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Efficient Progressive Sampling 

Foster Provost 
Bell Atlantic Science and Technology 

500 Westchester Avenue 
White Plains, New York 10604 

provost@acm.org 

Abstract 

Having access to massive amounts of data does not neces- 
sarily imply that induction algorithms must use them all. 
Samples often provide the same accuracy with far less com- 
putational cost. However, the correct sample size rarely 
is obvious. We analyze methods for progressive sampling- 
using progressively larger samples as long as model accuracy 
improves. We explore several notions of efficient progres- 
sive sampling. We analyze efficiency relative to induction 
with all instances; we show that a simple, geometric sam- 
pling schedule is asymptotically optimal, and we describe 
how best to take into account prior expectations of accu- 
racy convergence. We then describe the issues involved in 
instantiating an efficient progressive sampler, including how 
to detect convergence. Finally, we provide empirical results 
comparing a variety of progressive sampling methods. We 
conclude that progressive sampling can be remarkably effi- 
cient . 

1 Introduction 

Induction algorithms face competing requirements for 
accuracy and efficiency. The requirement for accurate 
models often demands the use of large data sets that 
allow algorithms to discover complex structure and 
make accurate parameter estimates. The requirement 
for efficient induction demands the use of small data 
sets, because the computational complexity of even 
the most efficient induction algorithms is linear in 
the number of instances, and most algorithms are 
considerably less efficient. 

In this paper we study progressive sampling methods, 
which attempt to maximize accuracy as efficiently as 
possible. Progressive sampling starts with a small 
sample and uses progressively larger ones until model 
accuracy no longer improves. A central component 
of progressive sampling is a sampling schedule S = 
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{no,nl,n2,. . . ,nk} where each ni is an integer that 
specifies the size of a sample to be provided to an 
induction algorithm. For i < j, ni < nj. If the data set 
contains N instances in total, ni 2 N for all i. There 
are three fundamental questions regarding progressive 
sampling. 

1. What is an efficient sampling schedule? 

2. How can convergence (i.e., that model quality 
no longer increases) be detected effectively and 
efficiently? 

3. As sampling progresses, can the schedule be adapted 
to be more efficient? 

We discuss several ways to assess efficiency, and how 
various progressive sampling procedures fare with re- 
spect to each. Notably, we show that schedules in which 
the ni increase geometrically are optimal in an asymp- 
totic sense. We explore the question of optimal effi- 
ciency in an absolute sense: what is the most efficient 
schedule given one’s prior expectations of convergence? 
Next, we address the crucial practical issue of conver- 
gence detection. We describe an interaction between 
the sampling schedule and the method of convergence 
detection, and we describe a practical alternative that 
avoids the worst aspects of the tradeoffs this interac- 
tion requires. We also discuss algorithms that schedule 
adaptively, based on knowledge of convergence and ac- 
tual run-time complexity, obtained on the fly. 

We then investigate empirically how a variety of 
schedules perform on large benchmark data sets. Fi- 
nally, we discuss why progressive sampling is especially 
beneficial in cases where sampling from a large database 
is inefficient. We conclude that, in a wide variety of re- 
alistic circumstances, progressive sampling is preferable 
to analyzing all instances from a database. Surprisingly, 
it can be competitive even when the optimal sample size 
is known in advance. 
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n3 nmin n4 n.7 N 

Training set size 

Figure 1: Learning curves and progressive samples 

2 Progressive Sampling 

A learning curve (Figure 1) depicts the relationship be- 
tween sample size and model accuracy. The horizontal 
axis represents n, the number of instances in a given 
training set, that can vary between zero and N, the 
total number of available instances. The vertical axis 
represents the accuracy of the model produced by an 
induction algorithm when given a training set of size n. 

Learning curves typically have a steeply sloping 
portion early in the curve, a more gently sloping middle 
portion, and a plateau late in the curve. The middle 
portion can be extremely large in some curves (e.g., 
[2, 3, 61) and almost entirely missing in others. The 
plateau occurs when adding additional data instances 
does not improve accuracy. The plateau, and even 
the entire middle portion, can be missing from curves 
when N is not sufficiently large. Conversely, the plateau 
region can constitute the majority of curves when N is 
very large. For example, in a recent study of two large 
business data sets, Harris-Jones and Haines [6] found 
that learning curves reach a plateau quickly for some 
algorithms, but small accuracy improvements continue 
up to N for other algorithms. 

We assume that learning curves are well behaved. 
Specifically, we assume that the slope of a learning 
curve is monotonically non-increasing with n except for 
local variance. Locality is defined within a particular 
progressive sampling procedure. 

