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Abstract Identifier attributes—very high-dimensional categorical attributes such as partic-
ular product ids or people’s names—rarely are incorporated in statistical modeling. However,
they can play an important role in relational modeling: it may be informative to have com-
municated with a particular set of people or to have purchased a particular set of products. A
key limitation of existing relational modeling techniques is how they aggregate bags (multi-
sets) of values from related entities. The aggregations used by existing methods are simple
summaries of the distributions of features of related entities: e.g., MEAN, MODE, SUM,
or COUNT. This paper’s main contribution is the introduction of aggregation operators that
capture more information about the value distributions, by storing meta-data about value
distributions and referencing this meta-data when aggregating—for example by computing
class-conditional distributional distances. Such aggregations are particularly important for
aggregating values from high-dimensional categorical attributes, for which the simple aggre-
gates provide little information. In the first half of the paper we provide general guidelines
for designing aggregation operators, introduce the new aggregators in the context of the
relational learning system ACORA (Automated Construction of Relational Attributes), and
provide theoretical justification. We also conjecture special properties of identifier attributes,
e.g., they proxy for unobserved attributes and for information deeper in the relationship
network. In the second half of the paper we provide extensive empirical evidence that the
distribution-based aggregators indeed do facilitate modeling with high-dimensional categor-
ical attributes, and in support of the aforementioned conjectures.
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1. Introduction

Predictive modeling often is faced with data including important relationships between
entities. For example, customers engage in transactions which involve products; suspicious
people may make phone calls to the same numbers as other suspicious people. Extending the
traditional “propositional” modeling approaches to account for such relationships introduces
a variety of opportunities and challenges. The focus of this paper is one such challenge—the
integration of information from one-to-many and many-to-many relationships: a customer
may have purchased many products; a person may have called many numbers.

Such n-to-many relationships associate with any particular entity a bag (multiset) of
related entities. Since the ultimate objective of much predictive modeling is to estimate a
single value for a particular quantity of interest, the predictive model must either ignore the
bags of related entities or aggregate information from them.

The aggregation operators used by existing relational modeling approaches typically are
simple summaries of the distributions of features of related entities, e.g., MEAN, MODE,
SUM, or COUNT. These operators may be adequate for some features, but fail miserably
for others. In particular, if the bag consists of values from high-dimensional categorical
attributes, simple aggregates provide little information. Object identifiers are one instance
of high-dimensional categorical attributes, and they are abundant in relational domains since
they are necessary to express the relationships between objects. Traditional propositional
modeling rarely incorporates object identifiers, because they typically hinder generalization
(for example by creating “lookup tables”). However, the identities of related entities can play
an important role in relational modeling: it may be informative to have communicated with
a specific set of people or to have purchased a specific set of products. For example, Fawcett
and Provost (1997) show that incorporating particular called-numbers, location identifiers,
merchant identifiers, etc., can be quite useful for fraud detection.

Consider the following example of a simple relational domain that exhibits such n-to-many
relationships. The domain consists of two tables in a multi-relational database: a target table,
which contains one row for each of a set of target entities, about which some attribute value
will be estimated, and an auxiliary table that contains multiple rows of additional information
about entities related to the target entities. Figure 1 illustrates the case of a customer table
and a transaction table. This simple case is ubiquitous in business applications, such as
customer classification for churn management, direct marketing, fraud detection, etc. In
each, it is important to consider transaction information such as types, amounts, times, and
locations. Traditionally practitioners have manually constructed features before applying
a conventional propositional modeling technique such as logistic regression. This manual
process is time consuming, becomes infeasible for large and complex domains, and rarely
will provide novel and surprising insights.

Relational learning methods address the need for more automation and support of mod-
eling in such domains, including the ability to explore information about the many-to-many
relationship between customers and products. If the modeling objective is to estimate the
likelihood of responding to an offer for a particular book, it may be valuable to incorporate
the specific books previously bought by the customer, as captured by their ISBNs. The
MODE clearly is not suitable to aggregate a bag of ISBNs, since typically books are bought
only once by a particular customer. In addition, this MODE feature would have an extremely
large number of possible values, perhaps far exceeding the number of training examples.
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Fig. 1 Example of a relational classification task consisting of a target table Customer(CID, CLASS) and a
one-to-many relationship to the table Transaction(CID, TYPE, ISBN, PRICE)

We introduce novel aggregators1 that allow learning techniques to to capture informa-
tion from identifiers such as ISBNs. This ability is based on (1) the implicit reduction of
the dimensionality by making (restrictive) assumptions about the number of distributions
from which the values were generated, and (2) the use of distances to class-conditional,
distributional meta-data. Such distances reduce the dimensionality of the model estimation
problem while maintaining discriminability among instances, and they focus explicitly on
discriminative information.

