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Many document classification applications require human understanding of the reasons for data-driven
classification decisions by managers, client-facing employees, and the technical team.  Predictive models treat
documents as data to be classified, and document data are characterized by very high dimensionality, often
with tens of thousands to millions of variables (words).  Unfortunately, due to the high dimensionality, under-
standing the decisions made by document classifiers is very difficult.  This paper begins by extending the most
relevant prior theoretical model of explanations for intelligent systems to account for some missing elements.
The main theoretical contribution is the definition of a new sort of explanation as a minimal set of words
(terms, generally), such that removing all words within this set from the document changes the predicted class
from the class of interest.  We present an algorithm to find such explanations, as well as a framework to assess
such an algorithm’s performance.  We demonstrate the value of the new approach with a case study from a
real-world document classification task:  classifying web pages as containing objectionable content, with the
goal of allowing advertisers to choose not to have their ads appear on those pages.  A second empirical demon-
stration on news-story topic classification shows the explanations to be concise and document-specific, and
to be capable of providing understanding of the exact reasons for the classification decisions, of the workings
of the classification models, and of the business application itself.  We also illustrate how explaining the classi-
fications of documents can help to improve data quality and model performance.
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Introduction1

Document classification systems classify text documents
automatically, based on the words, phrases, and word combi-

nations therein (hereafter, words).  Business applications of
document classification are becoming increasingly wide-
spread, especially with the introduction of low-cost micro-
outsourcing systems for annotating training corpora.  Preva-
lent applications include sentiment analysis (Pang and Lee
2008), spam identification (Attenberg et al. 2009), web page
classification (Qi and Davison 2009), legal document
classification (Tseng et al. 2007), medical document triage
(Wallace et al. 2010), and document classification for topical
web search (Pant and Srinivasan 2005), just to name a few.
Classification models are built from labeled data sets that
encode the frequencies of the words in the documents. Impor-
tantly for this paper, and different from many data mining

1Vijay Vaishnavi was the accepting senior editor for this paper.  Vijay Khatri
served as the associate editor.

The implementation of the methods described in this paper is available at
www.applieddatamining.com.

The appendices for this paper are located in the “Online Supplements”
section of the MIS Quarterly’s website (http://www.misq.org).
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applications, the document classification data representation
has very high dimensionality, with the number of words and
phrases typically ranging from tens of thousands to millions.

The main contribution of this paper is to examine in detail an
important aspect of the business application of document
classification that has received little attention in the research
literature.  Specifically, organizations often need to under-
stand the exact reasons why classification models make par-
ticular decisions.  The need comes from various perspectives,
including those of managers, customer-facing employees, and
the technical team.  To understand these needs more deeply,
in the next section we extend an existing theoretical model
from the Information Systems literature to include these
various perspectives.

As a concrete illustration, consider an application that has
received substantial interest in online advertising:  keeping
ads off of objectionable web content (eMarketer 2010).
Having invested substantially in their brands, firms cite the
potential to appear adjacent to nasty content as the primary
reason they do not spend more on online advertising.  To help
reduce the risk, document classifiers are applied to web pages
along various dimensions of objectionability, including adult
content, hate speech, violence, drugs, bomb-making, and
many others.  However, because the online advertising eco-
system supports the economic interests of both advertisers
and content publishers, black-box models are insufficient.
Managers cannot put models into production that might block
advertising from substantial numbers of non-objectionable
pages without understanding the risks of incorporating them
into the product offering.  Customer-facing employees need
to explain why particular pages were deemed objectionable by
the models.  And the technical team needs to understand the
exact reasons for the classifications made, so that they can
address errors and continuously improve the models.

Popular techniques to build document classification models
include naive Bayes, linear and nonlinear support vector
machines (SVMs), classification-tree based methods (often
used in ensembles, such as with boosting; Schapire and Singer
2000), K-nearest neighbor (Han et al. 2001), and many others
(Hotho et al. 2005).  Because of the massive dimensionality,
even for linear and tree-based models, it is very difficult to
understand exactly how a given model classifies documents.
It is essentially impossible for a nonlinear SVM or an ensem-
ble of trees.  Understanding the classifications requires con-
cise explanations—explanations that refer to only a very small
fraction of the total vocabulary—in contrast to existing
explanation approaches, which in most cases include large
fractions of the vocabulary.

Understanding particular classifications also provides other
important benefits.  Along with improved understanding of
the classification model, the explanations also can provide a
novel lens into the complexity of the business domain.  For
example, in Explanation 1 (shown below; described fully in
the section “Instance-Level Explanations” later in this article),
the word “welcome” as an indication of adult content initially
seems strange.  Upon investigation/reflection we understand
that in some cases an adult website’s first page contains a
phrase similar to “Welcome to....By continuing you confirm
you are an adult and agree with our policy.”  The explanation
brings this complexity to light.

Explanation 1:  An example explanation why a
web page is classified as having adult content.

If words (welcome fiction erotic enter bdsm adult) are
removed, then class changes fro adult to non-adult.

We introduce this problem, tying it in to the existing literature
on explanations for decision systems and extending the
relevant theory to account for modern, data-driven modeling.
In line with this theory, we then introduce the first (to our
knowledge) technique that directly addresses the explanation
of the decisions made by document classifiers.  The technique
focuses on explaining why a document is classified as a
specific class of interest (e.g., “objectionable content” or
“hate speech”).  Finally, we present a case study based on
data from a real application to the business problem of safe
advertising discussed above, and an empirical follow-up study
on benchmark data sets (from news classification).  These
studies demonstrate that the methods can be effective, and
also flush out additional important issues in explaining
document classifications, such as the need for hyper-
explanations.

Explanations and Statistical
Classification Models

Explaining the decisions made by intelligent decision systems
has received both practical and research attention for decades,
and a complete review is well beyond the scope of this paper.
Nonetheless, there are important results from prior work that
help to frame, motivate, and explain the specific gap in the
current state of the art that this paper addresses.
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Model-Based Decision Systems and
Instance-Specific Explanations

Starting as early as the celebrated MYCIN project in the
1970s studying intelligent systems for infectious disease
diagnosis (Buchanan and Shortliffe 1984), the ability for
intelligent systems to explain their decisions was understood
to be necessary for effective use of such systems and therefore
was studied explicitly.  The document classification systems
that are the subject of this paper are an instance of decision
systems (DSs):  systems that either (1) support and improve
human decision making (as with the characterization of
decision-support systems by Arnott 2006), or (2) make
decisions automatically.  The focal application of this paper’s
case study falls in the second category:  billions of attempts
to place advertisements are made each day, and each decision
is made in a couple dozen milliseconds.  Model-based deci-
sion systems have seen a steep increase in development and
use over the past two decades (Banker and Kauffman 2004).
We focus on models produced by large-scale automated
statistical predictive modeling systems (Shmueli and Koppius
2011), for which generating explanations can be particularly
problematic.

Different applications impose different requirements for
understanding.  Consider three different application scenarios,
both to add clarity in what follows, and so that we can rule out
one of them.  First, in some applications it is important to
understand every decision that the DS may possibly make.
For example, for many applications of credit scoring (Martens
et al. 2007), regulatory requirements stipulate that every deci-
sion be justifiable, and often this is required in advance of the
official “acceptance” and implementation of the system.
Similarly, one could easily see that a medical decision system
may need to be completely transparent in this respect.  The
present paper, about individual case-specific explanations, is
not intended to apply to systems such as these.2

In contrast, consider applications where one needs to explain
the specific reasons for some subset of the individual deci-
sions (cf., the theoretical reasons for explanations summarized
by Gregor and Benbasat (1999), discussed below).  Our case
study falls into this category.  Often, this need for individual
case explanations arises because particular decisions need to
be justified after the fact.  For example, a customer may ques-

tion a decision or a developer may want to examine model
performance on historical cases.  Furthermore, to reveal prob-
lems with the classification of documents it may be more
efficient for an analyst to study concise explanations than the
documents themselves.  Alternatively, a developer may be
exploring decision-making performance by giving the system
a set of theoretical test cases.  In both scenarios, it is neces-
sary for the system to provide explanations for specific
individual cases.3  Other examples in the second scenario
include fraud detection (Fawcett and Provost 1997), many
cases of targeted marketing, and all of the document classi-
fication applications listed above.

In a third application scenario, every decision that the system
actually makes must be understood.  This often is the case
with a classical decision-support system, where the system is
aiding a human decision maker, for example for forecasting
(Gönül et al. 2006) or auditing (Ye and Johnson 1995).  For
such systems, again, it is necessary to have case-specific
explanations.

Cognitive Perspectives on
Model Explanations

Gregor and Benbasat (1999) provide a survey of empirical
work on explanations from intelligent systems.  They find that
explanations are important to users when there is some
specific reason and anticipated benefit, when an anomaly is
perceived, or when there is an aim of learning.  Their theo-
retical analysis brings to the fore three ideas that are critical
for our context.  First, they introduce the reasons for explana-
tions:  to resolve perceived anomalies, a need to better grasp
the inner workings of the intelligent system, or the desire for
long-term learning.  Second, they describe the type of
explanations that should be provided:  they emphasize the
need not just for general explanations of the model, but for
explanations that are context-specific.  Third, Gregor and
Benbasat emphasize the need for justification-type explana-
tions, which provide a justification for moving from the
grounds to the claims, in contrast to rule-trace explanations.
In statistical predictive modeling, the rule trace often entails
simply the application of a mathematical function to the case
data, with the result being a score representing the likelihood
of the case belonging to the class of interest, with no justifi-
cation of why.  There is little existing work on methods for
explaining modern statistical models extracted from data that
satisfy these latter two criteria, and none (to our knowledge)

2The current prevailing interpretation of this requirement for complete
transparency argues for a globally comprehensible predictive model.  Indeed,
in credit scoring generally, the only models that are accepted are linear
models with a small number of well-understood, intuitive variables.  Such
models are chosen even when nonlinear alternatives are shown to give better
predictive performance (Martens et al. 2007).

3Individual case-specific explanations may also be sufficient in many appli-
cations.  For this paper, it is only important that they be necessary.
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that provide such explanations for the very high-dimensional
models that are the focus of this paper.