Not ail learning curves are well behaved. For 
example, theoretical analyses of learning curves based 
on statistical mechanics [7, 191 have shown that sudden 
increases in accuracy are possible, particularly on small 
samples. However, empirical studies of the application 
of standard induction algorithms to large data sets- 
those of relevance to this paper-have shown learning 
curves to be well behaved [3, 4, 6, 12, 131. In 
addition, practical progressive sampling demands only 
that learning curves are well behaved at the level 

Compute schedule S = {no, nl , n2, . . . , nk} of sample sizes 
n t no 
A4 t model induced from n instances 
while not converged 

recompute S if necessary 
n t next element of S larger than n 
M t model induced from n instances 

end while 
return M 

Figure 2: Progressive sampling 

of granularity of the sampling schedule. Given the 
relatively course granularity of many schedules, sudden 
increases in accuracy can occur without impairing 
progressive sampling. Our empirical results in section 
section 6 bear out these assumptions. 

When a learning curve reaches its final plateau, we 
say it has converged. We denote the training set size at 
which convergence occurs as n,in. 

Definition 1 Given a data set, a sampling procedure, 
and an induction algorithm, n,i, is the size of the 
smallest sufficient training set. Models built with 
smaller training sets have lower accuracy than models 
built with from training sets of size nmin, and models 
built with larger training sets have no higher accuracy. 

Figure 1 shows an example sampling schedule and its 
relation to a learning curve. Empirical estimates are 
necessary to determine nmin because the precise shape 
of a learning curve represents a complex interaction 
between the statistical regularities present in a given 
data set and the abilities of an induction algorithm to 
identify and represent those regularities. In general, 
these characteristics are not known in advance, nor is 
their interaction well understood. Thus, in many cases, 
n,in is nearly impossible to determine from theory. 
However, n,in can be approximated empirically by a 
progressive sampling procedure. We denote by &ila a 
procedure’s approximation to n,in. 

Figure 2 is a generic algorithm that defines the 
family of progressive sampling methods, An instance 
of this family has particular methods for selecting a 
schedule, for determining convergence, and for altering 
the schedule adaptively. The next three sections 
consider each of these methods in turn. 

3 Determining an efficient schedule 
We now discuss several alternative methods for selecting 
an efficient schedule. For now, we assume that 
progressive sampling is able to detect convergence 
and we assume that this detection can be performed 
efficiently (its worst-case run-time complexity is not 
worse than that of the underlying induction algorithm). 
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3.1 Simple schedules 

For brevity, we call a schedule generated by a simple 
procedure a simple schedule. Several simple schedules 
are of interest. For example, later we will use for 
comparison the schedule composed of a single data set 
with all instances, 5’~ = {N}. We also will consider 
the simple schedule generated by an omniscient oracle, 
so = {%TLil,). 

John and Langley [8] define a progressive sam- 
pling approach we call arithmetic samp2ing using the 
schedule S, = no + (i . n6) = (120,710 -t ns,n0 + 
2ng,.. . , no + k . ng}.l An example arithmetic sched- 
ule is {100,200,300, . . . , nk}. John and Langley com- 
pare arithmetic sampling with static sampling. Static 
sampling computes jimin without progressive sampling, 
based on a subsample’s statistical similarity to the en- 
tire sample. For consistency, we consider static sam- 
pling as a degenerate progressive sampling procedure 
with schedule Sstatic = {&in}. John and Langley show 
that arithmetic sampling produces more accurate mod- 
els than does static sampling. This is not surprising, 
given that n,i,, depends on the relationship between 
the data and the specific learning algorithm. In some 
cases, the difference between nmin’s for different learn- 
ing algorithms is quite large [6]. 

Arithmetic sampling has an obvious drawback. If 
n,in is a large multiple of n6, then the approach 
will require many runs of the underlying induction 
algorithm. For example, if n,i, = 200,000 and no = 
n6 = 100, then 2000 runs will be necessary-more than 
half with n > 100,000 instances. John and Langley 
partially escape this difficulty by specifying the use 
of an incremental induction algorithm (e.g., a simple 
Bayesian classifier), whose run time depends only on the 
additional instances, rather than having to reprocess 
all prior instances. Unfortunately, S, can be extremely 
inefficient for the vast majority of induction algorithms, 
which are not incremental. We compare arithmetic 
schedules to other approaches in section 6. 

An alternative schedule escapes the limitations of 
arithmetic sampling. Geometric sampling uses the 
schedule S, : 

Sg=ai-no={n0,a~no,a2-n0,a3~n0,... ,ak-no), 

for some constants no and a. An example geometric 
schedule is { 100,200,400,800, . . .}. The next sections 
explain why geometric schedules are robust. 

3.2 When are simple schedules efficient? 

What are the general conditions under which simple 
schedules are more efficient than SN? Are those 

‘The first and last points in the schedule, no and nk, depend 
on external factors such as N and the induction program’s (fixed) 
computational overhead. 

conditions sufficiently general that simple progressive 
sampling should be used routinely? 