The contributions of this work include:

1. An analysis of principles for developing new aggregation operators (Section 2).
2. The development of a novel method for relational feature construction, based on the fore-

going analysis, which includes novel aggregation operators (Section 3). To our knowledge,
this is the first relational aggregation approach that can be applied generally to categorical
attributes with high cardinality.

3. A theoretical justification of the approach that draws an analogy to the statistical dis-
tinction between random- and fixed-effect modeling, and identifies typical aggregation
assumptions that limit the expressive power of relational models (Section 3.4).

4. A theoretical conjecture (Section 3.5) that the aggregation of identifier attributes can
implicitly support the learning of models from unobserved object properties.

5. An extensive empirical study demonstrating that the novel aggregators indeed can improve
predictive modeling in domains with important high-dimensional categorical attributes,
including a sensitivity analysis of major domain properties (Section 4).

The proposed aggregation methodology can be applied to construct features from var-
ious attribute types and for a variety of modeling tasks. We will focus in this paper on
high-dimensional categorical attributes, and on classification and the estimation of class-
membership probabilities. Unless otherwise specified we will assume binary classification.

1 This paper is an extension of the second half of a prior conference paper Perlich and Provost (2003).
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2. Design principles for aggregation operators

Before we derive a new aggregation approach for categorical attributes with high cardinality,
let us explore the objectives and some potential guidelines for the development of aggregation
operators.2 The objective of aggregation in relational modeling is to provide features that
improve the generalization performance of the model (the ideal feature would discriminate
perfectly between the cases of the two classes). However, feature construction through
aggregation typically occurs in an early stage of modeling, or one far removed from the
estimation of generalization performance (e.g., while following a chain of relations). In
addition, aggregation almost always involves loss of information. Therefore an immediate
concern is to limit the loss of predictive information, or the general loss of information if
predictive information cannot yet be identified.

For instance, one measure of the amount of information loss is the number of aggregate
values relative to the number of possible unique bags. For example for the variable TYPE
in our example, there are fifty-four possible unique, non-empty bags with size less than ten
containing values from {Fiction, Non-Fiction}. Consider two simple aggregation operators:
MODE and COUNT. MODE has two possible aggregate values and COUNT has nine. Both
lose considerable information about the content of the bags, and one might argue that the
general information loss is larger in the case of MODE. In order to limit the loss and to
preserve the ability to discriminate classes later in the process, it desirable to preserve the
ability to discriminate instances:

Principle 1. Aggregations should capture information that discriminates instances.

Although instance discriminability is desirable, it is not sufficient for predictive mod-
eling. It is simple to devise aggregators that involve no apparent information loss. For
the prior example, consider the enumeration of all possible 54 bags or a prime-coding
‘Non-Fiction’= 2,‘Fiction’= 3, where the aggregate value corresponding to a bag is the
product of the primes. A coding approach can be used to express any one-to-many rela-
tionship in a simple feature-vector representation. An arbitrary coding would not be a good
choice for predictive modeling, because it almost surely would obscure the natural similarity
between bags: a bag with 5 ‘Fiction’ and 4 ‘Non-Fiction’ will be just as similar to a bag of 9
‘Fiction’ books as to a bag of 5 ‘Fiction’ and 5 ‘Non-Fiction’ books. In order for aggregation
to produce useful features it must be aligned with the implicitly induced notion of similarity
that the modeling procedure will (try to) take advantage of. In particular, capturing predictive
information requires not just any similarity, but similarity with respect to the learning task
given the (typically Euclidean) modeling space. For example, an ideal predictive numeric
feature would have values with small absolute differences for target cases of the same class
and values with large absolute differences for objects in different classes. This implies that
the aggregates should not be independent of the modeling task; if the class labels were to
change, the constructed features should change as well.

Principle 2. Aggregates should induce a similarity with respect to the learning task, that
facilitates discrimination by grouping together target cases of the same class.

2 Related issues of quantifying the goodness of transformation operators have been raised by Gärtner
et al.(2002) in the context of “good kernels” for structured data.
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Thus, we face a tradeoff between instance discriminability and similarity preservation.
Coding maintains instance discriminability perfectly, but obscures almost certainly the sim-
ilarity. COUNT and MODE on the other hand lose much instance discriminability, but will
assign identical values to bags that are in some sense similar—either to bags of identical
size, or to bags that contain mostly the same element. However, whether or not COUNT or
MODE are predictive will depend on the modeling task. They do not induce a task-specific
similarity as their values are independent of the particular class labels.