An important subtlety that is not brought out explicitly by
Gregor and Benbasat, but which is quite important in our
context, is the difference between (1) an explanation as
intended to help the user to understand how the world works,
and thereby help with acceptance of the system, and (2) an
explanation of how the model works.  The latter case can be
further subdivided into (a) how the model works in general,
and (b) how the model works on a particular instance.  The
explanation thereby either can help with acceptance, or can
focus attention on the need for improving the model.  When
the model reflects reality, then this also will support under-
standing how the world works.

The Three-Gap Framework

In order to examine more carefully why explanations are
needed and their impact on decision model understanding,
long-term learning, and improved decision making, we turn to
the recent work by Kayande et al. (2009).  This work focuses
on the same context as we do in our case study, specifically
where data are voluminous, the link between decisions and
outcomes is probabilistic, and the decisions are repetitive.
They presume that it is highly unlikely that decision makers
can consistently outperform model-based DSs in such
contexts.

Prior work has suggested that when users do not understand
the workings of the DS model, they will be skeptical and
reluctant to use the model, even if the model is known to
improve decision performance (see, for example, Arnold et al.
2006; Kayande et al. 2009; Lilien et al. 2004; Limayem and
DeSanctis 2000; Umanath and Vessey 1994).  Further,
decision makers need impetus to change their decision stra-
tegies (Todd and Benbasat 1999), as well as guidance in
making decisions (Silver 1991).  Kayande et al. introduce a
“three-gap” framework (Figure 1) for understanding the use
of explanations to improve decision making by aligning three
different models:  the user’s model, the system’s model, and
reality.  Their results show that guidance toward improved
understanding of decisions, combined with feedback on the
potential improvement achievable by the model, induces
decision makers to align their mental models more closely
with the decision model, leading to deep learning.  This
alignment reduces the corresponding gap (Gap 1), which in
turn improves user evaluations of the DS.  It is intuitive to
argue that this then improves acceptance and increases use of
the system.  Under the authors’ assumption that the DS’s
model is objectively better than the decision maker’s (large

Gap 3 compared to Gap 2), this then would lead to improved
decision-making performance (see Todd and Benbasat 1999).
Expectancy theory suggests that this will lead to higher usage
and acceptance of the DS model, as users will be more moti-
vated to actually use the DS if they believe that a greater
usage will lead to better performance (DeSanctis 1983).

An Extended Gap Framework

The framework of Kayande et al. is incomplete in two
important ways, which we now will address in turn.  First,
Kayande et al. do not address the use of explanations (or other
feedback) to improve the DS model.  Technically this incom-
pleteness is not an incompleteness in their three-gap frame-
work, because improving the model fits as closing Gap 2.
Indeed, the authors note specifically that “to provide high-
quality decision support, the gap between the DSS model and
the true model must be small (Gap 2…)” (p. 529).   However,
in their paper, Kayande et al. focus their attention on closing
Gap 1 between the user’s mental model and the DS model. 
They justify this with the explicit assumption “that the DSS
model is of high objective quality (small Gap 2) and that it is
of better quality than the user’s mental model (large Gap 3)”
(p. 529).   Even when the model’s performance generally is
much better than the user’s, in many applications there still
are plenty of cases where the user is correct when the model
is wrong.  True mistakes of the model, when noticed by a
user, can jeopardize user trust and acceptance.

Generally, we need research that focuses on a user-centric
theoretical understanding of the production of explanations
with a primary goal of improving data-driven models based
on feedback and iterative development.  This is important
because as model-based systems increasingly are built by
mining models from large data, users may have much less
confidence in the model’s reasoning than with hand-crafted
knowledge-based systems.  There are likely to be many cases
where the decisions are erroneous due either to biases in the
process, or to over-fitting the training data (Hastie et al.
2001). As pointed out by Gregor and Benbasat, a user will
want an explanation when she perceives an anomaly.  The
resultant explanation may help the user to learn about how the
world works (Kayande et al. 2009), and thereby improve
acceptance.  However, it alternatively may lead to the iden-
tification of a flaw in the model, and lead to a development
effort focused on improving the model.  At a higher level, this
ability for the users and the developers to collaborate on
fixing problems with the system’s decision making may also
improve user acceptance, because the user sees herself as an
active, integral part of the system development, rather than a
passive recipient of explanations as to why she is wrong about
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Figure 1.  The Three-Gap Framework (adapted from Figure 1 in “How Incorporating Feedback Mech-
anisms in a DSS Affects DSS Evaluations,” U. Kayande, A. De Bruyn, G. L. Lilien, A. Rangaswamy, and
G. H. Van Bruggen, Information Systems Research (20:4), 2009)

the world.  Therefore, our first extension to the three-gap
framework is that explanations can be used to improve the
model—closing Gap 2 (and Gap 1 in the other direction)—as
well as to improve user understanding.

This leads us to the second important incompleteness in the
framework of Kayande et al.  The three-gap framework con-
siders a single, monolithic “user” of the decision system.  We
contend that to better understand the uses of explanations in
the context of practices within contemporary organizations,
we need to differentiate between different roles of people who
interact with the decision system.4  In order to understand how
explanations are or should be used, there are at least three
different roles that are important to distinguish:  developers,
managers, and customers.

Figures 2a and 2b present a seven-gap extension to Kayande
et al.’s framework.  The extended framework makes three
novel contributions.  First, it clarifies the bidirectional nature
of the gap closing that can be achieved via explanations: 

explanations can lead to changes in user mental models; they
also can lead to changes in the DS model.  Second, the
extended framework distinguishes three different user roles.
Each different role has different needs and uses for explana-
tions, as will be illustrated in the context of our case study.
Third, the extended framework distinguishes between two
quite different sorts of user understanding, both of which are
important:  understanding reality better, and understanding the
DS model better.

Specifically, Figure 2a illustrates how the extended model
breaks apart the closing of the gap between the different user
roles and reality.  In each case, explanations can give the user
better understanding of the domain.  However, although
customers, managers, and developers all need to accept the
DS model, acceptance means different things for each.  In our
case study application of web page classification for safe
advertising, explanations of why ads are blocked on certain
pages can increase a customer’s understanding of the sorts of
pages on which her ads are being shown (a difficult task in
modern online display advertising).  If these include hate
speech pages on user-generated content sites, this may sub-
stantially increase the user’s acceptance of the need in the first
place for the DS.  Managers seeing explanations of blocked

4We discuss different roles rather than different sorts of people, because in
some contexts the same person may play more than one of the roles.
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(a)  Proposed seven-gap model highlighting the gaps between the
users’ models and reality.  Understanding document classifications
can close these gaps, helping users to understand the world better,
thereby improving acceptance of the system.

(b)  Proposed seven-gap model highlighting the gaps between the
users’ models and the DS’s model.  These gaps can be closed in
either direction:  improving users’ understanding of how the DS
model works, or helping to improve the DS model.  Improving the
DS model, in turn, helps close the vertical gap between the DS
model and reality.

Figure 2.  Seven-Gap Extension of Kayande et al’s Three-Gap Framework  (The figure shows that
(1) explanations can close more than just the gap between the user’s mental model and the DS model,
and (2) the extension of a single user to three relevant user roles:  client, manager, and developer.)

pages can better understand the landscape of objectionable
content, in order to better market the service.  Developers can
better understand the need for focused data collection, in
order to ensure adequate training data for the classification
problems faced (Attenberg et al. 2011; Attenberg and Provost
2010).  In sum, assuming (as do Kayande et al.) that the DS
model is relatively close to reality, a better understanding of
the domain should improve:  acceptance by customers and
managers, marketing and sales by managers, and efficiency
and efficacy of developers.

Figure 2b highlights the gaps between the users’ mental
models and the DS model.  The arrows moving from the
mental models toward the DS model break apart different
sorts of understanding that underlie the gap closing that
explanations may provide, inherent in the treatment by
Kayande et al. In the case of data-driven statistical models, all
of the different user roles may need to achieve some level of

understanding of the decision system in order to improve
acceptance (in line with prior research).  At the top of the
figure, clients/customers may need to have specific decisions
of the system justified.  As represented by the middle gap,
managers need to understand the workings of the DS model: 
customer-relationship managers need to deal with customer
queries regarding how decisions are made.  Even in appli-
cations for which black-box systems are deployed routinely,
such as fraud detection (Fawcett and Provost 1997), managers
still need to have confidence in the operation of the system
(middle gap) and may need to explain to customers reasons
for particular classifications when errors are made.  Opera-
tions managers need to “sign off” on models being placed into
production.  Such managers prefer to understand how the
model makes its decisions, rather than simply to trust the
technical/data science team.  Development managers need to
understand specific decisions when they are called into ques-
tion by customers or business-side employees.  Finally,
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(bottom gap) the data science developers themselves need to
understand the reasons for decisions in order to be able to
debug/improve the models (discussed next).  Holistic views
of a model and aggregate statistics across a test set may not
give sufficient guidance as to what exactly is wrong and how
the model can and should be improved.

The dashed arrows (emanating from the DS model) represent
gap-closing in the other direction, by improving the DS
model.  The explanation methods introduced in this paper can
have a substantial impact on improving document classifica-
tion models from the users’ perspectives.  Despite the stated
goals of early research on data mining and knowledge dis-
covery (Fayyad et al. 1996), very little work has addressed
support for the process of building acceptable models, espe-
cially in business situations where various parties must be
satisfied with the results.  There has been increasing focus in
research and in practice on using advanced statistical models
that mimic behavior, without understanding the meaning of
those behaviors (Norvig 2011).  The design we introduce pro-
vides support for such understanding.  The DS model can
move closer to the mental models of people playing each of
the different user roles, to the extent that they were correct on
the specific flaws that were improved upon.  Presumably
these gap closings also would improve acceptance.  Possibly
equally important for acceptance would be the increase in the
users’ perception that the model can be improved when
necessary.

