
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2478898

Efficient Progressive Sampling

Article · April 2000

DOI: 10.1145/312129.312188 · Source: CiteSeer

CITATIONS

239
READS

617

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Global Collaboration Engine (GLOBE) View project

Multivariate time series analysis of physiological data View project

David Donald Jensen

University of Massachusetts Amherst

163 PUBLICATIONS 6,824 CITATIONS

SEE PROFILE

Tim Oates

University of Maryland, Baltimore County

214 PUBLICATIONS 2,806 CITATIONS

SEE PROFILE

All content following this page was uploaded by David Donald Jensen on 12 March 2013.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2478898_Efficient_Progressive_Sampling?enrichId=rgreq-ea68fcb08ccbf8eb4b47cba173525844-XXX&enrichSource=Y292ZXJQYWdlOzI0Nzg4OTg7QVM6MTAyMzE2ODU0MjE4NzYwQDE0MDE0MDU2NDg2NjQ%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2478898_Efficient_Progressive_Sampling?enrichId=rgreq-ea68fcb08ccbf8eb4b47cba173525844-XXX&enrichSource=Y292ZXJQYWdlOzI0Nzg4OTg7QVM6MTAyMzE2ODU0MjE4NzYwQDE0MDE0MDU2NDg2NjQ%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Global-Collaboration-Engine-GLOBE?enrichId=rgreq-ea68fcb08ccbf8eb4b47cba173525844-XXX&enrichSource=Y292ZXJQYWdlOzI0Nzg4OTg7QVM6MTAyMzE2ODU0MjE4NzYwQDE0MDE0MDU2NDg2NjQ%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Multivariate-time-series-analysis-of-physiological-data?enrichId=rgreq-ea68fcb08ccbf8eb4b47cba173525844-XXX&enrichSource=Y292ZXJQYWdlOzI0Nzg4OTg7QVM6MTAyMzE2ODU0MjE4NzYwQDE0MDE0MDU2NDg2NjQ%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ea68fcb08ccbf8eb4b47cba173525844-XXX&enrichSource=Y292ZXJQYWdlOzI0Nzg4OTg7QVM6MTAyMzE2ODU0MjE4NzYwQDE0MDE0MDU2NDg2NjQ%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David_Jensen5?enrichId=rgreq-ea68fcb08ccbf8eb4b47cba173525844-XXX&enrichSource=Y292ZXJQYWdlOzI0Nzg4OTg7QVM6MTAyMzE2ODU0MjE4NzYwQDE0MDE0MDU2NDg2NjQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David_Jensen5?enrichId=rgreq-ea68fcb08ccbf8eb4b47cba173525844-XXX&enrichSource=Y292ZXJQYWdlOzI0Nzg4OTg7QVM6MTAyMzE2ODU0MjE4NzYwQDE0MDE0MDU2NDg2NjQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Massachusetts_Amherst2?enrichId=rgreq-ea68fcb08ccbf8eb4b47cba173525844-XXX&enrichSource=Y292ZXJQYWdlOzI0Nzg4OTg7QVM6MTAyMzE2ODU0MjE4NzYwQDE0MDE0MDU2NDg2NjQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David_Jensen5?enrichId=rgreq-ea68fcb08ccbf8eb4b47cba173525844-XXX&enrichSource=Y292ZXJQYWdlOzI0Nzg4OTg7QVM6MTAyMzE2ODU0MjE4NzYwQDE0MDE0MDU2NDg2NjQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tim_Oates2?enrichId=rgreq-ea68fcb08ccbf8eb4b47cba173525844-XXX&enrichSource=Y292ZXJQYWdlOzI0Nzg4OTg7QVM6MTAyMzE2ODU0MjE4NzYwQDE0MDE0MDU2NDg2NjQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tim_Oates2?enrichId=rgreq-ea68fcb08ccbf8eb4b47cba173525844-XXX&enrichSource=Y292ZXJQYWdlOzI0Nzg4OTg7QVM6MTAyMzE2ODU0MjE4NzYwQDE0MDE0MDU2NDg2NjQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Maryland_Baltimore_County?enrichId=rgreq-ea68fcb08ccbf8eb4b47cba173525844-XXX&enrichSource=Y292ZXJQYWdlOzI0Nzg4OTg7QVM6MTAyMzE2ODU0MjE4NzYwQDE0MDE0MDU2NDg2NjQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tim_Oates2?enrichId=rgreq-ea68fcb08ccbf8eb4b47cba173525844-XXX&enrichSource=Y292ZXJQYWdlOzI0Nzg4OTg7QVM6MTAyMzE2ODU0MjE4NzYwQDE0MDE0MDU2NDg2NjQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David_Jensen5?enrichId=rgreq-ea68fcb08ccbf8eb4b47cba173525844-XXX&enrichSource=Y292ZXJQYWdlOzI0Nzg4OTg7QVM6MTAyMzE2ODU0MjE4NzYwQDE0MDE0MDU2NDg2NjQ%3D&el=1_x_10&_esc=publicationCoverPdf

Efficient Progressive Sampling

Foster Provost
Bell Atlantic Science and Technology

500 Westchester Avenue
White Plains, New York 10604

provost@acm.org

Abstract

Having access to massive amounts of data does not neces-
sarily imply that induction algorithms must use them all.
Samples often provide the same accuracy with far less com-
putational cost. However, the correct sample size rarely
is obvious. We analyze methods for progressive sampling-
using progressively larger samples as long as model accuracy
improves. We explore several notions of efficient progres-
sive sampling. We analyze efficiency relative to induction
with all instances; we show that a simple, geometric sam-
pling schedule is asymptotically optimal, and we describe
how best to take into account prior expectations of accu-
racy convergence. We then describe the issues involved in
instantiating an efficient progressive sampler, including how
to detect convergence. Finally, we provide empirical results
comparing a variety of progressive sampling methods. We
conclude that progressive sampling can be remarkably effi-
cient .