Furthermore, since most similarity-preserving operators involve information loss, it might
be advantageous to use multiple operators. A combination of orthogonal features could on
the one hand capture more information and on the other increase the probability that one of
them is discriminative for the specific modeling task.

Principle 3. Various aggregations should be considered, reflecting different notions of
similarity.

For our example, consider the following alternative aggregation. Rather than capturing all
information into a single aggregate, construct 2 attributes, one count for each value ‘Fiction’
and ‘Non-Fiction’. The two counts together maintain the full information. Unfortunately,
constructing counts for all possible values is possible only if the number of values is small
compared to the number of training examples.3

These design principles suggest particular strategies and tactics for aggregation:

� Directly use target (class) values to derive aggregates that already reflect similarity with
respect to the modeling task.

� Use numeric aggregates, since they can better trade off instance discriminability and
similarity.

� Use multiple aggregates to capture different notions of similarity.

We present in Section 3.3 a novel aggregation approach based on these principles, that is
particularly appropriate for high-dimensional categorical variables.

3. Aggregation for relational learning
To provide context for the presentation of new aggregates, and the basis for a comprehen-
sive empirical analysis of aggregation-based attribute construction, we will present briefly
a learning system that can be applied to non-trivial relational domains. ACORA (Auto-
mated Construction of Relational Attributes) is a system that converts a relational domain
into a feature-vector representation using aggregation to construct attributes automatically.
ACORA consists of four nearly independent modules, as shown in Figure 2:

� exploration: constructing bags of related entities using joins and breadth-first search,
� aggregation: transforming bags of objects into single-valued features,

3 Model induction methods suitable for high-dimensional input spaces may confer an advantage for such cases,
as they often do for text. However, the transformation is not trivial. Since the input space is structured, it may
be beneficial to tag values with the relation (chain) linking them to the target variable—author-smith versus
cited-author-smith versus coauthor-smith, etc. Also, for relational problems even producing single-number
aggregations can lead to a large number of features if there are moderately many relation chains to consider.
Alternatively, such methods may be a useful alternative to this paper’s methods for creating aggregation
features: for example, include features representing the classification score based on authors alone, based on
cited-author, based on coauthor, etc.
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Fig. 2 ACORA’s transformation process with four transformation steps: exploration, feature construction,
feature selection, model estimation, and prediction. The first two (exploration and feature construction)
transform the originally relational task (multiple tables with one-to-many relationships) into a corresponding
propositional task (feature-vector representation)

� feature selection, and
� model estimation.

Figure 3 outlines the ACORA algorithm in pseudocode. Since the focus of this work is on
aggregation we will concentrate on distribution-based aggregation assuming bags of values.
Producing such bags of related objects requires the construction of a domain graph where
the nodes represent the tables and the edges capture links between tables through identifiers;
this is explained in more detail in Appendix A. Following the aggregation, a feature selection
procedure identifies valuable features for the modeling task, and in the final step ACORA
estimates a classification model and makes predictions. Feature selection, model estimation,
and prediction use conventional approaches including logistic regression, the decision tree
learner C4.5 (Quinlan, 1993), and naive Bayes using WEKA (Witten & Frank, 1999), and
are not discussed further in this paper.

The main idea behind the feature construction is to store meta-data on the (class-
conditional) distributions of attributes’ values, and then to use vector distances to compare
the bags of values associated with particular cases to these distributional meta-data. In order
to describe this precisely, we first must introduce some formal notation.

3.1. Setup and notation

A relational probability estimation (or classification) task is defined by a set of tables Q, R,
. . . (denoted by uppercase letters), including a particular target table T in a multi-relational
database RDB. Every table R contains rows r (denoted in lowercase). The rows t of T are the
target entities or target cases. Each table R has nR fields and a row r represents the vector
of field-values r = (r. f1, . . . , r.fnR) for a particular entity, which we will shorten to r =
(r.1, . . . , r.nR). Thus, R.f denotes a field variable in table R, and r.f denotes the value of R.f
for entity r.

The domain or type, D(R.j), of field j in table R is either R in the case of numeric
attributes, or the set of values that a categorical attribute R.j can assume; in cases where this
is not known a priori, we define D(R. j) = ⋃

e∈R r. j , the set of values that are observed in
field j across all rows r of table R. The cardinality |D(R. j)| of a categorical attribute is
equal to the number of distinct values that the attribute can take.