Note that, when improved, the model is likely also to move
closer to reality (the vertical, dashed arrow).  We say “is
likely to” because since there is a gap between each user’s
mental model and reality, it may be that moving the model
closer to the mental model of some user actually moves it
further away from reality.  We will not examine that possi-
bility in this paper.5  The extended gap model also highlights
the existence of the vertical gaps between user roles.  Closing
these gaps also is important to DS development (see, for
example, Barki and Hartwick 2001; Sambamurthy and Poole
1992).  For example, to avoid conflicts, managers and devel-
opers should have similar mental models.  Producing good
explanations may address these gaps indirectly, as closing the
gaps between the user roles and reality and between the user

roles and the DS model may act naturally to close these
vertical gaps between user mental models.  We do not address
these vertical gaps directly in this paper.

Explaining Documents’
Classifications

Prior research has examined two different sorts of explanation
procedures for understanding predictive models:  global
explanation and instance-level explanation (Baehrens et al.
2010; Craven and Shavlik 1997; Martens et al. 2007; Robnik-
Sikonja and Kononenko 2008; Štrumbelj and Kononenko
2010; Štrumbelj et al. 2009).  Global explanations provide
improved understanding of the complete model, and its per-
formance over the entire space of possible instances. 
Instance-level explanations provide explanations for the
model’s classification of an individual instance.

In the previous section, we presented reasons for preferring
instance-level explanations over global explanations, drawing
on prior IS research.  We now present additional reasons why
existing methods are not ideal (or not suitable) for explaining
classifications of documents in particular, and then we present
a new approach that addresses the drawbacks.

Key Aspects of Document Classification

We focus on textual document classification, where a score is
produced representing the predicted likelihood (or strength of
belief) of the document belonging to some discrete class or
category, based on the values of a large number of indepen-
dent variables representing the words.6  There are several
ways in which document classification differs from traditional
data mining for common applications such as credit scoring,
medical diagnosis, fraud detection, churn prediction, and
response modeling.  First, the data instances have less struc-
ture.  Technically, one can engineer a feature-vector represen-
tation from the sequence or bag of words, but this leads us to
our second main difference.  Second, in a feature-vector
representation of a document data set, the number of variables
is often orders of magnitude larger than in the standard classi-
fication problems presented above.  Third, the values of the
variables in a text mining data set denote the presence, fre-
quency of occurrence, or some positively weighted frequency
of occurrence of the corresponding word (see below).

5We have omitted the possibility that reality can move closer to the DS model
in our treatment.  However, this is not necessarily out of the question.  The
“true” classifications of documents are subjective in certain domains, and it
may be that a broadly used classification system changes the accepted
subjective class definitions.  Further, in dynamic domains the production of
documents may coevolve with system development and usage.  Authors may
write documents differently based on their knowledge of the algorithms used
to find or process them.  Such issues are beyond the scope of this paper.

6Technically, text document classification applications generally use terms
that include not only individual words, but phrases, metadata terms, n-grams,
etc.  For this paper, we call all of these words.  Cases where the terms are not
comprehensible to a human present a limitation of our approach.
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These three aspects of document classification all are critical
for the explanation of classifier decisions.  The first two
combine to render existing explanation approaches relatively
useless (as we discuss in detail next).  The third, however,
presents the basis for the design of the solution we propose.
Specifically, with all such document classification represen-
tations, removing words always corresponds to reducing the
value of the corresponding variable or setting it to zero.

A few technical details of document classification are impor-
tant here.  All non-textual symbols, such as punctuation, are
removed from each document, unless they are specifically
included for their semantic relationship to the classification
task.  For a set of n documents and a vocabulary of m words,
an n × m data set is created with the value tfij on row i and
column j denoting the frequency of word j in document i
(term frequency).  As most of the words available in the
vocabulary will not be present in any given document, most
values will be zero, and a sparse representation typically is
used.  Often a weighting scheme is applied to the frequencies,
where the weights reflect the importance of the word for the
specific application (Hotho et al. 2005).  A commonly used
data-driven weighting scheme is tfidf:  xij = tfij × idfj where the
weight of a word is the inverse document frequency, which
describes how uncommon the word is:  idf(wj) = log(n / nj)
with nj the number of documents that contain word wj.

Classification models are built using a training set of labeled
documents, meaning we know the value of the target variable
being predicted/estimated.  The resultant classification model,
or classifier, maps any document to one of the predefined
classes.  Specifically, the classifier maps the document to a
score representing the likelihood of belonging to the class;
this score is compared to a threshold for classification.  Based
on an independent test set, the performance of the model can
be assessed by comparing the true labels with the predicted
labels.7

Global Explanations

The most common approach to understanding a predictive
model is to examine the coefficients of a linear model.  Unfor-
tunately such an approach is impracticable for a model with
104 to 106 variables.  For such applications, the most common
approach for a linear model is to list the variables (words in

our case) with the highest weights.  To understand more
complex models such as neural networks (Bishop 1996) and
nonlinear support-vector machines (SVMs) (Vapnik 1995),
the principal approach is rule extraction:  rules or trees are
extracted that mimic the black box as closely as possible
(Craven and Shavlik 1997; Martens et al. 2007).  The motiva-
tion for using rule extraction is to combine the desirable pre-
dictive behavior of nonlinear techniques with the comprehen-
sibility of decision trees and rules.  Previous benchmarking
studies have revealed that when it comes to predictive accu-
racy, nonlinear methods often outperform traditional statis-
tical methods such as multiple regression, logistic regression,
naive Bayesian, and linear discriminant analysis (see Baesens
et al. 2003; Lessmann et al. 2008).

These rule extraction approaches are not suitable for our
present problem for several reasons.  Not all classifications
are explained by these rule extractions.  For some instances
that seem to be explained by the rules, more refined (and
therefore more accurate) explanations exist.  In addition, often
one is only interested in the explanation of the classification
of a single data instance—for example, because it has been
brought to a manager’s attention as a classification error or
simply because additional information is required for this case
(to address a perceived anomaly, or for other learning).

In addition, global explanations do not provide much insight
for document classification anyway, because of the massive
dimensionality.  For a classification tree to remain readable,
it cannot include thousands of variables (or nodes).  Similarly,
listing all of these thousands of words with their corre-
sponding weights for a linear model will not provide much
insight into individual decisions.  Considering our running
example of web page classification for safe advertising, what
we want to know is, why did the model classify this particular
web page as containing objectionable content?

Instance-Level Explanations

Over the past few years, explanation methods have been intro-
duced that explain the predictions for individual instances
(Baehrens et al. 2010; Robnik-Sikonja and Kononenko 2008;
Štrumbelj and Kononenko 2010; Štrumbelj et al. 2009).
Generally, these methods provide an explanation as a vector
with a real-valued score for each of the variables, indicating
the extent to which it contributes to the classification.  This
makes sense for many classification problems, which have
relatively few variables (e.g. , the median number of variables
for the popular UCI benchmark datasets is 18.5; Hettich and
Bay 1996).  However, due to the high dimensionality of the
data, this sort of explanation is not ideal for document classi-

7Note that latent semantic analysis (LSA) (Deerwester et al. 1990) is
sometimes used for indexing and information retrieval (e.g., Sidorova et al.
2008).  Its clustering over the identified concepts can provide improved
understanding, but is different from making or explaining prediction models
based on labeled data.
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fication—possibly not useful at all.  Considering our safe-
advertising problem, an explanation for a web page’s classi-
fication as a vector with thousands of non-zero values
generally will not be comprehensible.  The words with the
highest contribution scores will have the biggest impact on
the classification; however, we still will not know which
(combination of) words actually led to any given classi-
fication.

Aside from the unsuitable format of these previous explana-
tions, previous instance-based explanation approaches are
unable to handle high-dimensional data computationally.  The
sample-based approximation method of Štrumbelj and
Kononenko (2010) is reported to be able to handle up to about
200 variables, albeit requiring hours of computation time. 
Štrumbelj and Kononenko acknowledge that for such data sets
other approaches should be introduced:

Arguably, providing a comprehensible explanation
involving a hundred or more features is a problem in
its own right and even inherently transparend [sic]
models become less comprehensible with such a
large number of features (p. 13).

Because of this inability to deal with the high dimensionality
of document data, these methods are not applicable for
explaining documents’ classifications.

In focusing on document classification, we take advantage of
three main observations to define a slightly different explana-
tion task from that addressed by prior work.  This new task
will address the motivating business needs and we will be
able to solve it efficiently.  The first observation is that, in
many document classification problems, there really are two
quite different explanation tasks, and we often are interested
specifically in one of them:  why documents were classified
as a particular focal class (a “class of interest”).  The other
task is to explain why a document was not classified as a par-
ticular class.  Considering our web page classification setting,
we will focus primarily on explaining why a page has
received (rightly or wrongly) a positive classification of
containing objectionable content.  The asymmetry is due to
the negative class being a default class:  if there is no evi-
dence of the class of interest (or of any of the classes of
interest), then the document is classified as the default class.
In this paper we will not treat in detail the other explanation
task.  The question of why a particular page has not received
a positive classification can be important as well, but reflec-
tion tells us that it is indeed a very different task.  Often the
answer is “the page did not exhibit any of the countless
possible combinations of evidence that would have led the
model to deem it objectionable.”  The problem here generally

is:  “How do I fix the model given that I believe it has made
an error on this document?”  This is a fundamentally different
problem and thereby should require a very different
solution—for example, an interactive solution where users tell
the system why the page should be a positive, for example
using dual supervision (Sindhwani and Melville 2008), or a
relevance feedback/active learning system where chosen cases
are labeled and then the system is retrained (Attenberg et al.
2011).  These are important problems, but are beyond the
scope of this paper.

The second important observation is that in contrast to the
individual variables in many predictive modeling tasks,
individual words can be quite comprehensible.  The innate
comprehensibility of the words often will immediately give
deep intuitive understanding of the explanation.  As we will
see, when it does not it can indicate problems with the model.

The third observation is that in document classification,
removing all occurrences of a word always sets the corre-
sponding variable’s value to zero.  This allows us to formulate
an optimization problem for which we can find solutions fast.

Explaining the Classification of Documents

The question we address is:  Why is this document classified
as a non-default class?  The technique(s) we introduce will
provide an explanation as a set of words present in the docu-
ment such that removing these words causes a change in the
class.  Only when all words in the explanation are removed
does the class change (the set is minimal).