1 Introduction

Induction algorithms face competing requirements for
accuracy and efficiency. The requirement for accurate
models often demands the use of large data sets that
allow algorithms to discover complex structure and
make accurate parameter estimates. The requirement
for efficient induction demands the use of small data
sets, because the computational complexity of even
the most efficient induction algorithms is linear in
the number of instances, and most algorithms are
considerably less efficient.

In this paper we study progressive sampling methods,
which attempt to maximize accuracy as efficiently as
possible. Progressive sampling starts with a small
sample and uses progressively larger ones until model
accuracy no longer improves. A central component
of progressive sampling is a sampling schedule S =

kkssim to make digital or hard topics ofall or [,art ofthis work +-o,
Personal or CkiSSrOOrll Use is granted without fee provided that copies
ax not made or distributed for profit Or commercial advantage and tl,at

copies bear this notice and the full citation 011 the first page. l-o copy
otllcf’~~k to republish, to post on scmcrs or to rcdistributc to lists.
reqtlires prior specific permission and/Or a fee.

KDD-99 San Diego CA USA

Copyright ACM 1999 I-581 13-143-7/99/og...$5.0~

David Jensen and Tim Oates
Computer Science Department

University of Massachusetts
Amherst, MA 01003-4610

jensen,oates@cs.umass.edu

{no,nl,n2,. . . ,nk} where each ni is an integer that
specifies the size of a sample to be provided to an
induction algorithm. For i < j, ni < nj. If the data set
contains N instances in total, ni 2 N for all i. There
are three fundamental questions regarding progressive
sampling.

1. What is an efficient sampling schedule?

2. How can convergence (i.e., that model quality
no longer increases) be detected effectively and
efficiently?

3. As sampling progresses, can the schedule be adapted
to be more efficient?

We discuss several ways to assess efficiency, and how
various progressive sampling procedures fare with re-
spect to each. Notably, we show that schedules in which
the ni increase geometrically are optimal in an asymp-
totic sense. We explore the question of optimal effi-
ciency in an absolute sense: what is the most efficient
schedule given one’s prior expectations of convergence?
Next, we address the crucial practical issue of conver-
gence detection. We describe an interaction between
the sampling schedule and the method of convergence
detection, and we describe a practical alternative that
avoids the worst aspects of the tradeoffs this interac-
tion requires. We also discuss algorithms that schedule
adaptively, based on knowledge of convergence and ac-
tual run-time complexity, obtained on the fly.

We then investigate empirically how a variety of
schedules perform on large benchmark data sets. Fi-
nally, we discuss why progressive sampling is especially
beneficial in cases where sampling from a large database
is inefficient. We conclude that, in a wide variety of re-
alistic circumstances, progressive sampling is preferable
to analyzing all instances from a database. Surprisingly,
it can be competitive even when the optimal sample size
is known in advance.

23

n3 nmin n4 n.7 N

Training set size

Figure 1: Learning curves and progressive samples

2 Progressive Sampling

A learning curve (Figure 1) depicts the relationship be-
tween sample size and model accuracy. The horizontal
axis represents n, the number of instances in a given
training set, that can vary between zero and N, the
total number of available instances. The vertical axis
represents the accuracy of the model produced by an
induction algorithm when given a training set of size n.

Learning curves typically have a steeply sloping
portion early in the curve, a more gently sloping middle
portion, and a plateau late in the curve. The middle
portion can be extremely large in some curves (e.g.,
[2, 3, 61) and almost entirely missing in others. The
plateau occurs when adding additional data instances
does not improve accuracy. The plateau, and even
the entire middle portion, can be missing from curves
when N is not sufficiently large. Conversely, the plateau
region can constitute the majority of curves when N is
very large. For example, in a recent study of two large
business data sets, Harris-Jones and Haines [6] found
that learning curves reach a plateau quickly for some
algorithms, but small accuracy improvements continue
up to N for other algorithms.

We assume that learning curves are well behaved.
Specifically, we assume that the slope of a learning
curve is monotonically non-increasing with n except for
local variance. Locality is defined within a particular
progressive sampling procedure.

Not ail learning curves are well behaved. For
example, theoretical analyses of learning curves based
on statistical mechanics [7, 191 have shown that sudden
increases in accuracy are possible, particularly on small
samples. However, empirical studies of the application
of standard induction algorithms to large data sets-
those of relevance to this paper-have shown learning
curves to be well behaved [3, 4, 6, 12, 131. In
addition, practical progressive sampling demands only
that learning curves are well behaved at the level

Compute schedule S = {no, nl , n2, . . . , nk} of sample sizes
n t no
A4 t model induced from n instances
while not converged

recompute S if necessary
n t next element of S larger than n
M t model induced from n instances

end while
return M

Figure 2: Progressive sampling

of granularity of the sampling schedule. Given the
relatively course granularity of many schedules, sudden
increases in accuracy can occur without impairing
progressive sampling. Our empirical results in section
section 6 bear out these assumptions.

When a learning curve reaches its final plateau, we
say it has converged. We denote the training set size at
which convergence occurs as n,in.

Definition 1 Given a data set, a sampling procedure,
and an induction algorithm, n,i, is the size of the
smallest sufficient training set. Models built with
smaller training sets have lower accuracy than models
built with from training sets of size nmin, and models
built with larger training sets have no higher accuracy.

Figure 1 shows an example sampling schedule and its
relation to a learning curve. Empirical estimates are
necessary to determine nmin because the precise shape
of a learning curve represents a complex interaction
between the statistical regularities present in a given
data set and the abilities of an induction algorithm to
identify and represent those regularities. In general,
these characteristics are not known in advance, nor is
their interaction well understood. Thus, in many cases,
n,in is nearly impossible to determine from theory.
However, n,in can be approximated empirically by a
progressive sampling procedure. We denote by &ila a
procedure’s approximation to n,in.