One particular attribute T.c in the target table T is the class label for which a model is to
be learned given all the information in RDB. We will consider binary classification where
D(T .c) = {0, 1}. The main distinction between relational and propositional model induction
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Fig. 3 Pseudocode of the ACORA algorithm

is the additional information in tables of RDB other than T. This additional information can
be associated with instances in the target table via keys. The conventional definition of a key
requires a categorical attribute R.k to be unique across all rows in table R (the cardinality of
the attribute is equal to the number of rows in the table). A link to information in another
table Q is established if that key R.k also appears as Q.l in another table Q, where it would
be called a foreign key. This definition of a foreign key requires an equality relational ER
between the types of pairs of attributes E R(D(R.k), D(Q.l)). We will assume that for the
categorical attributes in RDB this equality relation is provided.

More fundamentally, keys are used to express semantic links between the real entities that
are modeled in the RDB. In order to capture these links, in addition to entities’ attributes we
also must record an identifier for each entity. Although database keys often are true identifiers
(e.g., social security numbers), all identifiers are not necessarily keys in a particular RDB.
This can be caused either by a lack of normalization of the database or by certain information
not being stored in the database. For example consider domains where no information is
provided for an entity beyond a “name”: shortnames of people in chatrooms, names of people
transcribed from captured telephone conversations, email addresses of contributors in news
groups. In such cases RDB may have a table to capture the relations between entities, but not
a table for the properties of the entity. This would violate the formal definition of key, since

Springer



72 Mach Learn (2006) 62: 65–105

there is no table where the identifier is unique. An example of an identifier that is not a key
is the ISBN field in the transaction table in Figure 1.

Without semantic information about the particular domain it is impossible to say whether
a particular field reflects the identity of some real entity. A heuristic definition of identifiers
can be based on the cardinality of its type (or an identical type under ER):

Definition 1. R.k is an identifier if D(R.k) �= R and
∃ Q.l with a cardinality ≥ IMIN and E R(D(R.k), D(Q.l))

Informally, a identifier is a categorical attribute where the cardinality of its type or some
equivalent type is larger than some constant IMIN. Note that for many domains the distinction
between keys and identifiers will be irrelevant because both definitions capture the same set
of attributes. If IMIN is at most the size of the smallest table, the keys will be a subset of
the identifiers. The use of identifiers to link objects in a database (still assuming an equality
relation between pairs of fields) will therefore provide at least as much information or more
than the use of keys. The choice of IMIN is bounded from above by st, the size of the target
table.4

A direct relationship between entities is a pair of identifier fields (Q.l, R.k) of equivalent
type. For the modeling task we are mostly interested in entities that are related directly or
indirectly to the cases in the target table T. Indirect relationships are captured by chains of
identifier pairs such that the chain starts from the target table T and the second attribute of a
pair is in the same table as the first attribute of the next pair: (T .n, Q.m).(Q.l, R.k) . . . . The
bag B of objects related to a case t in T under a relationship (T.n, R.k) is defined as BR(t) =
{r |t .n = r.k} and the bag of related values of field R.j is defined asBR. j (t) = {r. j |t .n = r.k}.
For simplicity of notation we present this definition only for direct relationships and do not
even index the bag by the the full details of the underlying relationship, but only by the final
table; the extension to indirect relationships is straightforward. The reader should generally
keep in mind that B is not defined globally but for a specific relationship chain.

3.2. Simple aggregation

In order to apply traditional induction techniques, aggregation operators are needed to
incorporate information from one-to-many relationships as in our example in Figure 1,
joining on CID. The challenge in this example is the aggregation of the ISBN attribute,
which we assume has cardinality larger than IMIN. An aggregation operator A provides a
mapping from bags of values BR. j (t) to R, to N, or to the original type of the field D(R.j).
Simple aggregation operators for bags of categorical attributes are the COUNT, value counts
for all possible values v ∈ D(R.j), and the MODE. The COUNT = |BR. j (t)| captures only
the size of the bag. COUNTv for a particular value v is the number of times value v appeared
in the bag BR. j (t), and the MODE is the value v that appears most often in BR. j (t). In
the example, MODE(BTransaction.TYPE(C2, 1)) = ‘Non-Fiction’ for the bag of values from the
TYPE field in the Transaction table, related to the case ‘C2,1’ in the customer table through
the CID identifier.