To define the explanation formally (see Definition 1), we
need to recall that a document D 0 D is a bag (multiset) of
words.  Let WD be the corresponding set of words.  We
presume that classifications are based on a classifier CM,
which is a function from documents to classes.  Later, our
heuristic algorithm will presume that CM incorporates at least
one scoring function ; classifications will be based onf CM

scores exceeding thresholds (in the binary case), or choosing
the class with the highest score (in the multiclass case).  The
majority of classification algorithms operate in this way,
including all that we discuss in this paper.

DEFINITION 1.  Consider a document D consisting of mD

unique words WD from the vocabulary of m words:  WD = {wi,
i = 1, 2, …, mD}, which is classified by classifier CM:  D 6
{1, 2, …, k} as class c.  An explanation for document D’s
classification is a set E of words such that removing all words
in E from the document leads CM to produce a different
classification.  Further, an explanation E is minimal in the
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sense that removing any subset of E does not yield a change
in class.  Specifically,

E is an explanation for CM(D) = c
1. E f WD (the words are in the document),
2. CM(D \ E) … c (the class changes), and
3. òE' d E : CM(D \ E') … c (E is  minimal).

D \ E denotes the result of removing the words in E from
document D.

Definition 1 is specifically tailored to document classification. 
It provides intuitive explanations in terms of words present in
the document, and we will be able to produce such explana-
tions even in the massively dimensional input spaces typical
of document classification.  Specifically, Definition 1 differs
from those of prior approaches in that the explanation is a set
of words rather than a vector.  It also defines the size of the
explanation as the cardinality of E.  Our empirical analysis
will reveal that explanations typically are quite small (often
about a dozen words) as compared to the size of the vocabu-
lary, and as such the technique is able to effectively transform
the high-dimensional input space to a low-dimensional expla-
nation.  This is of crucial importance to satisfy a manager’s or
a customer’s need to understand a classifier’s decision, to
obtain better understanding of the domain, or to improve the
classifier’s performance.

The desire to be model-independent is important and worth
discussing further.  Some firms use different model types for
different document classification problems.  Complicated
nonlinear models are often used, such as nonlinear SVMs
(Joachims 1998) or boosted trees (Schapire and Singer 2000).
These models are incomprehensible globally.  Explaining the
individual decisions made by such models to a client,
manager, or subject-matter expert is a natural application of
our approach.  When a linear model is being used, one could
argue simply to list the top k words that appear in the docu-
ment with the highest positive weights as an explanation for
the class (assuming we are explaining class 1 versus class 0).
The choice of k can be set to 10, for example.  A more
suitable choice for k would follow our definition and be the
minimal number of top words such that removing these k
words leads to a class change.  This is exactly what our
approach would provide with a linear model.  Finally,
although they are often cited as producing comprehensible
models, classification trees for document classification do not
provide the sort of explanations we need (as in Definition 1): 
they do not explain what words actually are responsible for
the classification.  All words from the root to the specific leaf
for this document may be important for the classification, but
some of these words are likely not present in the document
(the path branched on the absence of the word) and we do not

know which (minimal) set of words actually is responsible for
the given classification.  Appendix C discusses relations to
inverse classification and to K-nearest neighbor approaches
in more detail.

Finding Document Classification
Explanations

Now we can present the problem more precisely from an
optimization perspective.  Unlike the settings in prior work,
here we are looking for the shortest paths in the space defined
by word presence, based on the effect on the surface defined
by the document classification model, which is in a space
defined by more sophisticated word-based features (e.g.,
frequency or tfidf, as described above).  Given a document
vocabulary with m words, consider a mask vector to be a
binary vector of length m, with each element of the vector
corresponding to one word in the vocabulary.  An explanation
E can be represented by a mask vector µE with µE(i) = 1 ] wi

0 E (otherwise, µE(i) = 0).  Recall that the size of the
explanation is the cardinality of E, which becomes the L1-
norm of µE.  Then D\E is the Hadamard product of the feature
vector of document D (which may comprise frequencies or
tfidf values) with the one’s complement of µE.

Thus, finding a minimal explanation corresponds to finding a
mask vector µE such that CM(D\E) … CM(D), but if any bit of
µE is set to zero forming E', then CM(D\E') = CM(D).

Objectives and Performance Metrics

Although Definition 1 is quite concise, the objectives for an
algorithm searching for such explanations can vary greatly.
A user may want to (1) find at least one minimum-sized
explanation:  an explanation such that no other explanation of
smaller size exists; (2) find all minimal explanations; (3) find
all explanations of size smaller than a given k; (4) find l
explanations, as quickly as possible (l = 1 may be a common
objective); (5) find as many explanations as possible within a
fixed time period.  Combinations of such objectives may also
be of interest.  To allow the evaluation of different explana-
tion procedures for these objectives, we define a set of
performance metrics:

Search effectiveness:
1. PE:  Percentage of test instances explained
Explanation complexity:
2. AWS:  Average number of words in the smallest

explanation
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Problem complexity:
3. ANS:  Average number of smallest explanations

produced 
4. ANT:  Average number of total explanations

produced
Computational complexity:
5. ADF:  Average time to find the first explanation 
6. ADA:  Average time to find all explanations 

These performance metrics describe the behavior of a docu-
ment explanation algorithm.8  In a separate analysis, one can
also employ a domain expert to verify the explanations.  An
interesting question that is beyond the scope of this paper is:
If the explanations are counterintuitive, does that reflect on
the explanation-finding method, or only on the underlying
classification model that is being explained?  We will show
that some explanations reveal the over-fitting of the training
data by the modeling procedure, which often is not revealed
by traditional machine learning evaluations that examine sum-
mary statistics (error rate, area under the ROC curve, etc.).

Complete Enumeration of Explanations
of Increasing Size

A straightforward approach to producing explanations is to
conduct a complete search through the space of all candidate
word combinations, starting with one word, and increasing the
number of words until an explanation is found.  The candidate
word combinations are all combinations of words in the
document (rather than in the vocabulary), for which a subset
of the words was not already found to be an explanation.  This
algorithm starts by checking whether removing any one word
w from the document would cause a change in the class label
and, if so, producing the explaining rule “if word w is
removed then the class changes.”  For a document with mD

words, this requires mD evaluations of the classifier.  If the
class does not change based on one word only, the case of
several words being removed simultaneously will be con-
sidered.  The algorithm considers all word combinations of
size 2, then 3, and so on.  For combinations of two words, the
algorithm makes mD × (mD ! 1) evaluations, for all combina-
tion of three words mD × (mD ! 1) × (mD ! 2) evaluations and,
generally, for a combination of k words, we need mD!/(mD !
k)! = O(mD

k) evaluations.  This complete search scales

exponentially with the number of words in the document.
Therefore, it is impracticable for all but the smallest docu-
ments.  It could be used for naturally small documents, such
as explaining the classifications of search queries, sentiment
predictions for Twitter posts, or classifications based on non-
standard documents such as ad targeting classification based
on collections of visited URLs.  Note that if the goal of the
search is to find an explanation, the complete search is almost
certain not to exhaustively search the space.  If a short
explanation exists, then the complete search may be quite fast
for such short documents.  However, as the search will be
impracticable for most document settings, including the
domains of our experiments, we will not consider complete
search further.

Explaining Documents’ Classifications:
A Heuristic Search Approach

The heuristic search approach, described in Algorithm 1, is
designed to find one or more minimal explanations in
reasonable time.  It is not guaranteed to find all solutions or
the shortest solution.  (We will see that it is optimal in an
important setting.)  The approach is based on two notions:

1. Heuristic search guided by local improvement:  We
assume that the underlying classification model will
always be able to provide a probability estimate or score9

in addition to a categorical class assignment.  We will
denote this score function for classifier CM by (·). f CM

The algorithm starts by listing all potential explanations
of one word, and calculating the class and score change
for each.  The algorithm proceeds as a straightforward
heuristic best-first search.  Specifically, at each step in
the search, given the current set of word combinations
denoting partial explanations, the algorithm next will
expand the partial explanation for which the output score
changes the most in the direction of class change. 
Expanding the partial explanation entails creating a set of
new, candidate explanations, comprising all combina-
tions with one additional word from the document (that
is not yet included in the partial explanation).

8Note that explanation accuracy is not a major concern.  An explanation, by
definition, changes the predicted class; it is straightforward to ensure that
explanations always are correct.  What is important with regard to usefulness
is how complex the explanations are and how long it takes for the algorithm
to find them.

9No explicit mapping to [0, 1] is necessary; a score that ranks by likelihood
of class membership is sufficient.  The scores for different classes must be
comparable in the multiclass case, so in practice scores often are scaled to
[0,1].  For example, support-vector machines’ output scores are often scaled
to (0,1) by passing them through a simple logistic regression (Platt 1999).
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Algorithm 1:  SEDC:  Search for Explanations for Document Classification (via Best-First Search with
Pruning)

Inputs:
WD = {wi, i = 1, 2, …, mD} % Document D to classify, with mD words
CM:  D 6 {1, 2, …, k} % Trained classifier CM with scoring function f CM

max iteration = 30 % Maximum number of iterations

Output:
Explanatory list of rules, R
1: c = CM(D) % The class predicted by the trained classifier
2: p = (D) % Corresponding probability or scoref CM

3: R = { }  % The explanatory list that is gradually constructed
4: combinations_to_expand_on = { }
5: P_combinations_to_expand_on = { }
6: for i = 1 6 mD do
7: cnew = CM(D \ wi) % The class predicted by the trained classifier if word wi did not appear in the document
8: pnew = (D \ wi) % The probability or score predicted by the trained classifier if word wi did not appear in thef CM

document
9: if cnew … c then
10: R = R c “if word wi is removed then class changes”
11: else
12: combinations_to_expand_on = combinations_to_expand_on c wi

13: P_combinations_to_expand_on = P_combinations_to_expand_on c pnew

14: end if
15: end for
16: for iteration = 1 6 max_ iteration do
17: combo = word combination in combinations_to_expand_on for which

( p  ! P_combinations_to_expand_on) is maximal % The best first
18 combo_set = create all expansions of combo with one word
19: combo_set2 = remove combinations containing already found explanations of R from combo_set

% The pruning step
20: for all combos CO in combo_set2  do
21: cnew = CM(D \ CO) % The class predicted by the trained classifier if the words in

CO did not appear in the document
22: pnew = (D \ CO) % The probability or score predicted by the trained classifier if the words in f CM

CO did not appear in the document
23: if cnew … c then
24: R = R c “if words Co are removed then class changes”
25: else
26: combinations_to_expand_on = combinations_to_expand_on c CO

27: P_ combinations_to_expand_on = P_ combinations_to_expand_on c pnew

28: end if
29: end for
30: end for

2. Search-space pruning:  For each explanation with l
words that is found, we do not need to check combina-
tions of size l + 1 with these same words, hence we can
prune these branches of the search tree.  For example, if

the words hate and furious provide an explanation, we
are not interested in explanations of three words that
include these two words, such as hate, furious, and never.
This search problem generally (including the complete
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search solution) is an instance of unordered-set search. 
Unordered-set search is described in detail by Webb
(1995) (and references therein), including optimizations
that speed up the search substantially, while still allowing
various guarantees, including this sort of search-space
pruning.  The pruning is somewhat different from the
search-space pruning in similar set-enumeration algo-
rithms, such as the Apriori association rule mining
algorithm (Agrawal and Srikant 1994), in that it is based
on set subsumption rather than coverage statistics.