Figure 2 is a generic algorithm that defines the
family of progressive sampling methods, An instance
of this family has particular methods for selecting a
schedule, for determining convergence, and for altering
the schedule adaptively. The next three sections
consider each of these methods in turn.

3 Determining an efficient schedule
We now discuss several alternative methods for selecting
an efficient schedule. For now, we assume that
progressive sampling is able to detect convergence
and we assume that this detection can be performed
efficiently (its worst-case run-time complexity is not
worse than that of the underlying induction algorithm).

24

3.1 Simple schedules

For brevity, we call a schedule generated by a simple
procedure a simple schedule. Several simple schedules
are of interest. For example, later we will use for
comparison the schedule composed of a single data set
with all instances, 5’~ = {N}. We also will consider
the simple schedule generated by an omniscient oracle,
so = {%TLil,).

John and Langley [8] define a progressive sam-
pling approach we call arithmetic samp2ing using the
schedule S, = no + (i . n6) = (120,710 -t ns,n0 +
2ng,.. . , no + k . ng}.l An example arithmetic sched-
ule is {100,200,300, . . . , nk}. John and Langley com-
pare arithmetic sampling with static sampling. Static
sampling computes jimin without progressive sampling,
based on a subsample’s statistical similarity to the en-
tire sample. For consistency, we consider static sam-
pling as a degenerate progressive sampling procedure
with schedule Sstatic = {&in}. John and Langley show
that arithmetic sampling produces more accurate mod-
els than does static sampling. This is not surprising,
given that n,i,, depends on the relationship between
the data and the specific learning algorithm. In some
cases, the difference between nmin’s for different learn-
ing algorithms is quite large [6].

Arithmetic sampling has an obvious drawback. If
n,in is a large multiple of n6, then the approach
will require many runs of the underlying induction
algorithm. For example, if n,i, = 200,000 and no =
n6 = 100, then 2000 runs will be necessary-more than
half with n > 100,000 instances. John and Langley
partially escape this difficulty by specifying the use
of an incremental induction algorithm (e.g., a simple
Bayesian classifier), whose run time depends only on the
additional instances, rather than having to reprocess
all prior instances. Unfortunately, S, can be extremely
inefficient for the vast majority of induction algorithms,
which are not incremental. We compare arithmetic
schedules to other approaches in section 6.

An alternative schedule escapes the limitations of
arithmetic sampling. Geometric sampling uses the
schedule S, :

Sg=ai-no={n0,a~no,a2-n0,a3~n0,... ,ak-no),

for some constants no and a. An example geometric
schedule is { 100,200,400,800, . . .}. The next sections
explain why geometric schedules are robust.

3.2 When are simple schedules efficient?

What are the general conditions under which simple
schedules are more efficient than SN? Are those

‘The first and last points in the schedule, no and nk, depend
on external factors such as N and the induction program’s (fixed)
computational overhead.

conditions sufficiently general that simple progressive
sampling should be used routinely?

Consider an underlying induction algorithm with a
simple polynomial run-time complexity f(n), and a
simple analytical model with three parameters: b, the
number of schedule points executed prior to the point of
convergence (nb is the first schedule point greater than
&in); T, the ratio of the total number of instances to
the size of the final sample (r = g); and c, the exponent
of the run-time complexity (f(n) = n’).

Based on these parameters, we can define the condi-
tions under which the computational cost of progressive
sampling and the cost of using all N instances are equal.
That is, the conditions under which:

NC = 720' + nlc + 122' + . . . + nbc

where T = g and where the relationship among the
elements of the partial schedule {no,nl, n2,. . . ,nr,} is
determined by the given progressive sampling method
(e.g., arithmetic or geometric).

Sets of parameter values that satisfy the equation
above are shown in Figure 3. The curves show the
boundaries between regions where it is more eflicent
to use progressive sampling and regions where it is
more efficient to use all N instances. Above the curves,
progressive sampling is more efficient; below the curves,
complete sampling is more efficient. The left- and right-
hand figures show curves for arithmetic and geometric
sampling, respectively.

The curves show that progressive sampling will be
more efficient than learning with all the examples un-
der a wide variety of circumstances. For example, arith-
metic sampling that requires 30 samples to be tried be-
fore convergence is detected is better if the computa-
tional complexity is greater than n2 and the final sam-
ple size is less than one-quarter of N. If, however, the
final sample size is one-half of N, arithmetic sampling
will not be better unless only 10 or fewer samples are
needed prior to detecting convergence.

Geometric sampling is far more forgiving. If com-
putational complexity is n2 or worse, then geometric
sampling is better as long as convergence can be de-
tected with samples smaller than N/2. If computational
complexity is linear, then geometric sampling is better
as long as convergence can be detected with samples
smaller than N/6. The number of samples prior to con-
vergence is nearly irrelevant. This is the essential fea-
ture of geometric sampling that makes it efficient. If
a schedule contains a large number of samples prior to
the sample when convergence is detected, those samples
will almost all be quite small. In contrast, increasing the
number of samples in an arithmetic schedule adds sam-
ples along the schedule’s entire range, and this results
in a much larger computational cost.

25

b=lOO

\

Arithmetic Sampling

I
2 4 6 6 10

Nlnb

Geometric Sampling

2 4 6 6 10

Nhb

Figure 3: Regions of efficiency for arithmetic and geometric sampling

3.3 The asymptotic optimality of geometric
schedules

How do simple schedules compare to the schedule
of an omniscient oracle, So = {nmin}? Below we
show that geometric sampling is an asymptotically
optimal schedule. That is, in terms of worst-case time
complexity, geometric sampling is equivalent to SO.

