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Abstract 

This paper describes how to increase the effi- 
ciency of inductive data mining algorithms by 
replacing the central matching operation with 
a marker propagation technique. Breadth-first 
marker propagation is most beneficial when the 
data are linked to hierarchical background knowl- 
edge (e.g., tree-structured attributes), or when 
the attributes describing the data have many val- 
ues. We support our claims analytically with 
complexity arguments and empirically on several 
large data sets. We also point out other effi- 
ciency gains, including reduced memory manage- 
ment overhead, which facilitate mining massive 
tape archives. 

Introduction 
Inductive algorithms have proven to be valuable, prac- 
tical tools for automated discovery in science and busi- 
ness, but users run into difficulties applying the algo- 
rithms to large, complex problems. For example, a 
large data set may have thousands of values for a lo- 
cation field (e.g., zip). Unfortunately, most existing 
algorithms are prohibitively inefficient when it comes 
to large value sets. One may also want to group these 
specific locations based on hierarchical knowledge, e.g., 
zip -+ city + state. Existing algorithms are also ineffi- 
cient when it comes to even the most basic hierarchical 
background knowledge. 

This paper is aimed at algorithm designers and im- 
plementors, and discusses how to increase the effi- 
ciency of these algorithms so that they will scale up 
to larger and more complex problems. We recommend 
the replacement of the central matching operation with 
breadth-first marker propagation. This techique is par- 
&-.nla.rly effective when mining data described by at- -‘-------o -~~ ~- --~ ~~~ 
tributes with large value sets or data linked to hierar- 
chical background knowledge. 
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Several prior approaches implement or discuss the 
use of hierarchical background knowledge for proposi- 
tional learning algorithms. The RL rule learning sys- 
tem (Clearwater and Provost 1990) extends the stan- 
dard feature-vector-based system by allowing the pos- 
sible values of attributes to be structured in ISA hier- 
archies. NGiiez (1991) d escribes how ISA hierarchies 
can be used for decision tree learning, and Quinlan 
(1993) lists support of tree-structured attributes as a 
“desirable extension” to C4.5. He describes a scheme 
for encoding taxonomic information into flat attribute- 
value tables that standard inductive learning programs 
can use. The system described by Almuallim, et al., 
(1995), which we discuss in detail later, uses ISA hier- 
archies directly, and is shown to be more efficient than 
the techniques suggested by Quinlan. 

Breadth-first marker propagation replaces, with a 
single pass through the data, the time-consuming 
generate-and-match operation common in many induc- 
tive algorithms, in which many hypothesis specializa- 
tions are matched against the data one by one. We now 
describe breadth-first marker propagation, compare its 
efficiency analytically with standard approaches, and 
give an empirical demonstration on three very large, 
complex, real-world data mining problems. 

Breadth-first marker propagation 
Many inductive data mining algorithms, decision tree 
learners, and rule learners, in particular, build mod- 
els through the iterative refinement of hypotheses. 
The fundamental operation is the specialization of 
a hypothesis by adding conjuncts, viz., attribute- 
value pairs, and counting the matches of the resulting 
specializations against the training database. These 
counts are used as input to a comparative evalua- 
tion function. We recommend the replacement of this 
-^-^-- +A ..--1 -..L,l. ‘-a.L,..l . . ..+L . ,:,.-A... A_.... ..+:A.. 
g~ll~lQI1c;-QIIIIl-~~~~~~~ UIF;sJAL”U WIUI a JLnpT vpzsarrvu 

based on breadth-first marker propagation to gener- 
ate counts for all of a rule’s specializations in one pass 
through the data. This breadth-first marker propaga- 
tion approach is applicable to hierarchically structured 
attribute value sets, as well as to standard, flat at- 
tribute value sets. 
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Training examples are typically viewed as vectors of 
attribute-value pairs to be matched against. Instead, 
consider them to be vectors of bidirectional pointers 
into the value space. Given that you want to specialize 
a k-conjunct hypothesis R (e.g., a rule or a decision- 
tree branch), breadth-first marker propagation gener- 
ates counts of matches for all possible specializations 
as follows. The data structure VALUESET contains the 
set of values with non-zero counts, which will be used 
as indices to retrieve the counts. 

1. 

2. 

3. 

4. 

5. 

For each conjunct of R, mark the corresponding 
value with a conjunct mark: (which we will denote 
&>* 
Following pointers, propagate these marks to the 
training instances, tallying how many marks accu- 
mulate on each instance. 

For those instances with L conjunct marks, i.e., those 
that satisfy all Ic conjuncts of R, mark the instance 
with its class (e.g., + or -). 

Now, for each instance, and for each attribute, prop- 
agate the instance’s class mark to the attribute value 
present in the instance. At each attribute value, keep 
a running tally of the number of marks of each type. 
Add to VALUESET a pointer to each value marked. 