None of these simple aggregates is appropriate for high-cardinality fields. For example,
since most customers buy a book only once, for bags of ISBNs there will be no well-defined

4 There is no clear lower limit, but very small choices (e.g., below 50) for IMIN are likely to have a detrimental
effect on model estimation, in terms of run time, and potentially also in terms of accuracy because too many
irrelevant relationships will be considered.
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MODE. The number of counts (all equal to either zero or one) would equal the cardinality
of the identifier’s domain, and could exceed the number of training examples by orders of
magnitude—leading to overfitting.

More generally, and independently of our definition of identifiers, any categorical attribute
with high cardinality poses a problem for aggregation. This has been recognized implicitly in
prior work (see Section 5), but rarely addressed explicitly. Some relational learning systems
(Krogel & Wrobel, 2001) only consider attributes with cardinality of less than n, typically
below 50; Woznica et al. (2004) define standard attributes excluding keys, and many ILP
(Muggleton & DeRaedt, 1994) systems require the explicit identification of the categorical
values that may be considered for equality tests, leaving the selection to the user.

3.3. Aggregation using distributional meta-data

Aggregation summarizes a set or a distribution of values. As we will describe in detail,
ACORA creates reference summaries, and saves them as “meta-data” about the unconditional
or class-conditional distributions, against which to compare summaries of the values related
to particular cases.

Although its use is not as widespread as in statistical hypothesis testing, distributional
meta-data are not foreign to machine learning. Naive Bayes stores class-conditional likeli-
hoods for each attribute. In fraud detection, distributions of normal activity have been stored,
to produce variables indicating deviations from the norm (Fawcett & Provost, 1997). Ag-
gregates like the mean and the standard deviation of related numeric values also summarize
the underlying distribution; under the assumption of normality those two aggregates fully
describe the distribution. Even the MODE of a categorical variable is a crude summary of
the underlying distribution (i.e., the expected value). In the case of categorical attributes, the
distribution can be described by the likelihoods—the counts for each value normalized by
the bag size. So all these aggregators attempt to characterize for each bag the distribution
from which its values were drawn. Ultimately the classification model using such features
tries to find differences in the distributions.

Estimating a distribution from each bag of categorical values of a high-cardinality attribute
is problematic. The number of parameters (likelihoods) for each distribution is equal to the
attribute’s cardinality minus one. Unless the bag of related entities is significantly larger
than the cardinality, the estimated likelihoods will not be reliable: the number of parameters
often will exceed the size of the bag.5 We make the simplifying assumption that all objects
related to any positive target case were drawn from the same distribution. We therefore only
estimate two distributions, rather than one for each target case.

Table 1 presents the result of the join (on CID) of the two tables in our example database
(step 7 in the pseudocode). Consider the bag BTransaction(C2, 1) of related transactions for
customer C2:

〈(C2,Non-Fiction,231,12.99), (C2,Non-Fiction,523,9.49), (C2,Fiction,856,4.99)〉

The objective of an aggregation operator A is to convert such a bag of related entities
into a single value. In step 8 of the pseudocode, this bag of feature vectors is split by at-
tribute into three bags BTYPE(C2, 1) = 〈Non-Fiction,Non-Fiction,Fiction〉, BISBN(C2, 1) =

5 The same problem of too few observations can arise for numeric attributes, if the normality assumption is
rejected and one tries to estimate arbitrary distributions (e.g., through Gaussian mixture models).
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Table 1 Result of the join of the Customer and Transaction tables on CID for the example classification
task in Figure 1. For each target entity (C1 to C4) the one-to-many relationship can result in multiple entries
(e.g., three for C2 and four for C4) highlighting the necessity of aggregation

CID CLASS TYPE ISBN PRICE

C1 0 Fiction 523 9.49
C2 1 Non-fiction 231 12.99
C2 1 Non-fiction 523 9.49
C2 1 fiction 856 4.99
C3 1 Non-iction 231 12.99
C4 0 Fiction 673 7.99
C4 0 Fiction 475 10.49
C4 0 Fiction 856 4.99
C4 0 Non-fiction 937 8.99

〈231,523,856〉, and BPRICE(C2, 1) = 〈12.99,9.49,4.99〉. Aggregating each bag of attributes
separately brings into play an assumption of class-conditional independence between at-
tributes of related entities (Perlich & Provost, 2003). ACORA may apply one or more
aggregation operators to each bag. Simple operators that are applicable to bags of numeric
attributes such as BTransactions.PRICE, or BPRICE for short, include the SUM = ∑

c ∈ BPRICE or
the M E AN = SU M/|BPRICE|. Consider on the other hand BISBN(C2, 1) = 〈231,523,856〉.
ISBN is an example of a bag of values of an attribute with high cardinality, where the
MODE is not meaningful because the bag does not contain a “most common” element. The
high cardinality also prevents the construction of counts for each value, because counts for
each possible ISBN would result in a very sparse feature vector with a length equal to the
cardinality of the attribute (often much larger than the number of training examples), which
would be unsuitable for model induction.