For a given data set, let f(n) be the (expected) run
time of the underlying induction algorithm with n sam-
pled instances. We assume that the asymptotic run-
time complexity of the algorithm, @(f(n)), is polyno-
mial (no better than O(n)). Since most induction al-
gorithms have n(n) run-time complexity, and many are
strictly worse than O(n), this assumption does not seem
problematic. Under these assumptions, geometric sam-
pling is asymptotically optimal.2

Theorem 1 For induction algorithms with polynomial
time complexity @(f(n)), no better than O(n), if con-
vergence also can be detected in O(f(n)), then geometric
progressive sampling is asymptotically optimal among
progressive sampling methods in terms of run time.

Proof: The ran-time complem’ty of induction (with the
learning algorithm in question) is O(f (n)), where n is
the number of instances in the data set. As specified
in Definition 1, let n,i, be the size of the smallest
suficient training set. The ideal progressive sampler
has access to an oracle that reveals n,in, and therefore
will use the simple, optimal schedule So = (n,i,>. The
run-time complexity of SO is O(f (nmi,)). Notably, the
run time of the optimal progressive sampling procedure
grows with n,i, rather than with the total number of
instances N.

By the definition of Ss, geometric progressive sam-
pling runs the induction algorithm on subsets of size

‘We follow the reasoning of Korf, who shows that progressive
deepening is an optimal schedule for conducting depth-first search
when the smallest sufficient depth is unknown [9] [15].

uz . no for i = O,l,. . . , b, where b + 1 is the number of
samples processed before detecting convergence.

Now, we assume convergence is well detected, so

abe - no < nmin < a’ . no < a . nmin,

which means that

a2 . no <
ai

- . %h, ah-l

for i = 0, 1,. . . , b. Since O(f(.)) is at best linear, the
run time of S, (on all subsets, including running the
convergence-detection procedure) is

O(f ($ --& . nk)).
i=O

This is

O(f (a . nmin . (1+ i + -$ +. . . + -$)).

The final, finite sum is less than the corresponding
infinite sequence. Because a > 1 for Ss, this converges
to a constant that is independent of n,in. Since O(f (e))
is polynomial, the overall run time of Ss is O(f (n,in)).
Therefore, progressive sampling asymptotically is no
worse than the optimal progressive sampling procedure,
SO, which runs the induction algorithm only on the
smallest suficient training set. 0

Because it is simple and asymptotically optimal, we
propose that geometric sampling, for example with
a = 2, is a good default schedule for mining large
data sets. We provide empirical results testing this
proposition and discuss further reasons in section 6.
First we explore further the topic of optimal schedules.

3.4 Optimality with respect to expectations
of convergence

Comparisons with SN and SO represent two ends of
a spectrum of expectations about n,in. Can optimal

26

schedules be constructed given expectations between
these two extremes?

Prior expectations of convergence can be represented
as a probability distribution. For example, let a(n)
be the (prior) probability that convergence requires
more than n instances. By using @P(n), and the run-
time complexity of the learning algorithm, f(n), we
can compare the expected cost of different schedules.
Thus we can make statements about expectation-based
optimality. The schedule with minimum expected cost
is optimal in a practical sense.

In many cases there may be no prior information
about the likelihood of convergence occurring for any
given n. Assuming a uniform prior over all n yields
Q(n) = (N - n)/N.3 At the other end of the spectrum,
oracle optimality can be cast as a special case of
expectation-based optimality, wherein a(n) = 1 for
n -c kin, and @(n) = 0 for n > n,in (i.e., n,in is
known).

The better the information on the likely location of
nmin, the lower the expected costs of the schedules
produced. For example, we know that learning curves
almost always have the characteristic shape shown
in Figure 1, and that in many cases n,i,, < N.
Rather than assume a uniform prior, it would be more
reasonable to assume a more concentrated distribution,
with low values for very small n, and low values for
very large n. For example, data from Oates and Jensen
[12, 131 show that the distribution of the number of
instances needed for convergence over a large set of the
UC1 databases [lo] is roughly log-normal.

Given such expectations about nmin, is it possible
to construct the schedule with the minimum expected
cost of convergence? This seems a daunting task. For
each value of n, from 1 to N, a model can either
be built or not, leading to 2N possible schedules.
However, identification of the optimal schedule can be
cast in terms of dynamic programming [l], yielding an
algorithm that requires O(N2) space and O(N3) time.

Let f(n) be the cost of building a model with
n instances and determining whether accuracy has
converged. As described above, let a(n) be the
probability that convergence requires more than n
instances. Clearly, @3(O) = 1. If we let no = 0, then
the expected cost of convergence by following schedule
S is given by the following equation:

To better understand what this equation captures,
consider a simple example in which N = 10 and S =

3This implies that 9(N) = 0 and thus that n,i,, 5 N.

Schedule cost
S1 ={1,2,3,4,5,6,7,8,9,10} 121.0
s, = (10) 100.0
S, = {2,6,10} 72.8

Table 1: Expected costs of various schedules given
N = 10, f(n) = n2 and a uniform prior.

{3,7, lo}. The value of C is as follows:

C = 5 Wni-l)f(ni) = +(O)f(3) + @(3)f(7) + +(7)f(lO)
i=l

With probability 1 (a(O) = l), an initial model will be
built with 3 instances at a cost of f(3). If more than
3 instances are required for convergence, an event that
occurs with probability @(3), a second model will be
built with 7 instances at a cost of f(7). Finally, with
probability @(7) more than 7 instances are required for
convergence and a third model will be built with all 10
instances at a cost of f(l0). The expected cost of a
schedule is the sum of the cost of building each model
times the probability that the model will actually need
to be constructed.