For hierarchies of values, propagate tallies of marks 
in a breadth-first fashion from the leaves of the hi- 
erarchy to the root. Parent tallies are the sums of 
the corresponding child tallies. Add to VALUESET a 
pointer to each value visited. 

Figure 1: A Simple Data Mining Problem. 
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Figure 2: Network Representation of Simple Problem. 
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We will illustrate the algorithm on a simple prob- 
lem. Consider the database given in Figure 1, corre- 
sponding to the network of pointers shown in Figure 2. 
Suppose the learner wants to specialize the hypothesis 
color=blue + +. We first mark blue with &, then move 
that marker down links onto items 2, 3, and 4. Since 
each of these items now has one & marker, correspond- 
ing to the single conjunct of the current hypothessis, 
we mark each item with its class (+ or -). Then, these 
markers are moved forward across links and tallied on 
z..B,h ~culrll node. Pm& :a +h., o+.a+n 4ha a:.x~r~m :ll..r+r.a+ar \ \rl‘ru IY “&IV U”cbYI, “llcs urcb~jrarrr uuU”La.“~Y., 

Notice that the node Polygon accumulates two + mark- 
ers and no - markers, indicating a perfect match of the 
positive examples. 

Complexity Analysis 
We first consider the complexity of hypothesis special- 
ization in the case without ISA hierarchies. Assuming 
that there are e examples, a attributes, and (on av- 
erage) w values for each attribute, even very efficient 
inductive algorithms based on matching require O(e) 
matches for each of O(aw) potential specializations of 
each hypothesis for a time complexity of O(eaw), as 
described recently by Domingos (Domingos 1996). 

Now consider a learner that uses breadth-first 
roar& propaoa.tinn to replace ~Fatcj&g. -A-&r ws&- “0”“---- 
ing through the examples once, each of the possible 
specializations will have class counts tallying all the 
examples that match it. The counts can be retrieved 
by walking through VALUESET, which (with no value 
hierarchies) can have no more than ae elements. The 
overall time complexity, O(ae), is independent of the 
number of values. Thus, marker propagation should 
scale better for problems with large sets of values. 

Now consider the case where attributes can have hi- 
erarchical, tree-structured values. The state of the art 
in efficient learning with value hierarchies is described 
by Almuallim, et al. (1995). They show their method, 
which we will call the AAK-direct approach, to be more 
efficient than other methods. It differs from our marker 
propagation technique in that it walks each attribute 
---I--- __- At__ TL, I LZ-----L- :-~:--!~--ll- TXT2l.L Tr.7 A l-2 vaue up me IJX nierarcny muiviuua~y. vvlbn 13x u- 
erarchies of depth d, computing counts for e examples 
and a attributes takes time O(ead). 

Because breadth-first marker propagation combines 
counts at each level and propagates tallies of mark- 
ers up ISA hierarchies, the process takes O(ea + s) 
time, where s is the total number of values visited. It 
is clear that the set of values visited by breadth-first 
marker propagation is the same as the set values vis- 
ited by the AAK-direct approach. Rowever, breadth- 
first marker propagation visits each value only once. 
Thus, in the worst case, where no two examples share 
a value, and no two values share intermediate tree 
nodes as ancestors, marker propagation is equivalent 
to the AAK-direct approach. In any non-degenerate 
case, where there exists at least one place in the vis- 
ited ISA hierarchy where its branching factor is greater 



than one, marker propagation will be more efficient 
than the AAK-direct approach. 

Moreover, for very large datasets, breadth-first 
marker propagation introduces efficiency benefits that 
are not apparent from the complexity analysis alone. 
Consider, again, the hypothesis specialization step. 
lT-- nor Q atiributes an& w values, mi-ttch’iiiig metho& 
typically make au passes through the set of e data 
items. Even more savvy programs, e.g., C4.5 (Quin- 
lan 1993), make a passes through the set of e exam- 
ples. Breadth-first marker propagation performs only 
one pass through the data, performing a operations on 
each item. This introduces a huge savings in disk ac- 
cesses if the data set does not fit in main memory. For 
example, an n-level decision tree can be built with only 
n passes through the exampie set. 

Empirical Demonstrations 
To demonstrate the analytical results, we replaced 
matching with breadth-first marker propagation in the 
RL (Clearwater and Provost 1990) rule-learning algo- 
,:+l.., famrn DT\ lib., +hnls &..A:,, 1.r.3 ..I_ LL”ILUI \PCI”u--ILU,. X”I IrlLcx3~ JYUUrciy WG UJG a beam 

search and a depth limit to restrict the search space of 
rules, use the rule certainty factor defined by Quinlan 
(1993) to evaluate potential rules, and accept rules if 
their evaluation is above a user-defined threshold. 

To test our first analytical result that, even with- 
out hierarchical background knowledge, breadth-first 
marker propagation is more efficient than conventional 
matching as the number of attribute values grows, we 
- ---L--!---l ~~~ r--- ,I--- --..-!-II-.- -r,,-, nnn symneslzea a sequence 01 proolems consisring 01 IU,UUU 
training examples with 10 attributes and an increas- 
ing number of values randomly assigned to these at- 
tributes. These tests were performed on a DECstation 
5000 with 64Mbytes of memory. 