Consider an underlying induction algorithm with a 
simple polynomial run-time complexity f(n), and a 
simple analytical model with three parameters: b, the 
number of schedule points executed prior to the point of 
convergence (nb is the first schedule point greater than 
&in); T, the ratio of the total number of instances to 
the size of the final sample (r = g); and c, the exponent 
of the run-time complexity (f(n) = n’). 

Based on these parameters, we can define the condi- 
tions under which the computational cost of progressive 
sampling and the cost of using all N instances are equal. 
That is, the conditions under which: 

NC = 720' + nlc + 122' + . . . + nbc 

where T = g and where the relationship among the 
elements of the partial schedule {no,nl, n2,. . . ,nr,} is 
determined by the given progressive sampling method 
(e.g., arithmetic or geometric). 

Sets of parameter values that satisfy the equation 
above are shown in Figure 3. The curves show the 
boundaries between regions where it is more eflicent 
to use progressive sampling and regions where it is 
more efficient to use all N instances. Above the curves, 
progressive sampling is more efficient; below the curves, 
complete sampling is more efficient. The left- and right- 
hand figures show curves for arithmetic and geometric 
sampling, respectively. 

The curves show that progressive sampling will be 
more efficient than learning with all the examples un- 
der a wide variety of circumstances. For example, arith- 
metic sampling that requires 30 samples to be tried be- 
fore convergence is detected is better if the computa- 
tional complexity is greater than n2 and the final sam- 
ple size is less than one-quarter of N. If, however, the 
final sample size is one-half of N, arithmetic sampling 
will not be better unless only 10 or fewer samples are 
needed prior to detecting convergence. 

Geometric sampling is far more forgiving. If com- 
putational complexity is n2 or worse, then geometric 
sampling is better as long as convergence can be de- 
tected with samples smaller than N/2. If computational 
complexity is linear, then geometric sampling is better 
as long as convergence can be detected with samples 
smaller than N/6. The number of samples prior to con- 
vergence is nearly irrelevant. This is the essential fea- 
ture of geometric sampling that makes it efficient. If 
a schedule contains a large number of samples prior to 
the sample when convergence is detected, those samples 
will almost all be quite small. In contrast, increasing the 
number of samples in an arithmetic schedule adds sam- 
ples along the schedule’s entire range, and this results 
in a much larger computational cost. 
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Arithmetic Sampling 
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Nlnb 

Geometric Sampling 

2 4 6 6 10 

Nhb 

Figure 3: Regions of efficiency for arithmetic and geometric sampling 

3.3 The asymptotic optimality of geometric 
schedules 

How do simple schedules compare to the schedule 
of an omniscient oracle, So = {nmin}? Below we 
show that geometric sampling is an asymptotically 
optimal schedule. That is, in terms of worst-case time 
complexity, geometric sampling is equivalent to SO. 

For a given data set, let f(n) be the (expected) run 
time of the underlying induction algorithm with n sam- 
pled instances. We assume that the asymptotic run- 
time complexity of the algorithm, @(f(n)), is polyno- 
mial (no better than O(n)). Since most induction al- 
gorithms have n(n) run-time complexity, and many are 
strictly worse than O(n), this assumption does not seem 
problematic. Under these assumptions, geometric sam- 
pling is asymptotically optimal.2 

Theorem 1 For induction algorithms with polynomial 
time complexity @(f(n)), no better than O(n), if con- 
vergence also can be detected in O(f(n)), then geometric 
progressive sampling is asymptotically optimal among 
progressive sampling methods in terms of run time. 

Proof: The ran-time complem’ty of induction (with the 
learning algorithm in question) is O(f (n)), where n is 
the number of instances in the data set. As specified 
in Definition 1, let n,i, be the size of the smallest 
suficient training set. The ideal progressive sampler 
has access to an oracle that reveals n,in, and therefore 
will use the simple, optimal schedule So = (n,i,>. The 
run-time complexity of SO is O(f (nmi,)). Notably, the 
run time of the optimal progressive sampling procedure 
grows with n,i, rather than with the total number of 
instances N. 

By the definition of Ss, geometric progressive sam- 
pling runs the induction algorithm on subsets of size 

‘We follow the reasoning of Korf, who shows that progressive 
deepening is an optimal schedule for conducting depth-first search 
when the smallest sufficient depth is unknown [9] [15]. 

uz . no for i = O,l,. . . , b, where b + 1 is the number of 
samples processed before detecting convergence. 

Now, we assume convergence is well detected, so 

abe - no < nmin < a’ . no < a . nmin, 

which means that 

a2 . no < 
ai 

- . %h, ah-l 

for i = 0, 1,. . . , b. Since O(f(.)) is at best linear, the 
run time of S, ( on all subsets, including running the 
convergence-detection procedure) is 

O(f ($ --& . nk)). 
i=O 

This is 

O(f (a . nmin . (1+ i + -$ +. . . + -$)). 