For the case of a linear classifier with a binary feature repre-
sentation, we might explain the classification by looking at
the words with the highest weights that appear in the docu-
ment.  However, we would still want to know which words
exactly are responsible for the classification.  SEDC produces
minimum-size explanations for linear models, which we
discuss further next.  Assuming again a class 1 versus class 0
prediction for document i, SEDC ranks all words appearing in
the document according to the product βjxij, where βj is the
linear model coefficient.  The explanation with the top-ranked
words is an explanation of smallest size.

LEMMA 1.  For document representations based on linear
binary-classification model (D) = β0 + 3βjxij with binaryf CM

(presence/absence) features, the smallest explanation found
by SEDC will be a minimum-size explanation.  Specifically,
for E1, E2 explanations, if E1 is the smallest explanation found
by SEDC, |E1| = k Y ò E2:  |E2| < k.  Furthermore, the first
explanation found by SEDC will be of size k.

Proof (by contradiction):  If no explanation exists, then the
theorem holds vacuously.  Assume there exists at least one
explanation.  In the linear model, let the (additive) contribu-
tion wij to the output score for word  j of document i be the
linear model weight βj corresponding to binary word-presence
feature xb

ij for those words that are present in document i (and
zero otherwise).

Assume w.l.o.g.  that the classification threshold is placed at
(D) = 0.  SEDC will compose the first candidate explana-f CM

tion E*  by first selecting the largest wij such that the word is
present in the document, xb

ij = 1, and adding word j to the
explanation.  SEDC will then add to E* the word with the
next-largest such wij, and so on until (E*) # 0.  Thus, thef CM

first explanation E1 by construction will consist of the k
highest-weight words that are present in the document.

Now assume that there exists another explanation E2 such that
|E2| < k; being an explanation, (E2) # 0.  Recall thatf CM

explanations are minimal, so ò S   E1:  (S) # 0.  Thus E2f CM

must have at least one element e ó E1.  Let ΣE denote the sum

of the weights corresponding to the words in an explanation
E .  For a linear model based on the (binary) presence/absence
of words, (X \ Y) = (X) ! ΣY.  As noted above, E1 f CM

f CM

comprises by construction the k words with the largest wij, so
œ wij 0 E1, œ we ó E1:  wij $ we.  Therefore, ›S   , E S E1 2

: > 
which means that ›S   E1: (D \ S) # (D \ E2).  But œSf CM

f CM

  E1 :  (D \ S) > 0 and thus (D \ E2) > 0.  Therefore, E2f CM
f CM

is not an explanation, a contradiction.  

This optimality applies as well to monotonic transformations
over the output of the linear model, as with the common
logistic transform used to turn linear output scores into
probability estimates.  The optimality also applies generally
for linear models based on numeric word-based features, such
as frequencies, tfidf scores, etc., as detailed in the following
theorem.

THEOREM 1.  For document representations based on linear
models (D) = β0 + 3βj xij with numeric word-basedf CM

features, such as frequencies or tfidf scores, that take on
positive values when the word is present and zero when the
word is absent, the smallest explanation found by SEDC will
be a minimum-size explanation.  Specifically, for E1, E2

explanations, if E1 is the smallest explanation found by SEDC,
|E1| = k Y òE2:  |E2| < k.  Furthermore, the first explanation
found by SEDC will be of size k.

Proof:  Decompose each nonnegative word feature xij into the
product xb

ij  dij of a binary word presence/absence feature xb
ij

and a document-specific non-negative weight dij.  The
corresponding term in the linear model βjxij then becomes
βjdijx

b
ij. The proof then follows the previous proof directly,

except with the additive contribution of each word being
wij = βjdij.  

For nonlinear models, no such optimal solutions are guaran-
teed, in the sense that smaller explanations could exist.  For
multiclass classification problems, optimal solutions also are
not guaranteed if one decomposes the problem into several
binary classification problems (as in a one-versus-rest or one-
versus-one approach), since the final classification of data
instances now depends on several models with their own
weights.  This motivates our next optimization:  applying
local search on the obtained explanations.

SEDC Augmented with Local Search

The SEDC algorithm has two potential issues when applied to
nonlinear models, addressed by two optimizations.  First (and
most importantly), seeing that the prediction space is non-
linear in the words, the obtained explanations might not con-
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tain a minimal subset of words, required by Definition 1
(requirement 3; E is minimal).  It could be that removing a
word from the explanation E still provides an explanation E';
hence, there exists an explanation E' d E:  CM(D \ E') … c.  To
address this concern, we extend the previously defined
heuristic search procedure with a limited local search post-
processing phase applied to the obtained explanations.  This
method will prune the explanation, if necessary, by verifying
whether removing a word (or word combination) from an
obtained explanation, E also provides an explanation E'.  If
that is the case, E is replaced by the smaller explanation E'
containing a subset of the words of E.  This guarantees
minimality of the explanations (although in the empirical
studies we never observed the need for such pruning).

The second potential problem with SEDC for nonlinear
models is that potentially smaller explanations exist (with
different words, making it different from the above opti-
mization) than those obtained.  Formally, there might exist an
explanation E', where E' \ E … Ο/  (E' has some word(s) that E
does not), |E'| < |E| (explanation E' is smaller than E ), CM(D
\ E') … c (E' also defines an explanation).

To investigate the extent of this potential problem, we define
a second local search approach that is applied to the
explanations found by the heuristic search method with the
previously described optimizations.  For each explanation, we
replace two words by another word of the document, not yet
in the explanation.  Next, we attempt replacing three words of
the explanation by two words of the document, not yet in the
explanation, and so on.  This yields a very large number of
potential combinations to check:  replacing a set of k words of
an explanation for a document with mD words yields  m k

k
D −








combinations.10  To deal with this huge number of new word
combinations to check, we limit ourselves in our experiments
up to k = 5 words, and a maximum of 5,000 combinations.  If
more exist, no attempt to optimize is undertaken.  Within our
empirical results, this local search addition provided an
improvement of one word for only very few explanations (less
than 1%), while requiring much more time (up to two hours
per explanation, even with the limitation on the number of
combinations).  Seeing that the additional local search is so
computationally expensive compared to the heuristic search
procedure, with negligible improvements in explanation size,
the results in the next section are provided without the local
search.

SEDC with Branch-and-Bound

As described earlier (“Objectives and Performance Metrics”),
there are various objectives one might have when finding
explanations for document classifications.  In the important
case where one wants the shortest explanation, or the set of
shortest explanations, the SEDC search can be improved by
keeping track of the current shortest explanation found, and
pruning from the search space all longer explanations (a
simple branch-and-bound search), which can result in massive
portions of the search space being discarded en masse once a
first explanation has been found.11

Empirical Analysis

We now present an empirical case study of classifying web
pages as containing adult content.  A follow-up analysis is
presented in Appendix A based on a suite of text classification
problems (the 20 newsgroups) widely used in the research
literature.

Explaining Web Pages’ Classifications
for Safe Advertising

The case study is based on data obtained from a firm that
focuses on helping advertisers to avoid inappropriate adja-
cencies between online advertisements and web content,
similar to our motivating example above.  Specifically, the
analysis is based on a data set of 25,706 web pages, labeled
as either having adult content or not.  The web pages are
described by tfidf scores over a vocabulary chosen by the
firm, including a total of 73,730 unique words.  No stemming
was conducted.  The data set is balanced by class, with half of
the pages containing adult content and half non-adult content.
For this data set, the class labels were obtained from a variety
of sources used in practice, including Amazon’s Mechanical
Turk.  Given the variety of labeling sources, the quality of the
labeling might be questioned (Sheng et al. 2008).  Interest-
ingly, the explanations indeed reveal that certain web pages
are wrongly classified.  No meta-data, links, or information on
images is being used for this study; the inclusion of such data
could improve the model further, but the focus of this paper
is on textual document classification.

10To indicate how large these values can be, for k = 3 and mD = 100 we have
147,440 combinations; for k = 5 and mD = 500 we have 255,244,687,600
combinations.

11Unfortunately, for the general problem one cannot give nontrivial upper
and lower bounds on explanation size given a partial explanation.  For
particular types of models, this may be possible, yielding more sophisticated
branch-and-bound searches.

14 MIS Quarterly Vol. X No. X/Forthcoming 2013–2014



Martens & Provost/Explaining Data-Driven Document Classifications

For this analysis, we built SVM document classification
models with linear and RBF kernel functions.12  The linear
model is correct on 96.2 percent of the test instances, with a
sensitivity (percentage of non-adult web pages correctly clas-
sified) of 97.0 percent, and a specificity (percentage of adult
web pages correctly classified) of 95.6 percent.  The nonlinear
RBF kernel model has an accuracy of 93.3 percent, with a
sensitivity of 89.0 percent and a specificity of 96.5 percent.