Figure 3 compares BFMP-RL’s run time with that 
of RL using generate-and-test matching (MATCHING- 
RL). Note that for these and the following ex- 
periments, the different systems performed identical 
searches and produced identical rnie sets. As pred- 
icated analytically, the run time with breadth-first 
marker propagation remains nearly constant as the 
number of values increases, while the run time with 
matching increases linearly. 

Our second analytical result predicts that breadth- 
first marker propagation will be more efficient than 
prior approaches when dealing with deep ISA hierar- 
chies. Figure 4 shows the effect of increasing the depth 
of ISA hierarchies on breadth-first marker propagation 
compared with a version of RL using the AAK-direct 
approach. Again, the empirical results support the 
analytical results: breadth-first marker propagation is 
strikingly more efficient for deep ISA hierarchies. 

To provide further support to our claim that 
breadth-first marker propagation is an efficient mech- 
anism for learning with large data sets connected to 
background knowledge, we ran BFMP-RL on three real- 
world data sets with one million examples each, linked 

Figure 3: BFMP-RL vs. MATCHING-RL with Increas- 
ing Number of Values. 

to large ISA hierarchies of background knowledge. 
BFMP-RL’s first learning task is to discover poten- 

tial indicators of fraudulent cellular telephone calling 
behavior (Fawcett and Provost 1996). The training 
data comprise one million examples of cellular tele- 
phone calls. The data are linked to a hierarchy of 
domain knowledge about 1400 geographic locations of 
particular telephone numbers arranged in an ISA hier- 
arch-y of rL?nt,ll three6 For these euperi:mentc we 1used --I.- --- 
23 attributes with 18,000 total values. 

We also analyzed a data set comprising U.S. De- 
partment of Health birth records linked with records 
of infant deaths. BFMP-RL was used to learn rules to 
predict infant mortality and survival. The database 
contains one million records with about twenty fields 
each, including demographic factors, birthweight, etc. 
The goal of the learning is to identify subgroups of the 
r.nn.,l~t;nn w;th ,,n,,c.,,~ll.r h;rrh lnrl ~,m,~c,.sllv low., :n- y”&.Pl.uuu~“IL ..&“II u.“UYYuyJ I”pL UILU UlruuuuvJ A”.” Lu- 

fant mortality rates, in order to direct further research. 
The long-term goal of such work is to formulate poli- 
cies that will reduce the nation’s infant mortality rate 
(Provost and Aronis 1996). 

Finally, we analyzed data describing incidents of po- 
tentially toxic exposures to plants. The database con- 
tains about one million records including symptoms, 
recommended actions, actual actions, outcome, as well 
as demographic and symptom information about the 
victims and information about the plant substances. 
We used 20 of these fields. These data were linked 
to background knowledge hierarchies describing geo- 
graphic regions (1014 distinct areas), climate types (55 
types), and botanical classifications (2400 individual 
species, genera, and families) (Krenzelok, Jacobsen, 
and Aronis 19953. 

Figure 5 shows the effect on BFMP-RL of increasing 
the number of data items for these three real-world 
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Figure 4: BPMP-RL versus AAK-direct with Increasing 
ISA Depth. 

Figure 5: BFMP-RL with 10,000 to l,OOO,OOO Items. 

data sets up to l,OOO,OOO items. BFMP-RL searched 
for rules of up to 5 conjuncts, using a beam width 
of 50. We note that, with these settings, MATCHING- 
RL took nearly two hours to learn with 100,000 exam- 
ples and no ISA hierarchy. Furthermore, it is practi- 
cally impossible to run MATCHING-RL on this work- 
station with many more than 100,000 items due to 
memory-management thrashing. On 100,000 cellular 
fraud examples BFMP-RL performed a relatively thor- 
nnrrh cpnrrh nf the ~IJ]C C~RCC? defined hv 21 features .zac)” ““.“A”&. -- “~-“” - -_----- -J -L -.-_-_2- 

with 18,000 total values in an ISA hierarchy of depth 3 
in under 5 minutes minutes on a desktop workstation. 

Conclusions 
We have shown that breadth-first marker propaga- 
tion is an efficient alternative to existing approaches 

when learning problems contain hierarchically struc- 
tured values, and that even without such structures 
the technique is an efficient replacement for match- 
ing. Furthermore, minimizing the number of passes 
through the example set avoids memory-management 
thrashing, and provides a method to mine archived 
datasets. Finally, breadth-first marker propagation 
links data mining to basic ideas from knowledge repre- 
sentation. In order to focus on efficiency gains, we have 
limited the discussion in this paper to ISA-hierarchical 
background knowledge. However the use of marker 
propagation provides a means to learn with more com- 
plex networks of background knowledge and multitable 
databases (Aronis, Provost, and Buchanan 1996). 
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