more directly related 
to the assumption in question (i.e., the relative 
importance of the different prediction errors and 
predictive accuracy). 

Conclusions 
We believe that the results showing that pre- 
dictive accuracy degrades gracefully with shorter 
times taken to learn are not tied to the particu- 
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lar bias choices used, but would be shown with 
different heuristic searches or different evaluation 
functions in the beam search used. With respect 
to the accuracy/safety tradeoff, we believe that 
the increases in safety shown with manual bias ad- 
justment in MC-RL are due to the policies (learn 
only “good” rules for edibility, learn highly redun- 
dant sets of rules for poisonous) used to guide 
the selection of bias choices, more than to the 
bias choices themselves. With ClimBS, we be- 
lieve the power comes from the policy of using an 
evaluation faction that takes the specific trade- 
off into account when making bias choices, rather 
than from the particular evaluation function used 
(the bias choice). Substantiating or refuting these 
claims is future work. 

These claims of the importance of concentrat- 
ing on inductive policy in addition to concentrat- 
ing on bias choices must be qualified by repeating 
the theme that we have stressed throughout the 
paper. Concentrating on inductive policy provides 
focus for studies of inductive bias choices. In turn, 
the tradeoffs with respect to the different possible 
bias choices help to guide the selection of policy 
for a given task. Without studies of how different 
bias choices affect learning systems’ performances 
with respect to these tradeoffs, bias choices will 
be made arbitrarily-without an inductive policy. 

en&s 

This work benefited from discussions with Scott 
Clearwater, Randy Jones, Tom Mitchell, Jeff 
Schlimmer, Kurt VanLehn, and the Pitt machine 
learning discussion group. This work was sup- 
ported by NLM grant l-ROI-EM05104 and an 
IBM Graduate Fellowship. 

Bratman, M.; Israel, ID.; and Pollack, M. 1988. 
Plans and Resource- Bounded Practical Reason- 
ing. Computational Intelligence 4( 4)) 349- 355. 

son, C.; Mitchell, T.; and 
1s of Learning Systems. In 

edia of Computer Science 
and Technology 11, 24-51. 

Clearwater, S.; Cheng, T.; 
Buchanan, B. 1989. Incremental 
In Proc. of ML-89, 366-370. Morgan Kaufmann. 

Clearwater, S. and Provost, F. 199 RL4: A 
Tool for Knowledge-Based Induction. Proc. of 
the 2nd Int. IEEE Conf. on Tools for AI, 24-30. 
IEEE Computer Society Press. 

desJardins, M. 1991. Probabilistic Evaluation 
of Bias for Learning Systems. Proc. of ML-91, 
495-499. Morgan Kaufmann. 

Dietterich, T. 1991. Machine Learning: Is- 
sues, Answers, and Quandaries. Keynote Lecture, 
AAAI-91. 

Etzioni, 0. 1991. Embedding Decision-analytic 
Control in a Learning Architecture. Artijicial In: 
telligence 49 (1991), 129-159. 

ussler, D. 1988. Quantifying Inductive Bias: 
earning Algorithms and Valiant’s Learning 

Framework. Artificial Intelligence 36, I-77-221. 
Bolder, L. 1990. The General Utility Problem 

in Machine Learning. In Proc. of ML-90,402-410. 
Morgan Kaufmann 

McCarthy, J. 1958. Programs with Com- 
mon Sense. Reprinted in R. Bra&man and I-I. 
Levesque (Eds.), Readings in Knowledge Repre- 
sentation, 299-308. Morgan Kaufmann, 1985. 

Mitchell, T. 1980. The Need for Biases in Learn- 
ing Generalizations. Technical Report CBM-TR- 
117, Department of Computer Science, Rutgers 
University. 

Pazzani, M. and Sarrett, W. 1990. Aver- 
age Case Analysis of Conjunctive Learning Algo- 
rithms. In Proc. of ML-90, 339-347. Morgan 
Kaufmann. 

Provost, F. 1992. Searching the Bias Space: 
Policies for Inductive Bias Adjustment. Ph.D. 
thesis , forthcoming . 

Quinlan, J. 198‘7. Generating Production Rules 
fr Decision Trees. Proc. of IJCAI-87. 

endell, L. 1986. A General Framework for In- 
duction and a Study of Selective Induction. Ma- 
chine Learning 1 (1986)) 177-226. 

Samuel, A. 1963. Some Studies in Machine 
Learning Using the Game of Checkers. In E. 
Peigenbaum and J. Feldman (Eds.), Computers 
and Thought U-105. McGraw-Bill. 

Spear, M. 1992. Vice President of Research, 
Sylvan Spawn Laboratories. Private Communica- 
tion. 

Tan, M. and Schhmmer, J. 1990. Two Case 
Studies in Cost-Sensitive Concept Aquisition. In 
Proc. of AAAH-90, 854-860. Morgan Kaufmann. 

Tcheng, D.; Lam , B.; Lu, S.; and Rendell, 
L. 1989. Building ust Learning Systems by 
Combining Lnducti d Optimization.” In Proc. 
of IJ 89, 806-812. Morgan Kaufmann. 

Ut P. 1984. Shift of Bias for Inductive Con- 
cept Learning. Ph.D. thesis, Rutgers University. 

I?rovost and Buchanan 261 