Global Explanations Are Not Satisfactory

As discussed above, rule extraction is the most researched and
applied model explanation methodology.  Trying to compre-
hend the SVM model, a tree can be extracted by applying the
C4.5 tree induction technique (Quinlan 1993) on the afore-
mentioned safe advertising data set with class labels changed
to SVM predicted labels.  Unfortunately, we could not get
C4.5 to generate a small tree that models either SVM model
(with linear or RBF kernel) with high-fidelity.  A tree with
327 nodes models the classifier with a fidelity of only 87
percent.  Pruning the tree further reduces the size, but further
decreases fidelity.

As discussed above, an alternative method for comprehending
the function of a linear document classifier is to examine the
weights on the word features, as these indicate the effect that
each word has on the final output score.  As with the distinc-
tion between Lemma 1 and Theorem 1, we need to keep in
mind that in a preprocessing step the data set is encoded in
tfidf format.  Hence for actual document explanations, the
frequency is vital.13  Figure 3 shows the weight sizes of all the
words in the vocabulary; the weights are ranked smallest to
largest, left to right.  Many words show a high indication of
adult content, while many others show a clear counter-
indication of adult content.  Looking deeper, Table 1 shows
the highest (positive) weight words, as well as the words that
give the highest mutual information (with the positive class)
and information gain.  We additionally list the top words
when taking into account the idf weights, viz, based on the
weights of the words multiplied with the corresponding idf
values.  The final column shows the words most frequently
occurring in the explanations, which will be elaborated on
below.

From Table 1 we see that most of the indicative words for
adult content that are ranked highly using the mutual infor-
mation criterion are very rare, unintuitive words.  It may be
possible to engineer a better information-based criterion, for
example countering this over-fitting behavior by requiring a
minimal frequency of the top-ranked words, but later results
will show why such efforts ultimately are destined to fail to
provide a comprehensive explanation.  The top words pro-
vided by the other rankings on the other hand are quite intui-
tive.  As stated before, even initially not-so-obvious words as
welcome, enter, or age make sense once we realize that many
positive examples are entrance pages of adult sites, which
inform a visitor about the content of the website and require
verification of age.  Nevertheless, as we will see next, expla-
nation of individual decisions simply requires too many
individual words.  Consider that we would have to produce a
list of over 700 of the highest-weight words just to include
porn and over 10,000 to include xxx.

Given the intuitiveness of the top-weighted words, we should
consider how well a short list of such words explains the
behavior of the model.  Does the explanation of a web page
typically consist of (some of) the top-100 or so words?  It
turns out that the content of web pages varies tremendously,
even within individual categories.  For “adult content,” even
though some strongly discriminative words exist, the model
classifies most web pages as being adult content for other
reasons.  This is demonstrated by Figure 4, which plots the
percentage of the classifications of the test instances that
would be explained by considering the top-k words (hori-
zontal axis) by weight (with and without idf correction),
mutual information, and information gain.  Specifically, if an
explanation can be formed by any subset of the set of top-k
words, then the document is deemed explained.  So for
example, if an explanation would be “if words (welcome
enter) are removed then class changes,” that explanation
would be counted when k $ 2.

We see from Figure 4 that we would need thousands of these
top words before being able to explain a large percentage of
the individual documents, as shown by the line with words
ranked on the weight.  More precisely, more than 2,000 top-
weight words (3% of the vocabulary) are needed before even
half of the documents are explained.  Using the ranking based
on mutual information requires even more words.  This sug-
gests either (1) that many, many words are necessary for
individual explanations, or (2) the words in the individual
explanations vary tremendously.  The latter conclusion is also
supported by the fact that the document-term matrix is very
sparse even when the documents belong to the same topic.
This motivates the use of an instance-level explanation algo-
rithm not only for obtaining understanding of the individual
decisions, but also for understanding the model overall.

12Using the LIBLINEAR (Fan et al. 2008) and LIBSVM (Chang and Lin
2001) packages, with 90% of the data used as training data, the remaining
10% as test data. SEDC was coded in Matlab and is available upon request
from the first author. Experiments were run on an Intel Core 2 Quad (3 GHz)
PC with 8GB RAM.

13The inverse document frequency is constant across documents, and could
be incorporated in the model weights to facilitate global explanation.
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The size of the weights for all 73,730 words, ranked left to right according to increasing weight.

Figure 3.  Size of Weight

Table 1.  Global Explanations of the Model Produced by Listing the Top Words Providing Evidence for
the Adult Class†

Ranking based on

Mutual Information Information Gain Size of weight
Size of weight

with idf correction
Frequency of word occurring

in our explanations

primarykey
sessionid 
youtubeid
webplayerrequiredgeos
vnesfrsgphplitgrmxnlkrause
videocategoryids
usergeo
latestwebplayerversion
isyoutubepermalink
isyoutube

privacy
policy
home
us
advertise
about
adult
search
comments
contact

welcome
enter 
adult
permanently
site
age 
usc
searches
over
erotic

permanently
fw 
welcome
compuserve
copyrightc
prostitution
acronym
tribenet
amateurbasecom
gorean

adult
age
enter
site
sex
years
material
are
sites
hardcore

†Five rankings are considered, based on mutual information, information gain, the weights of the words in the model, the weights with idf correction
(weight multiplied with word idf), and the frequencies of the words occurring in our explanations.
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Percentage of 100 adult-classified test instances explained when considering only the top k words, ranked according to the
frequency of occurrence in the explanations, the weights (w), the weights with idf correction, mutual information (MI), and
information gain (IG).

Figure 4.  Adult-Classified Test Instances

When we rank the words according to how often they occur
in explanations, we obtain the line with the maximal area
underneath.  For the 100 classified instances, a total of 810
unique words are used in all the explanations (where we
consider a maximum of 10 minimal explanations for a single
data instance).  This already suggests a wide variety of words
are present in the explanations.  The instance-based explana-
tions can be aggregated to form a global explanation by listing
the words that occur most frequently in the explanations, as
shown in the final column of Table 1, which provides yet
another benefit of the instance-level explanations.

Instance-Level Explanations Are Effective

We will show now that SEDC is effective, and fast as well.
We initially focus on the linear classification model.  Expla-
nation 2 shows typical explanations for classifications of
several documents.  We show the first three explanations of
instances with explanations that are appropriate for publi-
cation.  These explanations demonstrate several things.  First,
they directly address suggestion (1) just above:  in fact, docu-
ments generally do not need many words to be explained.
They also provide evidence supporting suggestion (2):  the
words in the explanations are quite different, including
explanations in different languages.

We can examine the size of explanations more systematically
by referring to the explanation performance metrics intro-
duced earlier in “Objectives and Performance Metrics.”  The
top-left plot in Figure 5 shows the percentage of the test cases
explained (PE) when an explanation is limited to a maximum
number of words (on the horizontal axis).  We see that almost
all of the documents have an explanation comprising fewer
than three dozen words, and more than half have an expla-
nation with fewer than two dozen words.  In other words,
each explanation is very concise, as it uses only about 0.01
percent of the words in the vocabulary.  Note that even expla-
nations containing dozens of words can easily give an under-
standing of why the classifier classified the document as the
class of interest, as is discussed and shown later in the section
“Hyper-Explanations Are Necessary.”  Figure 5 also shows
that, not surprisingly, the number of words in the smallest
explanation (AWS plot) and the (smallest and total) number
of explanations (ANS, ANT plots) both grow as we allow
larger and larger explanations.14

14In the experiments, we limit ourselves to searching for 10 explanations, if
10 or more explanations have been found, no further word expansions/
iterations are attempted.
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Table 2.  Explanation Performance Metrics (for the false positives (FP) versus true positives (TP) of the
linear model, allowing up to 30 words in an explanation)

PE AWS ANS ANT ADF ADA

FP
TP

90.3%
76.0%

9.2
15.3

12.0
13.4

35.2
25.5

2.3
2.9

3.1
3.3

Explanation performance metrics as a function of the maximal number of words allowed in an explanation.  Both the perfor-
mance and the complexity increase with the number of words.  In addition to the averages, the 10th and 90th percentiles are
also shown (dotted lines).

Figure 5.  Explanation Performance Metrics

Table 2 presents the differences between the false and true
positives (for the default threshold of zero).  Interestingly, we
find higher coverage, as well as more and smaller expla-
nations for the web pages wrongly classified as adult (false
positives, FP) versus those correctly classified as adult (true
positives, TP).  Seeing that FPs are classifications we are
particularly interested in explaining (the perceived anomalies,
as described by Gregor and Benbasat 1999), this suggests that
the overall explanation metrics yield conservative estimates
of practical performance for this case study.

More interesting, examining these performance metrics gives
a view into how the classification model is functioning in this
application domain.  Specifically, the plots show that docu-
ment explanation sizes vary quite smoothly and that there

seem to be many different explanations for documents.  The
former observation suggests that the strength of the individual
evidence varies widely:  some cases are classified by aggre-
gating many weak pieces of evidence, others by a few strong
pieces of evidence (and some, presumably, by a combination
of strong and weak).  The latter observation suggests substan-
tial redundancy in the evidence available for classification.

Figure 5 also shows that for this particular problem, explana-
tions can be produced fairly quickly using SEDC.  This
problem is of moderate size; real-world document classifi-
cation problems can be much larger, in terms of documents
for training, documents to be classified, and the vocabulary.
A brief word about scaling up can be found in Appendix B.
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Explanation 2:  Some explanations why a web page is classified as having adult content for web pages
in the test set.