3.3.1. Reference vectors and distributions

The motivation for the new aggregation operators presented in the sequel is twofold: (1) to
deal with bags of high-cardinality categorical attributes for which no satisfactory aggregation
operators are available, and (2) to develop aggregation operators that satisfy the principles
outlined in Section 2 in order ultimately to improve predictive performance. Note that even
if applicable, the simple aggregates do not satisfy all the principles.

The main idea is to collapse the cardinality of the attribute by applying a vector distance
to a vector representation both of the bag of related values and of a reference distribution
(or reference bag). Reference bags/distributions are constructed as follows. Let us define a
case vector CVR.j(t) as the vector representation of a bag of categorical values BR. j (t) related
to target case t. Specifically, given an ordering, N : D(R. j) → N, and a particular value v

of field R.j, the value of CVR.j(t) at position N(v ) is equal to the number of occurrences of
value v in the bag.

CVR. j (t)[N (v)] = COUNTv (1)

For example CVTransaction TYPE(C2,1) = [2,1] forBTransaction.TYPE(C2, 1) = 〈Non-Fiction,Non-
Fiction,Fiction〉, under the order N(Non-Fiction) = 1, N(Fiction) = 2.

Based on the case vectors in the training data, the algorithm constructs two class-
conditional reference vectors RV0 and RV1 and an unconditional reference vector RV∗:
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Table 2 “Case vector” representation of the bags of the TYPE and ISBN attributes for each target case
(C1 to C4) after the exploration in Table 1. The vector components denote the counts of how often a value
appeared in entities related to the target case

TYPE Non-fiction Fiction

CV (C1, 0) 0 1
CV (C2, 1) 2 1
CV (C3, 1) 1 0
CV (C4, 0) 1 3

ISBN 231 475 523 673 856 937

CV (C1, 0) 0 0 1 0 0 0
CV (C2, 1) 1 0 1 0 1 0
CV (C3, 1) 1 0 0 0 0 0
CV (C4, 0) 0 1 0 1 1 1

RV 0
R. j [N (v)] = 1

s0

∑

{t |t.c=0}
CVR. j (t)[N (v)] (2)

RV 1
R. j [N (v)] = 1

s1

∑

{t |t.c=1}
CVR. j (t)[N (v)] (3)

RV ∗
R. j [N (v)] = 1

s1 + s0

∑

t

CVR. j (t)[N (v)] (4)

where s0 is the number of negative target cases and s1 is the number of positive target
cases, and [k] denotes the kth component of the vector. RVRj

1[N(v)] is the average num-
ber of occurrences of value v related to a positive target case (t.c = 1) and RVR.j

0[N(v)]
the average number of occurrences of a value v related to a negative target case (t.c =
0). RVR.j [N(v)] is the average number of occurrences of the value related to any target
case. We also compute distribution vectors DV0, DV1 and DV* that approximate the
class-conditional and unconditional distributions from which the data would have been
drawn:

DV 0
R. j [N (v)] = 1

∑
{t |t.c=0} bt

∑

{t |t.c=0}
CVR. j (t)[N (v)] (5)

DV 1
R. j [N (v)] = 1

∑
{t |t.c=1} bt

∑

{t |t.c=1}
CVR. j (t)[N (v)] (6)

DV ∗
R. j [N (v)] = 1

∑
{t∈T bt }

∑

{t∈T }
CVR. j (t)[N (v)] (7)

where bt is the number of values related to target case t (the size of bag BR. j (t)). For the
example, the case vectors for TYPE and ISBN are shown in Table 2 and the reference vectors
and distributions in Table 3. Extend the pseudocode of step 8:
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Table 3 Reference vectors and reference distributions for the TYPE and ISBN attributes for objects in Table
1:class-conditional positive DV1, class-conditional negative DV0, and unconditional distribution DV∗. The
reference vectors and reference distributions capture the same information, but with different normalizations:
division by the number of target cases or by the number of related entities

TYPE Non-fiction Fiction

RV1 1.5 0.5
RV0 0.5 2.0
RV∗ 1.0 1.25
DV1 0.75 0.25
DV0 0.20 0.80
DV∗ 0.44 0.55

ISBN 231 475 523 673 856 937

DV1 0.5 0 0.25 0 0.25 0
DV0 0 0.2 0.2 0.2 0.2 0.2
DV∗ 0.22 0.11 0.22 0.11 0.22 0.11
RV1 1 0 0.5 0 0.5 0
RV0 0 0.5 0.5 0.5 0.5 0.5
RV∗ 0.5 0.25 0.5 0.25 0.5 0.25