Consider another example in which N = 10; the
uniform prior is used (a(n) = (N - n)/N), and f(n) =
n2. The costs for three different schedules are shown
in Table 1. The first schedule, in which a model is
constructed for each possible data set size, is the most
expensive of the three shown. The second schedule, in
which a single model is built with all of the instances,
also is not optimal in the sense of expected cost given
a uniform prior. The third schedule shown has the
lowest cost of all 21° = 1024 possible schedules for this
problem.

Given N, f and a, we want to determine the
schedule S that minimizes C. That is, we want to
find the optimal schedule. As noted previously, a
brute force approach to this problem would explore
exponentially many schedules. We take advantage of
the fact that optimal schedules are composed of optimal
sub-schedules to apply dynamic programming to this
problem, resulting in a polynomial time algorithm.
Let m[i,j] be the cost of the minimum expected-cost
schedule of all samples in the size range [i, j], with the
requirement that samples of i and of j instances be
included in m[i, j]. The cost of the optimal schedule
given a data set containing N instances is then m[O, N].
The following recurrence can be used to compute
m[O, N]: .

m[i, j] = min {
@(iIf m
mini<k<j m[i, k] + m[K,j]

Both the bottom-up table-based and top-down mem-
oized implementations of this equation require O(N2)

27

We call progressive sampling based on the optimal
schedule determined by this dynamic programming

A key assumption behind all the progressive sampling

Table 2: Optimal schedules for N = 500 and various
f(n) given a uniform prior.

N = 500

-f(n) Schedule cost
n {57,143,285,500) 183
TX;.” (36, 93, 180, 318, 500) 2,355

(16, 50, 108, 191,318, 500) 33,473
n3 (4, 23, 50, 93, 149, 231, 348, 500) 9,026,006

Table 3: Optimal schedules for N = 500 and various
f(n) given a log-normal prior.

space to store the values of m and 0(N3) time.
The results of applying dynamic programming to

determine the optimal schedules for N = 500 and
various f(n) are shown in Table 2, which shows
the optimal schedules for each f(n) along with the
associated costs. Note that the optimal schedule
depends on f(n). In general, the larger the complexity
of f(n), the more frequently the schedules indicate that
models should be constructed. Second, although the ni
in any given schedule are quasi-geometrically increasing,
the multiplicative factor is by no means a constant. In
fact, the factor seems to decrease dramatically near the
ends of the schedules.

As stated earlier, the running time of the algorithm
that determines the optimal schedule is O(N3). This
clearly is impractical for data sets with millions of
instances. Fortunately, the running time actually is
cubic in the number of data set sizes at which a mode1
can be built, which can be a small fraction of N if
one is willing to sacrifice precision in the placement of
model construction points (for example, looking only at
multiples of 100 or 1000 instances).

Non-uniform priors can strongly affect the schedules
produced by dynamic programming. Table 3 shows
optimal schedules based on a log-normal prior such that

Wag(x)) = 1 - N(x) where N(x) is the cumulative
density of a normal distribution with mean log(50)
aand standard deviation 1. Despite the fact that the
schedules in this table call for more models to be
constructed than schedules based on the uniform prior
(see Table 2), the expected costs are lower because
more precise information about the location of nmin
is available.

procedures discussed above is that convergence can
be detected accurately and efficiently. We present
some preliminary results below, and we believe that
convergence detection remains an open problem on
which significant research. effort should be focused.

Convergence detection is fundamentally a statistical
judgment, irrespective of the specific convergence cri-
terion or the method to estimate whether that crite-
rion has been met. In their paper on arithmetic sam-
pling, John and Langley [8] model the learning curve
as sampling progresses. They determine convergence
using a stopping criterion modeled after the work of
Valiant [18]. Specifically, convergence is reached when
Pr((acc(N) - acc(ni)) > E) < 6, where act(z) is the
accuracy of the model that an algorithm produces after
seeing x instances, E refers to the maximum acceptable
decrease in accuracy, and 6 is a probability that the
maximum accuracy difference will be exceeded on any
individual run. A model of the learning curve is used
to estimate act(N).

Statistical estimates of convergence face several chal-
lenges. First, statistical estimation of complete learn-
ing curves is fraught with difficulties. Actual learning
curves often require a complex functional form to esti-
mate accurately. The curve shown in figure 1 has three
regions of behavior-a primary rise, a secondary rise,
and a plateau. Most simple functional forms (e.g., the
power laws used by Frey and Fisher [4] and by John
and Langley [S]) g enerally cannot capture all three re-
gions of behavior, often causing the estimated curves to
converge too quickly or never to converge. Estimating
convergence is genera1ly more challenging than fitting
earlier parts of the curve, and even fairly small errors
can mislead progressive sampling methods. For exam-
ple, a power law may fit the early part of the curve
well, but will represent a long, final plateau as a long
(perhaps slight) incline.

More important, the need for accurate statistical es-
timates must be balanced against the goal of computa-
tional efficiency. Statistical estimates of convergence are
aided by increasing the number of points in a schedule,
but this directly impairs efficiency. Even worse, deter-
mining convergence is aided most by samples for which
ni > Gin, because these points will most assist the sta-
tistical determination that a. plateau has been reached.
Of course, these are the very sample sizes that, for ef-
ficiency reasons, progressive sampling schedules should
avoid.

The most promising approach we have yet identified

28

for convergence detection--linear regression with local
sampling (.LRLS)-begins at the latest scheduled sam-
ple size ni and samples 1 additional points in the local
neighborhood of ni. These points are then used to esti-
mate a linear regression line, whose slope is compared
to zero. If the slope is sufficiently close to zero, conver-
gence is detected. LRLS takes advantage of a common
property of learning curves: the slope of the line tan-
gent to the curve constantly decreases. If LRLS ever
estimates that the slope is zero, it is unlikely to ever
become non-zero for larger n.