Explaining document 13 (class 1) with 61 features and class 1 ...
• Iteration 7 (from score 0.228905 to -0.00155753):  If words (submissive pass hardcore check bondage adult ac) are

removed then class changes from 1 to -1 (1 sec)
• Iteration 7 (from score 0.228905 to -0.00329069):  If words (submissive pass hardcore check bondage adult access)

are removed then class changes from 1 to -1 (1 sec)
• Iteration 7 (from score 0.228905 to -0.00182021):  If words (submissive pass hardcore check bondage all adult) are

removed then class changes from 1 to -1 (1 sec)

Explaining document 30 (class 1) with 89 features and class 1 ...
• Iteration 4 (from score 0.894514 to -0.0108126):  If words (searches nude domain adult) are removed then class

changes from 1 to -1 (1 sec)
• Iteration 6 (from score 0.894514 to -0.000234276):  If words (searches men lesbian domain and adult) are removed

then class changes from 1 to -1 (1 sec)
• Iteration 6 (from score 0.894514 to -0.00225592):  If words (searches men lesbian domain appraisal adult) are

removed then class changes from 1 to -1 (1 sec)

Explaining document 32 (class 1) with 51 features and class 1 ...
• Iteration 8 (from score 0.803053 to -0.0153803):  If words (viejas sitios sexo mujeres maduras gratis desnudas de)

are removed then class changes from 1 to -1 (1 sec)
Translation:  old mature women sex sites free naked of

• Iteration 9 (from score 0.803053 to -7.04005e-005):  If words (viejas sitios mujeres maduras gratis desnudas de
contiene abuelas) are removed then class changes from 1 to -1 (1 sec)

Translation:  old mature women free sites containing nude grandmothers
• Iteration 9 (from score 0.803053 to -0.00304367):  If words (viejas sitios mujeres maduras gratis desnudas de

contiene adicto) are removed then class changes from 1 to -1 (1 sec)
Translation:  old sites free naked mature women contains addict

Explaining document 35 (class 1) with 36 features and class 1 ...
• Iteration 6 (from score 1.04836 to -0.00848977):  If words (welcome fiction erotic enter bdsm adult) are removed

then class changes from 1 to -1 (0 sec)
• Iteration 6 (from score 1.04836 to -0.10084):  If words (welcome fiction erotica erotic bdsm adult) are removed then

class changes from 1 to -1 (1 sec)
• Iteration 6 (from score 1.04836 to -0.0649064):  If words (welcome kinky fiction erotic bdsm adult) are removed

then class changes from 1 to -1 (1 sec)

Table 3.  Explanation Performance of SEDC (with and without branch-and-bound (B&B), explaining
classifications of models from SVMs with a linear kernel and a radial basis function (RBF) kernel,
allowing up to 30 words in an explanation)

kernel PE AWS ANS ANT ADF ADA

SEDC Linear SVM
SEDC B&B Linear SVM

SEDC Nonlinear RBF SVM
SEDC B&B Nonlinear RBF SVM

84%
84%
82%
82%

15.1
15.1
11.1
11.1

12
12
18
19

25
12
28
19

3
3

169
183

3
3

187
200
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Table 3 shows SEDC’s performance on both a linear SVM
model and a nonlinear radial-basis function (RBF) SVM
model, in each case allowing up to 30 words in an explana-
tion.  The percentage of instances explained is about the same
for both the linear and nonlinear models, with the nonlinear
model requiring slightly fewer words per explanation (AWS).
A large difference is observed in the time needed to obtain an
explanation:  whereas for the linear model it takes on average
four seconds to find an explanation, for the RBF model it
takes almost three minutes.  A deeper investigation into the
reasons for the speed differences shows that processing the
nonlinear models takes longer not because of the backtracking
in the search.  Rather, the nonlinear models simply run much
slower, which has a crucial effect due to the repeated appli-
cations of the scoring function.  Therefore, faster implementa-
tions of the nonlinear models could produce faster explanation
performance.  Please note that explanation times on the orders
of minutes are not necessarily a cause for concern, depending
on the context of application.  In many of the application
scenarios discussed above, explanation methods would be
reserved for periodic development use or for tactical use when
a concern arises over a particular case.15

Hyper-Explanations Are Necessary

Conducting the case studies brought to the fore some addi-
tional issues regarding explaining documents classifications.
Specifically, a procedure for producing explanations of docu-
ment classifications may provide no explanation at all.  A
document’s explanation may be nonintuitive.  There are
several classes of reasons for these behaviors, which we
group into hyper-explanations.  Many of these are specifically
helpful for improving the decision system’s model (see the
earlier section, “Explanations and Statistical Classification
Models”), and for suggesting how to proceed (e.g., in light of
a nonintuitive explanation).

Hyper-Explanations for the Lack of an Explanation

Let us distinguish between cases where the predicted class is
the default class (hyper-explanation 1), and those where the
predicted class is not the default class (hyper-explanation 2).

Hyper-Explanation 1a:  No Evidence Present.  The default
class is predicted and no evidence in support of either class is
present.  For example, this would be the case when all words
in the document have zero weights in the model or no words
present are actually used in the model.

Technically, this case falls outside the scope of this paper’s
development, since we are specifically considering explaining
why a document is classified as a non-default class.  Never-
theless, this may be a practically important situation that
cannot simply be ignored.  For example, this case may have
been brought to a manager’s or developer’s attention as a
“false negative error”; that is, it should have been classified
as a positive example.  In this case the hyper-explanation
explains exactly why the case was classified as being negative
(there was no model-relevant evidence) and can be a solid
starting point for a management/technical discussion about
how to deal with it; for example, the model’s vocabulary
needs to be extended.

Hyper-Explanation 1b:  No Evidence of Non-Default Class
Present.  The default class is predicted and only evidence in
support of the default class is present.  This is a minor varia-
tion to hyper-explanation 1a, and the discussion above applies
regarding explaining false negatives and providing a starting
point for discussions of corrective actions.

Hyper-Explanation 1c:  Evidence for Default Class Out-
weighs Evidence for the Non-Default Class.  A more
interesting and complex situation is when, in weighing evi-
dence, the model’s decision simply comes out on the side of
the default class.  In this case, an immediate reaction may be
to apply the explanation procedure to generate explanations
of why the case was classified as being the default (i.e., if
these words were removed, the class would change to posi-
tive).  However, when the case truly is of the “uninteresting”
class, the explanations returned would likely be fairly mean-
ingless, for example, “if you remove all of the content words
on the page except the ‘offending words’ (e.g., the words with
positive weights), the classifier would classify the page as an
offensive page.”  However, applying the procedure may be
very helpful for explaining false negatives, because it would
show the words that the model feels trump the positive-class-
indicative words on the page (e.g., if you remove the medical
terminology on the page, the classifier would then rate the
page as being adult).  This again could provide a solid founda-
tion for the process of improving the classifiers.

Within our safe advertising application, an explanation for all
46 false negatives is found, indicating that indeed adult words
are present, but that these are outweighed by the non-adult,
negative words.  Example explanations of such false nega-
tives are given in Explanation 3.  For some words like blog it

15Also, recall that these experiments were conducted mainly in Matlab on a
desktop PC.  Further speed improvements could easily be obtained with faster
software implementations or with the high-performance computing systems
typically used by organizations that build text classifiers from massive data.
Importantly, once again, the complexity is independent of the size of the
vocabulary. Furthermore, unordered-set search is highly parallelizable.
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Explanation 3:  Explanations of web pages misclassified as non-adult (false negatives), which indicate
which words the model feels trump the positive-class-indicative words.

Explaining document 10 (class 1) with 31 features and class -1 (score -0.126867)...
• Iteration 4 (from score -0.126867 to 0.00460739):  If words (policy gear found blog) are removed then class changes

from -1 to 1 (0 sec)

Explaining document 13 (class 1) with 50 features and class -1 (score -0.123585)...
• Iteration 4 (from score -0.123585 to 0.000689515):  If words (sorry miscellaneous found about) are removed then

class changes from -1 to 1 (0 sec)

Explaining document 11 (class 1) with 198 features and class -1 (score -0.142504)...
• Iteration 2 (from score -0.142504 to 0.00313354):  If words (watch bikini) are removed then class changes from -1 to

1 (1 sec)

Explaining document 31 (class 1) with 22 features and class -1 (score -0.0507037)...
• Iteration 4 (from score -0.0507037 to 0.00396628):  If words (search ***16 bonus big) are removed then class

changes from -1 to 1 (0 sec)

Score evolution when removing words from the three selected documents:  the one with the highest starting score, the one
with the most words in an explanation, and a document with an average number of words in an explanation.  The class
changes to non-adult when the score falls below zero.

Figure 6.  Score Evolution

16The word is removed as it is not appropriate for publication.
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seems logical to have received a large non-adult/negative
weight.  The word bikini seemingly ought to receive a non-
adult weight as well, as swimsuit sites are generally not con-
sidered to be adult content by raters.  However, some pages
mix nudes with celebrities in bikinis (for example).  If not
enough of these are in the training set, it potentially would
cause bikini to lead to a false negative.  Many other words,
however, can be found in the explanations that do seem to be
adult-related, and as such should receive a positive weight. 
All the words are great candidates for human feedback to
indicate which of these words actually are adult-related and
potentially to update the model’s weights (a mechanism
known as active feature labeling; Sindhwani and Melville
2008) or to review the labeling quality of the web pages with
the word.  The words occurring most in these explanations of
false negatives (when considering only the first explanation)
are found, blog, and policy.  The seemingly adult-related
words are not found when examining the words with most
negative weights, again supporting the need to look at
explanations separately, on an instance level.

Hyper-Explanation 2:  Too Much Evidence of Non-Default
Class Present.  No explanation is provided because, although
a non-default class is predicted, there are many words in sup-
port of this class and one would need to remove almost all of
them before the class changes.  The situations when this
occurs fall along a spectrum between two fundamentally
different reasons:

1. There are very many words each providing weak evi-
dence in support of the class.  Thus, the explanation ex-
ceeds the bound given to the algorithm, or the algorithm
does not return a result in a timely fashion.  Figure 6
shows the words of the explanations for three documents
and how the scores change as the words are removed.
The middle line, for the explanation with the most words,
shows that if the number of allowed words is below 40,
no explanation is found.  This lack of explanation can be
explained by this hyper-explanation, as too many adult-
related words are present for a short explanation to be
found.

2. There are very many words each providing strong evi-
dence.  In this case, the procedure may not be able to get
the score below the threshold with a small explanation,
because there is just so much evidence for the class.  The
full upper line with the highest starting score in Figure 6
shows such an example:  when allowing fewer than 15
words in an explanation, the score remains above the
threshold and no explanation can be given.