The final, finite sum is less than the corresponding 
infinite sequence. Because a > 1 for Ss, this converges 
to a constant that is independent of n,in. Since O(f (e)) 
is polynomial, the overall run time of Ss is O(f (n,in)). 
Therefore, progressive sampling asymptotically is no 
worse than the optimal progressive sampling procedure, 
SO, which runs the induction algorithm only on the 
smallest suficient training set. 0 

Because it is simple and asymptotically optimal, we 
propose that geometric sampling, for example with 
a = 2, is a good default schedule for mining large 
data sets. We provide empirical results testing this 
proposition and discuss further reasons in section 6. 
First we explore further the topic of optimal schedules. 

3.4 Optimality with respect to expectations 
of convergence 

Comparisons with SN and SO represent two ends of 
a spectrum of expectations about n,in. Can optimal 
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schedules be constructed given expectations between 
these two extremes? 

Prior expectations of convergence can be represented 
as a probability distribution. For example, let a(n) 
be the (prior) probability that convergence requires 
more than n instances. By using @P(n), and the run- 
time complexity of the learning algorithm, f(n), we 
can compare the expected cost of different schedules. 
Thus we can make statements about expectation-based 
optimality. The schedule with minimum expected cost 
is optimal in a practical sense. 

In many cases there may be no prior information 
about the likelihood of convergence occurring for any 
given n. Assuming a uniform prior over all n yields 
Q(n) = (N - n)/N.3 At the other end of the spectrum, 
oracle optimality can be cast as a special case of 
expectation-based optimality, wherein a(n) = 1 for 
n -c kin, and @(n) = 0 for n > n,in (i.e., n,in is 
known). 

The better the information on the likely location of 
nmin, the lower the expected costs of the schedules 
produced. For example, we know that learning curves 
almost always have the characteristic shape shown 
in Figure 1, and that in many cases n,i,, < N. 
Rather than assume a uniform prior, it would be more 
reasonable to assume a more concentrated distribution, 
with low values for very small n, and low values for 
very large n. For example, data from Oates and Jensen 
[12, 131 show that the distribution of the number of 
instances needed for convergence over a large set of the 
UC1 databases [lo] is roughly log-normal. 

Given such expectations about nmin, is it possible 
to construct the schedule with the minimum expected 
cost of convergence? This seems a daunting task. For 
each value of n, from 1 to N, a model can either 
be built or not, leading to 2N possible schedules. 
However, identification of the optimal schedule can be 
cast in terms of dynamic programming [l], yielding an 
algorithm that requires O(N2) space and O(N3) time. 

Let f(n) be the cost of building a model with 
n instances and determining whether accuracy has 
converged. As described above, let a(n) be the 
probability that convergence requires more than n 
instances. Clearly, @3(O) = 1. If we let no = 0, then 
the expected cost of convergence by following schedule 
S is given by the following equation: 

To better understand what this equation captures, 
consider a simple example in which N = 10 and S = 

3This implies that 9(N) = 0 and thus that n,i,, 5 N. 

Schedule cost 
S1 ={1,2,3,4,5,6,7,8,9,10} 121.0 
s, = (10) 100.0 
S, = {2,6,10} 72.8 

Table 1: Expected costs of various schedules given 
N = 10, f(n) = n2 and a uniform prior. 

{3,7, lo}. The value of C is as follows: 

C = 5 Wni-l)f(ni) = +(O)f(3) + @(3)f(7) + +(7)f(lO) 
i=l 

With probability 1 (a(O) = l), an initial model will be 
built with 3 instances at a cost of f(3). If more than 
3 instances are required for convergence, an event that 
occurs with probability @(3), a second model will be 
built with 7 instances at a cost of f(7). Finally, with 
probability @( 7) more than 7 instances are required for 
convergence and a third model will be built with all 10 
instances at a cost of f(l0). The expected cost of a 
schedule is the sum of the cost of building each model 
times the probability that the model will actually need 
to be constructed. 

Consider another example in which N = 10; the 
uniform prior is used (a(n) = (N - n)/N), and f(n) = 
n2. The costs for three different schedules are shown 
in Table 1. The first schedule, in which a model is 
constructed for each possible data set size, is the most 
expensive of the three shown. The second schedule, in 
which a single model is built with all of the instances, 
also is not optimal in the sense of expected cost given 
a uniform prior. The third schedule shown has the 
lowest cost of all 21° = 1024 possible schedules for this 
problem. 