LRLS increases progressive sampling’s complexity
by a constant factor. In section 6 we show that it
approximates n,in with consistently high accuracy,
though at the cost of significant increases in absolute
run time.

5 Adaptive scheduling

Determining optimal schedules for DP sampling re-
quires a model of the probability of convergence and a
model of the run-time complexity of the underlying in-
duction algorithm. In the previous section we assumed
that these were known in advance, but our prior knowl-
edge may be less than perfect. We now show that a
progressive sampling procedure can build both of these
models adaptively. The key insight is that a progressive
sampling algorithm can obtain substantial amounts of
information cheaply by including small samples in its
schedule.

5.1 Modeling the probability of convergence

As we argued above, the assumption of uniform proba-
bilities of convergence for all n is probably incorrect.
However, progressive sampling algorithms can model
the convergence probability dynamically. For example,
a progressive sampling algorithm might assume that the
accuracy of a particular algorithm on a particular data
set can be modeled by a power law. A simple power
law is shown by Frey and Fisher [4] to model learn-
ing curves better than a variety of alternatives, and a
similar approach is used by John and Langley [8] to de-
termine convergence (see section 4). Such a modeling
approach could allow a progressive sampling procedure
to improve the efficiency of its schedule adaptively dur-
ing execution.

This enhances the benefits of quasi-geometric sched-
ules that take many small samples early, when the learn-
ing curve has the most variation, but while running the
induction algorithm is inexpensive and the impact of a
suboptimal schedule is low. When the cost of running
the induction algorithm increases, the model of the con-
vergence probabilities will be much better, and thus the
actual performance will be closer to the true optimal.

5.2 The cost of running the induction
algorithm

The second assumption of DP sampling is that we
have an accurate model of the run-time complexity (in
n) of the underlying induction algorithm. Run-time
complexity models are not always easy to obtain. For
example, our empirical results below use the decision-
tree algorithm C4.5 [17], for which reported time
complexity varies widely.

Moreover, DP sampling requires the actual run-
time complexity for the problem in question, rather
than a worst-case complexity. We obtained empirical
estimates of the complexity of C4.5 on the data sets
used below, and found O(n1.22) for LED, O(n1.37) for
WAVEFORM, and O(n1.38) for CENSUS.~

As with learning curve estimation, progressive sam-
pling can determine the actual run-time complexity
dynamically as the sampling progresses. As before,
early in the schedule, with small samples, suboptimal
scheduling due to an incorrect time-complexity model
will have little overall effect. As the samples grow
and bad estimates would be costly, the time-complexity
model becomes more accurate.

6 Empirical comparison of sampling
schedules

We have shown that, in principle, progressive sampling
can be efficient. We now evaluate whether progres-
sive sampling can be used for practical scaling. We
hypothesize that geometric sampling and DP sampling
are considerably less expensive than using all the data
when convergence is early, and not too much more ex-
pensive when convergence is late. We further hypothe-
size that, for large data sets and non-incremental algo-
rithms, these versions of progressive sampling are sig-
nificantly better than arithmetic progressive sampling.
We also investigate how well simple geometric sampling
compares with DP sampling.

We compare progressive sampling with several differ-
ent schedules: S, = {N}, a single sample with all the
instances; So = {n min}, the optimal schedule deter-
mined by an omniscient oracle; S, = 100 + (100 . i),
arithmetic sampling with no = ng = 10’0; S, = 100. 2i,
geometric sampling with no = 100 and a = 2; and
S+, DP sampling with schedule recomputation after
dynamic estimation of priors and run-time complexity.

Of the three progressive sampling methods, only DP
sampling revises its schedules. In order to determine
the probability of convergence, with Sdp progressive

4We followed a similar procedure to Frey and Fisher [4] and
assumed that the running time could be modeled by: y = co. nc,
gathered samples of CPU time required to build trees on 1,000 to
100,000 instances in increments of 1,000, then took the log of both
the CPU time and the number of instances, ran linear regression,
and used the resulting slope as an estimate of c.

29

sampling estimates the learning curve dynamically by
applying linear regression to estimate the parameters
of a power law. We also dynamically estimate f(n),
the actual time complexity of the underlying induction
algorithm, under the assumption that f(n) = CO . nc,
based on the observed run time on the samples taken
so far. Progressive sampling with S’,+ first builds models
on 100, 200, 300, 400 and 500 instances to get an
initial estimate of the learning curve and actual run-
time complexity. From these, the method estimates the
convergence probability distribution and the complexity
of the algorithm. Then, as described in Figure 2, it
iteratively checks for convergence, rebuilds the schedule
by recomputing the distribution and the complexity
with the latest information, and then produces a new
classifier.

For our first set of experiments, we assume that
convergence can be detected accurately and without
cost. The progressive sampling algorithms each had
access to a function that returns FALSE if n < n,in and
TRUE if n 2 n,in. The function could only be accessed
as a way of testing convergence, not as a method of
schedule construction.

To instantiate the oracle and the costless convergence
detection procedure, we determined n,in empirically
by analyzing the full learning curve and applying a
technique developed by Oates and Jensen [12]. The
technique takes sets of three adjacent points on a
learning curve (we used points an arithmetic schedule
with ns = lOOO), averages their accuracies, and then
compares that accuracy with the accuracy on all N
instances. The oracle chooses the first set (the set
furthest to the left of the learning curve) for which
average accuracy is not less than 1% of the accuracy
on all instances. The middle point of that set is n,in.

For our experiments we used 3 large data sets from
the UC1 repository [lo]: LED, WAVEFORM (with 10%
noise), and CENSUS (adult). For LED and WAVEFORM
we used 100,000 instances, and for CENSUS 32,000.
Based on the technique above, we found that for LED
n min = 2,000, for WAVEFORM n,in = 12,000, and for
CENSUS nmin = 8,000.