This lack of base-level explanation can be mitigated (par-
tially) by presenting “the best” partial explanation as the
search advances.

Hyper-Explanations for Nonintuitive Explanations

Explanations are always correct in the technical sense:
removing the words by definition changes the class.  How-
ever, it is possible that the explanation clashes with the user’s
intuition, creating a perceived anomaly that should be
explained.  Several reasons exist for this:

• The data instance is misclassified.  Explanations of
some of the web pages that are misclassified by the SVM
model are listed in Explanation 4.  For these pages the
predicted class is adult, while the human-provided class
label is non-adult (false positives).  These three explana-
tions indicate strongly that the web pages actually con-
tain adult content and the human-provided label seems
wrong.  On the other hand, in other cases, explanations
indicate that their web pages seem to be non-adult and
hence are probably misclassified.  Examples are given in
Explanation 5.17  Such explanations provide very useful
support for interactive model development, as the tech-
nical/business team can fix training data or incorporate
background knowledge to counter the misclassification.

• The data instance is correctly classified, but the expla-
nation just does not make sense to the business users/
developers.  This case is particularly problematic for any
automated explanation procedure, since providing expla-
nations that “make sense” requires somehow codifying in
an operationally useful way the background knowledge
of the domain, as well as common sense, which is (far)
beyond current capabilities and beyond the scope of this
paper.  Nevertheless, we still can provide a quite useful
hyper-explanation in the specific and common setting
where the document classification model had been built
from a training set of labeled instances (as in our case
study), as discussed next.

Hyper-Explanation 3:  Show Similar Training Instance.
For a case with a counter-intuitive explanation, we can show
“similar” training instances with the same class.  The simi-
larity metric in principle should roughly match that used by
the induction technique that produced the classifier.  Such a
nearest-neighbor approach can aid understanding in two ways.

(1) If the training classifications of the similar examples do
make sense, then the user can understand why the focal
example was classified as it was.

17Our models are limited by the data set obtained for the case study.  By our
understanding, models built for this application from orders-of-magnitude
larger data sets are considerably more accurate; nonetheless, they still make
both false-positive and false-negative errors, and the general principles
illustrated here apply.
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Explanation 4:  Explanations of web pages misclassified as adult (false positives), which indicate that
the model is right and the class should have been adult (class 1).

Explaining document 1 (class -1) with 180 features and class 1 (score 1.50123)...
• Iteration 35 (from score 1.50123 to -0.00308141):  If words (you years web warning usc these sites site sexual sex

section porn over offended nudity nude models material male links if hosting hardcore gay free explicit exit enter
contains comic club are age adults adult) are removed then class changes from 1 to -1 (53 sec)

Explaining document 2 (class -1) with 106 features and class 1 (score 0.811327)...
• Iteration 24 (from score 0.811327 to -0.00127533):  If words (you web warning under und these site porn over

offended nude nature material links illegal if here exit enter blonde are age adults adult) are removed then class
changes from 1 to -1 (15 sec)

Explaining document 3 (class -1) with 281 features and class 1 (score 0.644614)...
• Iteration 15 (from score 0.644614 to -0.00131314):  If words (you sex prostitution over massage inside hundreds here

girls click breasts bar) are removed then class changes from 1 to -1 (29 sec)

Explanation 5:  Explanations of truly misclassified web pages (false positives).

Explaining document 8 (class -1) with 57 features and class 1 (score 0.467374)...
• Iteration 7 (from score 0.467374 to -0.0021664):  If words (welcome searches jpg investments index fund domain)

are removed then class changes from 1 to -1 (3 sec)

Explaining document 16 (class -1) with 101 features and class 1 (score 0.409314)...
• Iteration 8 (from score 0.409314 to -0.000867436):  If words (welcome und sites searches domain de b airline) are

removed then class changes from 1 to -1 (5 sec)

Explaining document 32 (class -1) with 66 features and class 1 (score 0.124456)...
• Iteration 2 (from score 0.124456 to -0.00837441):  If words (searches airline) are removed then class changes from 1

to -1 (0 sec)

(2) If the training classifications do not make sense (e.g.,
they are wrong), then this hyper-explanation provides
precise guidance to the data science team for improving
the training,18 and thereby the model.

Consider document 8.  Explanation 5 suggests strongly that it
contains non-adult content, even though the model classifies
it as adult.  The web page most similar to document 8 is also
classified as adult and has 44 (out of 57) words which are the
same, which are listed in Explanation 6.  This is a web page
with a variety of topics, and probably a listing of links to
other websites, and it requires expert investigation prior to use
for training (and evaluating) models for safe advertising.  It
could be that labelers have not properly examined the entire

web site; it may be that there indeed is adult content in images
that our text-based analysis does not consider; it may be that
these sites simply are misclassified; or it may be that in order
to classify such pages correctly, the data science team needs
to construct a specifically tailored feature to deal with the
ambiguity.

Discussion and Limitations

Managers and developers need to be able to interact to assess
whether a classification system is behaving appropriately, and
to improve it if necessary.  However, recent developments in
machine learning and data mining arguably have moved us
further away from the needed transparency in the process of
building models for business applications.  There has been
increasing research emphasis on techniques that produce
complex models, such as boosting, nonlinear SVMs, feature

18Data cleaning is a very important aspect of the data mining process that has
received relatively little treatment in the research literature.  One of the main
data cleaning activities in classifier induction is “fixing” labels on mislabeled
training data.
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Explanation 6:  Hyper-explanation 3 showing the words of the web page most similar to document 8. 
This most similar web page is classified as adult, providing a hyper-explanation of why document 8 is
also classified (incorrectly) as adult.

and, articles, at, buy, capital, check, china, commitment, dat, file, files, for, free, fund, funds, high, hot, in, index,
instructionalwwwehowcom, international, internet, investing, investment, investments, jpg, listings, mutual, out,
performance, project, related, results, return, searches, social, sponsored, temporary, tiff, to, trading, vietnam, web,
welcome.

hashing, etc.  Instance-level explanation methods such as
SEDC can have a substantial impact on improving the process
of building document classification models.

Specifically, systems like SEDC may become a critical
component of the iterative process for improving document
classification models.  As the case study and the newsgroup
study showed, SEDC can identify data quality issues and
model deficiencies.  Addressing these deficiencies can lead to
improved models directly.  Alternatively, it can lead to
improved data quality, which ultimately should lead to better
model performance and decision making.

This paper has not provided a rigorous study of the insight
provided by the explanations.  The case studies show that the
method is capable of providing improved understanding of the
inner workings of the classifier, and better understanding of
the domain of application.  It would be fascinating future
work to examine changes in decision makers’ judgment after
having been presented with instance-level explanations.

An unexpected result of the case study was the need for
various sorts of hyper-explanations.  Several of these are the
result of the document classification models being statistical
models learned from data, and thus are subject to the main
challenges of machine learning:  over-fitting, under-fitting,
and errors in the data.  When classification errors are intro-
duced due to these pathologies, even instance-level explana-
tions may be inadequate (e.g., missing) or unintuitive.  Hyper-
explanations are needed for deep understanding, for example,
showing training cases that likely led to the current model
behavior.

This paper focused specifically on document classification. 
We conjecture that these techniques also will be quite useful
in other high-dimensional classification problems, which are
becoming increasingly important to modern business.  For
example, it may not be obvious, but classifying web users
based on the web pages they visit (Provost et al. 2009; Raeder
et al. 2012) could be cast in the same framework as document
classification.  Each user can be represented by a set of web
page URLs from an extremely large set (billions).  Users are

classified by models over this vocabulary.  Understanding
their classifications is directly analogous to the problem
addressed in this paper.  Similarly, the problem of classifying
bank customers for targeted marketing based on the parties
with which they transact (Martens and Provost 2011) also can
be formulated similarly.  The “documents” are the customers
and the “words” are the payment receivers.  In both of these
additional domains, being able to understand the individual
classifications would have the same benefits elucidated by the
extended gap model presented in the section “Explanations
and Classification Models.”  However, the technique would
not necessarily apply to every high-dimensional classification
problem.  It is necessary that the individual dimensions (and
small subsets thereof) can be interpretable.  So, in the afore-
mentioned web-user classification example, if the URLs were
irreversibly hashed for privacy reasons prior to forming the
classification model, then the techniques introduced in this
paper would not provide useful explanations.

Conclusion

The business problem this paper addresses is to enhance the
understanding of a document classification model such that
(1) the manager using it understands how decisions are being
made, (2) the customers affected by the decisions can be ad-
vised why a certain action regarding them is taken, and (3) the
data science/development team can improve the model itera-
tively.  Further, (4) document classification explanations can
provide better understanding of the business domain.  The
seven-gap extension to Kayande et al.’s three-gap framework
formalizes these different roles, and shows how explanations
can reduce the corresponding gaps between the user’s mental
model(s) and the decision system in both directions, and also
can reduce the gap between the decision system and reality,
as the developers use the explanations to help improve the
model.

We found that global explanations in the form of a decision
tree or a list of the most indicative words do not provide a
satisfactory solution.  Moreover, previously proposed expla-
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nation methods on the data-instance level are not able to deal
with the huge dimensionality of document classification prob-
lems.  With the technical constraints of high-dimensional data
in mind, we addressed this business problem by creating
explanations as “necessary” sets of words.  Each explanation
is a minimal set such that after its removal, the current classi-
fication would no longer be made.  The search algorithm
(SEDC) presented for finding such explanations is optimal for
linear binary classification models, and heuristic for nonlinear
models.

The results show that the explanations are quite concise and
comprehensible, comprising a few to a few dozen words (a
very small portion of the overall vocabulary).  The words in
the explanations vary greatly across the explanations, even
with words in different languages, which supports the claim
that existing global explanations are inadequate for such
document classification domains.

We hope that this new sort of instance-level explanation for
document classification will provide an immediately useful
method across a wide variety of business (and scientific,
medical, and legal) applications where document classi-
fications are critical.  We also hope we have made the case
that thinking about explanations in this way opens up a large
number of new research problems and opportunities for
improving the state of the art in building and using data-
driven document classification systems.
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