Given N, f and a, we want to determine the 
schedule S that minimizes C. That is, we want to 
find the optimal schedule. As noted previously, a 
brute force approach to this problem would explore 
exponentially many schedules. We take advantage of 
the fact that optimal schedules are composed of optimal 
sub-schedules to apply dynamic programming to this 
problem, resulting in a polynomial time algorithm. 
Let m[i,j] be the cost of the minimum expected-cost 
schedule of all samples in the size range [i, j], with the 
requirement that samples of i and of j instances be 
included in m[i, j]. The cost of the optimal schedule 
given a data set containing N instances is then m[O, N]. 
The following recurrence can be used to compute 
m[O, N]: . 

m[i, j] = min { 
@(iIf m 
mini<k<j m[i, k] + m[K,j] 

Both the bottom-up table-based and top-down mem- 
oized implementations of this equation require O(N2) 
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We call progressive sampling based on the optimal 
schedule determined by this dynamic programming 

A key assumption behind all the progressive sampling 

Table 2: Optimal schedules for N = 500 and various 
f(n) given a uniform prior. 

N = 500 

-f(n) Schedule cost 
n {57,143,285,500) 183 
TX;.” (36, 93, 180, 318, 500) 2,355 

(16, 50, 108, 191,318, 500) 33,473 
n3 (4, 23, 50, 93, 149, 231, 348, 500) 9,026,006 

Table 3: Optimal schedules for N = 500 and various 
f(n) given a log-normal prior. 

space to store the values of m and 0(N3) time. 
The results of applying dynamic programming to 

determine the optimal schedules for N = 500 and 
various f(n) are shown in Table 2, which shows 
the optimal schedules for each f(n) along with the 
associated costs. Note that the optimal schedule 
depends on f(n). In general, the larger the complexity 
of f(n), the more frequently the schedules indicate that 
models should be constructed. Second, although the ni 
in any given schedule are quasi-geometrically increasing, 
the multiplicative factor is by no means a constant. In 
fact, the factor seems to decrease dramatically near the 
ends of the schedules. 

As stated earlier, the running time of the algorithm 
that determines the optimal schedule is O(N3). This 
clearly is impractical for data sets with millions of 
instances. Fortunately, the running time actually is 
cubic in the number of data set sizes at which a mode1 
can be built, which can be a small fraction of N if 
one is willing to sacrifice precision in the placement of 
model construction points (for example, looking only at 
multiples of 100 or 1000 instances). 

Non-uniform priors can strongly affect the schedules 
produced by dynamic programming. Table 3 shows 
optimal schedules based on a log-normal prior such that 

Wag(x)) = 1 - N(x) where N(x) is the cumulative 
density of a normal distribution with mean log(50) 
aand standard deviation 1. Despite the fact that the 
schedules in this table call for more models to be 
constructed than schedules based on the uniform prior 
(see Table 2), the expected costs are lower because 
more precise information about the location of nmin 
is available. 

procedures discussed above is that convergence can 
be detected accurately and efficiently. We present 
some preliminary results below, and we believe that 
convergence detection remains an open problem on 
which significant research. effort should be focused. 

Convergence detection is fundamentally a statistical 
judgment, irrespective of the specific convergence cri- 
terion or the method to estimate whether that crite- 
rion has been met. In their paper on arithmetic sam- 
pling, John and Langley [8] model the learning curve 
as sampling progresses. They determine convergence 
using a stopping criterion modeled after the work of 
Valiant [18]. Specifically, convergence is reached when 
Pr((acc(N) - acc(ni)) > E) < 6, where act(z) is the 
accuracy of the model that an algorithm produces after 
seeing x instances, E refers to the maximum acceptable 
decrease in accuracy, and 6 is a probability that the 
maximum accuracy difference will be exceeded on any 
individual run. A model of the learning curve is used 
to estimate act(N). 

Statistical estimates of convergence face several chal- 
lenges. First, statistical estimation of complete learn- 
ing curves is fraught with difficulties. Actual learning 
curves often require a complex functional form to esti- 
mate accurately. The curve shown in figure 1 has three 
regions of behavior-a primary rise, a secondary rise, 
and a plateau. Most simple functional forms (e.g., the 
power laws used by Frey and Fisher [4] and by John 
and Langley [S]) g enerally cannot capture all three re- 
gions of behavior, often causing the estimated curves to 
converge too quickly or never to converge. Estimating 
convergence is genera1ly more challenging than fitting 
earlier parts of the curve, and even fairly small errors 
can mislead progressive sampling methods. For exam- 
ple, a power law may fit the early part of the curve 
well, but will represent a long, final plateau as a long 
(perhaps slight) incline. 

More important, the need for accurate statistical es- 
timates must be balanced against the goal of computa- 
tional efficiency. Statistical estimates of convergence are 
aided by increasing the number of points in a schedule, 
but this directly impairs efficiency. Even worse, deter- 
mining convergence is aided most by samples for which 
ni > Gin, because these points will most assist the sta- 
tistical determination that a. plateau has been reached. 
Of course, these are the very sample sizes that, for ef- 
ficiency reasons, progressive sampling schedules should 
avoid. 