Table 4 shows running times in seconds averaged over
10 runs on each of the three data sets. Before each run
the order of the instances was randomized. All runs
were performed on a 400MHz DEC alpha.

The results confirm our hypotheses regarding the
relative efficiency of progressive sampling. Geometric
progressive sampling is between three and thirty times
faster than learning with all the data. It also is between
three and thirty times faster than arithmetic progressive
sampling. On the other hand, geometric progressive
sampling is only two to three times slower than the
oracle-optimal procedure, SO.

Perhaps surprisingly, DP progressive sampling is not

Data set Full Arith Geo DP Oracle
LED 16.40 1.77 0.55 0.56 0.18
CENSUS 16.33 59.68 5.57 5.41 2.08
WAVEFORM 425.31 1230.00 41.84 50.57 22.12

Table 4: Computation time for several progressive
sampling methods

faster than geometric sampling. Constructing the DP
schedule takes less than &th of a second, so the DP
overhead is not responsible. DP would be faster with
more precise knowledge of n,in. Indeed, non-adaptive
DP with uniform priors consistently produces poor
schedules on these data sets. This is because the
time complexity of C4.5 is rather low (O(n1.22) for
LED O(n’.37) for WAVEFORM, and O(n1.38) for CENSUS)
(cf. the schedule for linear complexity with uniform
priors in Table 2), but these data sets have relatively
large values for T* = N/n,in; specifically, r&sus = 4,
r* - 8.33, and I$,~ = WavefoTm - 50. Adaptive modeling of
the probability of convergence is critical, but apparently
we must devise a more accurate technique if we want to
beat geometric sampling.5

Now we move on to the detection of convergence.
We used LRLS to estimate convergence for adaptive
DP sampling. For these experiments, at each schedule
point, ten samples were taken for convergence estima-
tion, 1 = 10, and convergence was indicated the first
time that the 95% confidence interval on the slope of
the regression line included zero. Table 5 compares the
accuracy of the models built using LRLS convergence
detection, with the accuracy using optimal convergence
detection from above (i.e., it can query the oracle); each
value represents the average of 10 runs where instances
were randomized prior to each run.

LRLS identifies convergence accurately. In most
cases, LRLS correctly identifies nb as the first schedule
point after n,in, and in nearly all other cases conver-
gence is identified in a sample for which nb > n,in. In
no data set was the mean accuracy at estimated con-
vergence statistically distinguishable from the accuracy
on n,in instances, the point of true convergence.

However, LRLS has a large effect on absolute compu-
tation time. The additional sampling and executions of
the induction algorithm create a large (constant) factor
increase in the total computational cost. Table 6 com-
pares the run time with LRLS to running with “free”
convergence detection, to running on the full data set,
and to knowing n,in in advance.

5Experiments with increasingly precise knowledge of n,in
show DP sampling to be less efficient than geometric sampling
even for prior distributions centered on n,;, , if the distributions
are wide. Of course, if the distributions are very narrow, DP
sampling comes very close to SO, the optimal schedule.

30

Data set DP-LRLS DP-Free
LED 73.02 72.91
CENSUS 84.83 85.38
WAVEFORM 76.88 76.36

Table 5: Mean accuracy for DP with LRLS and with
optimal convergence detection

Data set Full DP-LRLS DP-Free Oracle
LED 16.40 11.27 0.56 0.18
CENSUS 16.33 9.22 5.41 2.08
WAVEFORM 425.31 142.92 50.57 22.12

Table 6: Computation times with LRLS and with free
convergence detection

These costs could be reduced by more efficient esti-
mation of convergence. In addition, the costs of running
on the full data set would increase dramatically if N in-
creased, while this would not affect the computational
cost of any form of progressive sampling. Thus, as the
total size of data sets increases, progressive sampling
becomes more attractive.

Our presentation does not highlight all the benefits
of progressive sampling. For example, our analysis as-
sumes that sampling from a large database is instanta-
neous. As this assumption is relaxed, the relative effi-
ciency of progressive sampling becomes better. Progres-
sive sampling can take advantage of data as they arrive,
effectively creating a pipelined induction process. For
standard induction based on slow data access, the CPU
sits idle and waits for the sampling to complete, and
then runs the induction algorithm on the resultant data
set. Progressive sampling can immediately get started
on the first sample points, computing its first estimates
of the learning curve and f(n). Thereafter, sampling
first fills up a test-set buffer, so that when induction
each subset is finished, the test-set buffer (containing
data for the next subset) is used first to estimate the
accuracy. Then the test set buffer can be shifted into
the training buffer, and so on. Moreover, the slower the
sampling, the more work can be done on convergence
detection. With very slow sampling, the efficiency of
progressive sampling will be the same as if n,in were
known a priori.

7 Other related work

The method of Musick et al. [ll] for determining
the best attribute at each decision-tree node can be
seen as an instance of the generic progressive sampling
algorithm shown in figure 2, if we regard each node
of the decision tree as an individual induced model.
Specifically, based on an analysis of information gain

and its statistical properties, they compute an estimate
of the sample size needed to have less than a specified
loss in information. However, because this estimate can
overshoot A min greatly, they then calculate nd for an
efficient arithmetic schedule, and revise the estimate
after executing each schedule point. Other sequential
multi-sample learning methods [14] are degenerate
instances of progressive sampling, typically using fixed
arithmetic schedules and treating convergence detection
simplistically, if at all.