3.3.2. Distances to reference vectors and distributions

The aggregation in step 11 of ACORA’s pseudocode now can take advantage of the reference
vectors by applying different vector distances between a case vector and a reference vector.
An aggregation was defined as a mapping from a bag of values to a single value. We now
define vector-distance aggregates of categorical values of attribute R.j as:

A(BR. j (t)) = DIST(RV, CVR. j (t)) (8)

where DIST can be any vector distance and RV ∈ {RV 0
R. j , RV 1

R. j , RV ∗
R. j , DV 0

R. j ,

DV 1
R. j , DV ∗

R. j }. ACORA offers a number of distances measures for these aggregations:
likelihood, Euclidean, cosine, edit, and Mahalanobis, since capturing different notions of
distance is one of the principles from Section 2. In the case of cosine distance the normal-
ization (RV0 vs. DV0) is irrelevant, since cosine normalizes by the vector length.

Consider the result of step 12 of the algorithm on our example (Table 4), where two new
attributes are appended to the original feature vector in the target table, using cosine distance
to RV1 for the bags of the TYPE and the ISBN attributes. Both features appear highly
predictive (of course the predictive power has to be evaluated in terms of out-of-sample
performance for test cases that were not used to construct RV0 and RV1).

Observe the properties of these operators in light of the principles derived in Section 2: (1)
they are task-specific if RV is one of the class-conditional reference vectors; (2) they compress
the information from categorical attributes of high dimensionality into single numeric values,
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Table 4 Feature table F after appending the two new cosine distance features from bags of the TYPE and
ISBN variables to the class-conditional positive reference bag. The new features show a strong correlation
with the class label

t.CID t.CLASS Cosine(RV1
TYPE, CVTYPE(t)) Cosine(RV1

ISBN, CVISBN(t))

C1 0 0.316 0.408
C2 1 0.989 0.942
C3 1 0.948 0.816
C4 0 0.601 0.204

and (3) they can capture different notions of similarity if multiple vector distance measures
are used. If the class labels change, the features also will, because the estimates of the
distributions will differ. If there were indeed two different class-conditional distributions,
the case vectors of positive examples would be expected to have smaller distances to the
positive than to the negative class-conditional distribution. The new feature (distance to the
positive class-conditional distribution) will thereby reflect a strong similarity with respect
to the task. This can be observed in Table 4. Only if the two class distributions are indeed
identical should the difference in the distances be close to zero.

3.3.3. Simpler but related aggregate features

An alternative solution to deal with bags of values from high-cardinality attributes is to
select a smaller subset of values for which the counts are used as new features. This poses
the question of a suitable criterion for selection, and the distributional meta-data can be
brought to bear. For example, a simple selection criterion is high overall frequency of a
value. ACORA constructs in addition to the vector-distance features, the top n values v for
which DV*(N(v)) was largest.

However, the principles in Section 2 suggest choosing the most discriminative values
based on the target prediction task. Specifically, ACORA uses the class-conditional reference
vectors RV0 and RV1 (or the distributions DV0 and DV1) to select those that show the largest
absolute values for RV1−RV0. For example, the most discriminative TYPE value in the
example is ‘Fiction’ with a difference of 1.5 in Table 3.

For numeric attributes, ACORA provides straightforward aggregates: MIN, MAX, SUM,
MEAN, and VARIANCE It also discretizes numeric attributes (equal-frequency binning)
and estimates class-conditional distributions and distances, similar to the procedure for
categorical attributes described in Section 3.3.1. This aggregation makes no prior assumptions
about the distributions (e.g., normality) and can capture arbitrary numeric densities. We do
not assess this capability in this paper.