The most promising approach we have yet identified 
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for convergence detection--linear regression with local 
sampling (.LRLS)-begins at the latest scheduled sam- 
ple size ni and samples 1 additional points in the local 
neighborhood of ni. These points are then used to esti- 
mate a linear regression line, whose slope is compared 
to zero. If the slope is sufficiently close to zero, conver- 
gence is detected. LRLS takes advantage of a common 
property of learning curves: the slope of the line tan- 
gent to the curve constantly decreases. If LRLS ever 
estimates that the slope is zero, it is unlikely to ever 
become non-zero for larger n. 

LRLS increases progressive sampling’s complexity 
by a constant factor. In section 6 we show that it 
approximates n,in with consistently high accuracy, 
though at the cost of significant increases in absolute 
run time. 

5 Adaptive scheduling 

Determining optimal schedules for DP sampling re- 
quires a model of the probability of convergence and a 
model of the run-time complexity of the underlying in- 
duction algorithm. In the previous section we assumed 
that these were known in advance, but our prior knowl- 
edge may be less than perfect. We now show that a 
progressive sampling procedure can build both of these 
models adaptively. The key insight is that a progressive 
sampling algorithm can obtain substantial amounts of 
information cheaply by including small samples in its 
schedule. 

5.1 Modeling the probability of convergence 

As we argued above, the assumption of uniform proba- 
bilities of convergence for all n is probably incorrect. 
However, progressive sampling algorithms can model 
the convergence probability dynamically. For example, 
a progressive sampling algorithm might assume that the 
accuracy of a particular algorithm on a particular data 
set can be modeled by a power law. A simple power 
law is shown by Frey and Fisher [4] to model learn- 
ing curves better than a variety of alternatives, and a 
similar approach is used by John and Langley [8] to de- 
termine convergence (see section 4). Such a modeling 
approach could allow a progressive sampling procedure 
to improve the efficiency of its schedule adaptively dur- 
ing execution. 

This enhances the benefits of quasi-geometric sched- 
ules that take many small samples early, when the learn- 
ing curve has the most variation, but while running the 
induction algorithm is inexpensive and the impact of a 
suboptimal schedule is low. When the cost of running 
the induction algorithm increases, the model of the con- 
vergence probabilities will be much better, and thus the 
actual performance will be closer to the true optimal. 

5.2 The cost of running the induction 
algorithm 

The second assumption of DP sampling is that we 
have an accurate model of the run-time complexity (in 
n) of the underlying induction algorithm. Run-time 
complexity models are not always easy to obtain. For 
example, our empirical results below use the decision- 
tree algorithm C4.5 [17], for which reported time 
complexity varies widely. 

Moreover, DP sampling requires the actual run- 
time complexity for the problem in question, rather 
than a worst-case complexity. We obtained empirical 
estimates of the complexity of C4.5 on the data sets 
used below, and found O(n1.22) for LED, O(n1.37) for 
WAVEFORM, and O(n1.38) for CENSUS.~ 

As with learning curve estimation, progressive sam- 
pling can determine the actual run-time complexity 
dynamically as the sampling progresses. As before, 
early in the schedule, with small samples, suboptimal 
scheduling due to an incorrect time-complexity model 
will have little overall effect. As the samples grow 
and bad estimates would be costly, the time-complexity 
model becomes more accurate. 

6 Empirical comparison of sampling 
schedules 

We have shown that, in principle, progressive sampling 
can be efficient. We now evaluate whether progres- 
sive sampling can be used for practical scaling. We 
hypothesize that geometric sampling and DP sampling 
are considerably less expensive than using all the data 
when convergence is early, and not too much more ex- 
pensive when convergence is late. We further hypothe- 
size that, for large data sets and non-incremental algo- 
rithms, these versions of progressive sampling are sig- 
nificantly better than arithmetic progressive sampling. 
We also investigate how well simple geometric sampling 
compares with DP sampling. 

We compare progressive sampling with several differ- 
ent schedules: S, = {N}, a single sample with all the 
instances; So = {n min}, the optimal schedule deter- 
mined by an omniscient oracle; S, = 100 + (100 . i), 
arithmetic sampling with no = ng = 10’0; S, = 100. 2i, 
geometric sampling with no = 100 and a = 2; and 
S+, DP sampling with schedule recomputation after 
dynamic estimation of priors and run-time complexity. 