For this paper, we have considered only drawing
random samples from the larger data set. We believe
that the results will generalize to other methods of
sampling, but have not yet studied the general case.
Methods for active sampling, choosing subsequent
samples based upon the models learned previously,
are of particular interest. A classic example of
active sampling is windowing [16], wherein subsequent
sampling chooses instances for which the current model
makes errors. Active sampling changes the learning
curve. For example, on noisy data, windowing learning
curves are notoriously ill behaved: subsequent samples
contain increasing amounts of noise, and performance
often decreases as sampling progresses [5]. It would
be interesting to examine more closely the use of the
techniques outlined above in the context of active
sampling, and the potential synergies.

8 Conclusion

With this work we have made substantial progress to-
ward efficient progressive sampling. We have shown
that if convergence detection can be done very effi-
ciently, then progressive sampling is far better than
learning from all the data, and almost as efficient as
being given the minimum sufficient training set by an
oracle. We have shown that convergence detection
can be done effectively and moderately efficiently. We
have also shown that geometric sampling is remarkably
robust: its efficiency is insensitive to the number of
points in the schedule (unlike arithmetic sampling); it
is asymptotically no worse than knowing the point of
convergence in advance, and in practice it performs as
well as much more complicated adaptive scheduling.

What is left are two well-defined challenges for future
KDD research: increase the efficiency of convergence
detection, and devise an accurate method for estimating
the point of convergence from a partial learning curve.
One of the defining problems of KDD is classifier
induction from massive data sets [14]. The existence of
an efficient progressive sampling procedure would take
a giant step toward solving it.

31

9 Acknowledgements

This research is supported in part by DARPA and
AFOSRF under contract numbers DARPA/AFOSRF
49620-97-l-0485 and DARPAN66001-96-C-8504. The
U.S. Government is authorized to reproduce and dis-
tribute reprints for governmental purposes notwith-
standing any copyright notation hereon. The views and
conclusions contained herein are those of the authors
and should not be interpreted as necessarily represent-
ing the official policies or endorsements either expressed
or implied, of DARPA, AFOSRF or the U.S. Govern-
ment .

References

PI

PI

131

PI

[51

M

VI

PI

PI

BELLMAN, R. E. Dynamic programming. Prince-
ton University Press, 1957.

CATLETT, J. Megainduction: A test flight. In
Proceedings of the Eighth International Workshop
on Machine Learning (1991), Morgan Kaufmann,
pp. 596-599.

C~TLETT, J. Megainduction: Machine learning
on very large databases. PhD thesis, School
of Computer Science, University of Technology,
Sydney, Australia, 1991.

FREY, L. J., AND FISHER, D. H. Modeling de-
cision tree performance with the power law. In
Proceedings of the Seventh International Workshop
on Artificial Intelligence and Statistics (1999),
D. Heckerman and J. Whittaker, Eds., San Fran-
cisco, CA: Morgan Kaufmann.

F~~RNKRANZ, J. Integrative windowing. Journal of
Artificial Intelligence Research 8 (1998), 129-164.

HARRIS-JONES, C., AND HAINES, T. L. Sample
size and misclassification: Is more always better?
Working Paper AMSCAT-WP-97-118, AMS Cen-
ter for Advanced Technologies, 1997.

HAUSSLER, D., KEARNS, M., SEUNG, H. S., AND
TISHBY, N. Rigorous learning curve bounds from
statistical mechanics. Machine Learning 25 (1996),
195-236.

JOHN, G., AND LANGLEY, P. Static versus dy-
namic sampling for data mining. In Proceedings of
the Second International Conference on Knowledge
Discovery and Data Mining (1996), AAAI Press,
pp. 367-370.

KORF, R. Depth-first iterative deepening: An op-
timal admissible tree search. Artificial Intelligence
27 (1985), 97-109.

PO1

WI

WI

[I31

1141

PI

WI

P71

PI

PI

MERZ, C. J., AND MURPHY, P. M. UC1 repos-
itory of machine learning databases. http : //
www.ics.uci.edu/-mlearn/MLRepository.html,
1997.

MUSICK, R., CATLETT, J., AND RUSSELL, S. De-
cision theoretic subsampling for induction on large
databases. In Proceedings of the Tenth Interna-
tional Conference on Machine Learning (San Ma-
teo, CA, 1993), Morgan Kaufmann, pp. 212-219.

OATES, T., AND JENSEN, D. The effects of
training set size on decision tree complexity. In
Machine Learning: Proceedings of the Fourteenth
International Conference (1997), D. Fisher, Ed.,
Morgan Kaufmann, pp. 254-262.

OATES, T., AND JENSEN, D. Large data sets
lead to overly complex models: an explanation
and a solution. In Proceedings of the Fourth
International Conference on Knowledge Discovery
and Data Mining (KDD-99) (1998), R. Agrawal
and P. Stolorz, Eds., Menlo Park, CA: AAAI Press,
pp. 294-298.

PROVOST, F., AND KOLLURI, V. A survey of
methods for scaling up inductive algorithms. Data
Mining and Knowledge Discovery 2 (1999).

PROVOST, F. J. Iterative weakening: Optimal
and near-optimal policies for the selection of search
bias. In Proceedings of the Eleventh National Con-
ference on Artificial Intelligence (749-755, 1993),
AAAI Press, pp. Menlo Park, CA.

QUINLAN, J. Learning efficient classification pro-
cedures and their application to chess endgames. In
Machine Learning: An AI approach, R. Michalski,
C. J., and T. Mitchell, Eds. Morgan Kaufmann.,
Los Altos, CA, 1983.

QUINLAN, J. R. Cd.5: Programs for Machine
Learning. Morgan Kaufmann, San Mateo, Cali-
fornia, 1993.

VALIANT, L. G. A theory of the learnable.
Communications of the ACM 27, 11 (1984), 1134-
1142.

WATKIN, T., RAU, A., AND BIEHL, M. The
statistical mechanics of learning a rule. Reviews
of Modern Physics 65 (1993), 499-556.

32

View publication statsView publication stats

https://www.researchgate.net/publication/2478898