Of the three progressive sampling methods, only DP 
sampling revises its schedules. In order to determine 
the probability of convergence, with Sdp progressive 

4We followed a similar procedure to Frey and Fisher [4] and 
assumed that the running time could be modeled by: y = co. nc, 
gathered samples of CPU time required to build trees on 1,000 to 
100,000 instances in increments of 1,000, then took the log of both 
the CPU time and the number of instances, ran linear regression, 
and used the resulting slope as an estimate of c. 
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sampling estimates the learning curve dynamically by 
applying linear regression to estimate the parameters 
of a power law. We also dynamically estimate f(n), 
the actual time complexity of the underlying induction 
algorithm, under the assumption that f(n) = CO . nc, 
based on the observed run time on the samples taken 
so far. Progressive sampling with S’,+ first builds models 
on 100, 200, 300, 400 and 500 instances to get an 
initial estimate of the learning curve and actual run- 
time complexity. From these, the method estimates the 
convergence probability distribution and the complexity 
of the algorithm. Then, as described in Figure 2, it 
iteratively checks for convergence, rebuilds the schedule 
by recomputing the distribution and the complexity 
with the latest information, and then produces a new 
classifier. 

For our first set of experiments, we assume that 
convergence can be detected accurately and without 
cost. The progressive sampling algorithms each had 
access to a function that returns FALSE if n < n,in and 
TRUE if n 2 n,in. The function could only be accessed 
as a way of testing convergence, not as a method of 
schedule construction. 

To instantiate the oracle and the costless convergence 
detection procedure, we determined n,in empirically 
by analyzing the full learning curve and applying a 
technique developed by Oates and Jensen [12]. The 
technique takes sets of three adjacent points on a 
learning curve (we used points an arithmetic schedule 
with ns = lOOO), averages their accuracies, and then 
compares that accuracy with the accuracy on all N 
instances. The oracle chooses the first set (the set 
furthest to the left of the learning curve) for which 
average accuracy is not less than 1% of the accuracy 
on all instances. The middle point of that set is n,in. 

For our experiments we used 3 large data sets from 
the UC1 repository [lo]: LED, WAVEFORM (with 10% 
noise), and CENSUS (adult). For LED and WAVEFORM 
we used 100,000 instances, and for CENSUS 32,000. 
Based on the technique above, we found that for LED 
n min = 2,000, for WAVEFORM n,in = 12,000, and for 
CENSUS nmin = 8,000. 

Table 4 shows running times in seconds averaged over 
10 runs on each of the three data sets. Before each run 
the order of the instances was randomized. All runs 
were performed on a 400MHz DEC alpha. 

The results confirm our hypotheses regarding the 
relative efficiency of progressive sampling. Geometric 
progressive sampling is between three and thirty times 
faster than learning with all the data. It also is between 
three and thirty times faster than arithmetic progressive 
sampling. On the other hand, geometric progressive 
sampling is only two to three times slower than the 
oracle-optimal procedure, SO. 

Perhaps surprisingly, DP progressive sampling is not 

Data set Full Arith Geo DP Oracle 
LED 16.40 1.77 0.55 0.56 0.18 
CENSUS 16.33 59.68 5.57 5.41 2.08 
WAVEFORM 425.31 1230.00 41.84 50.57 22.12 

Table 4: Computation time for several progressive 
sampling methods 

faster than geometric sampling. Constructing the DP 
schedule takes less than &th of a second, so the DP 
overhead is not responsible. DP would be faster with 
more precise knowledge of n,in. Indeed, non-adaptive 
DP with uniform priors consistently produces poor 
schedules on these data sets. This is because the 
time complexity of C4.5 is rather low (O(n1.22) for 
LED O(n’.37) for WAVEFORM, and O(n1.38) for CENSUS) 
(cf. the schedule for linear complexity with uniform 
priors in Table 2), but these data sets have relatively 
large values for T* = N/n,in; specifically, r&sus = 4, 
r* - 8.33, and I$,~ = WavefoTm - 50. Adaptive modeling of 
the probability of convergence is critical, but apparently 
we must devise a more accurate technique if we want to 
beat geometric sampling.5 

Now we move on to the detection of convergence. 
We used LRLS to estimate convergence for adaptive 
DP sampling. For these experiments, at each schedule 
point, ten samples were taken for convergence estima- 
tion, 1 = 10, and convergence was indicated the first 
time that the 95% confidence interval on the slope of 
the regression line included zero. Table 5 compares the 
accuracy of the models built using LRLS convergence 
detection, with the accuracy using optimal convergence 
detection from above (i.e., it can query the oracle); each 
value represents the average of 10 runs where instances 
were randomized prior to each run. 

LRLS identifies convergence accurately. In most 
cases, LRLS correctly identifies nb as the first schedule 
point after n,in, and in nearly all other cases conver- 
gence is identified in a sample for which nb > n,in. In 
no data set was the mean accuracy at estimated con- 
vergence statistically distinguishable from the accuracy 
on n,in instances, the point of true convergence. 

However, LRLS has a large effect on absolute compu- 
tation time. The additional sampling and executions of 
the induction algorithm create a large (constant) factor 
increase in the total computational cost. Table 6 com- 
pares the run time with LRLS to running with “free” 
convergence detection, to running on the full data set, 
and to knowing n,in in advance. 

5Experiments with increasingly precise knowledge of n,in 
show DP sampling to be less efficient than geometric sampling 
even for prior distributions centered on n,;, , if the distributions 
are wide. Of course, if the distributions are very narrow, DP 
sampling comes very close to SO, the optimal schedule. 
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Data set DP-LRLS DP-Free 
LED 73.02 72.91 
CENSUS 84.83 85.38 
WAVEFORM 76.88 76.36 

Table 5: Mean accuracy for DP with LRLS and with 
optimal convergence detection 

Data set Full DP-LRLS DP-Free Oracle 
LED 16.40 11.27 0.56 0.18 
CENSUS 16.33 9.22 5.41 2.08 
WAVEFORM 425.31 142.92 50.57 22.12 

Table 6: Computation times with LRLS and with free 
convergence detection 

These costs could be reduced by more efficient esti- 
mation of convergence. In addition, the costs of running 
on the full data set would increase dramatically if N in- 
creased, while this would not affect the computational 
cost of any form of progressive sampling. Thus, as the 
total size of data sets increases, progressive sampling 
becomes more attractive. 

Our presentation does not highlight all the benefits 
of progressive sampling. For example, our analysis as- 
sumes that sampling from a large database is instanta- 
neous. As this assumption is relaxed, the relative effi- 
ciency of progressive sampling becomes better. Progres- 
sive sampling can take advantage of data as they arrive, 
effectively creating a pipelined induction process. For 
standard induction based on slow data access, the CPU 
sits idle and waits for the sampling to complete, and 
then runs the induction algorithm on the resultant data 
set. Progressive sampling can immediately get started 
on the first sample points, computing its first estimates 
of the learning curve and f(n). Thereafter, sampling 
first fills up a test-set buffer, so that when induction 
each subset is finished, the test-set buffer (containing 
data for the next subset) is used first to estimate the 
accuracy. Then the test set buffer can be shifted into 
the training buffer, and so on. Moreover, the slower the 
sampling, the more work can be done on convergence 
detection. With very slow sampling, the efficiency of 
progressive sampling will be the same as if n,in were 
known a priori. 

7 Other related work 

The method of Musick et al. [ll] for determining 
the best attribute at each decision-tree node can be 
seen as an instance of the generic progressive sampling 
algorithm shown in figure 2, if we regard each node 
of the decision tree as an individual induced model. 
Specifically, based on an analysis of information gain 

and its statistical properties, they compute an estimate 
of the sample size needed to have less than a specified 
loss in information. However, because this estimate can 
overshoot A min greatly, they then calculate nd for an 
efficient arithmetic schedule, and revise the estimate 
after executing each schedule point. Other sequential 
multi-sample learning methods [14] are degenerate 
instances of progressive sampling, typically using fixed 
arithmetic schedules and treating convergence detection 
simplistically, if at all. 

For this paper, we have considered only drawing 
random samples from the larger data set. We believe 
that the results will generalize to other methods of 
sampling, but have not yet studied the general case. 
Methods for active sampling, choosing subsequent 
samples based upon the models learned previously, 
are of particular interest. A classic example of 
active sampling is windowing [16], wherein subsequent 
sampling chooses instances for which the current model 
makes errors. Active sampling changes the learning 
curve. For example, on noisy data, windowing learning 
curves are notoriously ill behaved: subsequent samples 
contain increasing amounts of noise, and performance 
often decreases as sampling progresses [5]. It would 
be interesting to examine more closely the use of the 
techniques outlined above in the context of active 
sampling, and the potential synergies. 

8 Conclusion 

With this work we have made substantial progress to- 
ward efficient progressive sampling. We have shown 
that if convergence detection can be done very effi- 
ciently, then progressive sampling is far better than 
learning from all the data, and almost as efficient as 
being given the minimum sufficient training set by an 
oracle. We have shown that convergence detection 
can be done effectively and moderately efficiently. We 
have also shown that geometric sampling is remarkably 
robust: its efficiency is insensitive to the number of 
points in the schedule (unlike arithmetic sampling); it 
is asymptotically no worse than knowing the point of 
convergence in advance, and in practice it performs as 
well as much more complicated adaptive scheduling. 

What is left are two well-defined challenges for future 
KDD research: increase the efficiency of convergence 
detection, and devise an accurate method for estimating 
the point of convergence from a partial learning curve. 
One of the defining problems of KDD is classifier 
induction from massive data sets [14]. The existence of 
an efficient progressive sampling procedure would take 
a giant step toward solving it. 
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