3.4. A Bayesian justification: A relational fixed-effect model

We suggested distance-based aggregates to address a particular problem: the aggregation of
categorical variables of high cardinality. The empirical results in Section 4 provide support
that distribution-based aggregates can indeed condense information from such attributes
and improve generalization performance significantly over alternative aggregates, such as
counts for the n most common values. Aside from empirical evidence of superior modeling
performance, we now show that the distance-based aggregation operators can be derived as
components of a “relational fixed-effect model” with a Bayesian foundation.
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Statistical estimation contrasts random-effect models with fixed-effect models
(DerSimonian & Laird, 1986). In a random-effect model, the model parameters are not
assumed to be constant but instead to be drawn randomly from a distribution for different
observations. An analogy can be drawn to the difference between our aggregates and the
traditional simple aggregates from Section 3.2. Simple aggregates estimate parameters from
a distribution for each bag. This is similar to a random effect model. Our aggregates on the
other hand can be seen as a relational fixed-effect model: we assume the existence of only
two fixed distributions, one for each of the two classes.6 Under this assumption the number
of parameters decreases by a factor of n/2 where n is the number of training examples.
More specifically, we define a relational fixed-effect model with the assumption that all
bags of objects related to positive target cases are sampled from one distribution DV1 and
all objects related to negative target cases are drawn from another distribution DV0. Thus it
may become possible to compute reliable estimates of reference distributions DV1 and DV0,
even in the case of categorical attributes of high cardinality, by combining all bags related to
positive/negative cases to estimate DV1/DV0.

In a relational context, a target object t is described not only by its own attributes. It also
has an identifier (CID in our example) that maps into bags of related objects from different
background tables. Given a target object t with a feature vector7 and a set of bags of related
objects from different relationships (t.1, . . . , t.nt ,BR(t), . . . ,BQ(t)), via Bayes’ rule one
can express the probability of class c as

P(c |t) = P(c |t.1, . . . , t.nt ,BR(t), . . . ,BQ(t)) (9)

= P(t.1, . . . , t.nt ,BR(t), . . . ,BQ(t)|c) ∗ P(c)/P(t). (10)

Making the familiar assumption of class-conditional independence of the attributes t1, . . .

,tnt and of all bags B∗ of related objects allows rewriting the above expression as

P(c|t) =
∏

i

P(t.i | c) ∗
∏

B
P(B∗(t) | c) ∗ P(c)/P(t). (11)

Assuming that the elements r of each particular bag of related objects BR(t) are drawn
independently, we can rewrite the probability of observing that bag as

P(BR | c) =
∏

r∈BR (t)

P(r | c). (12)

Assuming again class-conditional independence of all attributes r1,. . .. . .. . .,rnp of all related
entities r, we can finally estimate the class-conditional probability of a bag of values from
the training data as

P(BR(t) | c) =
∏

r∈BR (t)

∗
∏

j

P(r. j | c). (13)

6 More than two distributions would be used for multiclass problems, or could be generated via domain
knowledge or clustering.
7 Excluding the class label and the identifier.
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Switching the order of the product this term can be rewritten as a product over all attributes
over all samples:

P(BR(t) | c) =
∏

j

∗
∏

r. j∈BR. j (t)

P(r. j | c). (14)

This second part of the product has a clear probabilistic interpretation: it is the non-
normalized (ignoring P(c) and P(t)) probability of observing the bag of values BR. j (t) of
attribute R.j given the class c This non-normalized conditional probability or likelihood can
be seen as a particular choice of vector distance8 and can be estimated in the previous notation
as:

L H (DV c, CV ) = P(BR. j (t) | c) =
∏

r. j∈BR. j (t)

P(r. j |c) =
∏

i

DV c[i]CV [i] (15)

where i ranges over the set of possible values for the bagged attribute.
Thus, for the particular choice of likelihood (LH) as the distance function, ACORA’s

aggregation approach can be given a theoretical foundation within a general relational
Bayesian framework similar to that of Flach and Lachiche (2004).

This derivation not only provides one theoretical justification for our more general
framework of using (multiple) vector distances in combination with class-conditional
distribution estimates. It also highlights the three inherent assumptions of the approach:
(1) class-conditional independence between attributes (and identifiers) of the target cases,
(2) class-conditional independence between related entities, and (3) class-conditional inde-
pendence between the attributes of related objects. Strong violations are likely to decrease
the predictive performance. It is straightforward to extend the expressiveness of ACORA
to weaken the first assumption, by (for example) combining pairs of feature values prior to
aggregation. The second assumption, of random draws, is more fundamental to aggregation
in general and less easily addressed. Relaxing this assumption will come typically at a price:
modeling will become increasingly prone to overfitting because the search space expands
rapidly. This calls for strong constraints on the search space, as typically are provided for
ILP systems in the declarative language bias. We discussed this tradeoff previously (Perlich
& Provost, 2003) in the context of noisy domains.

3.5. Implications for learning from identifier attributes

We show in our empirical results in Section 4 the importance of including aggregates of
identifiers. The following discussion is an analysis of the special properties of identifiers
and why aggregates of identifiers and in particular additive distances like cosine can achieve
such performance improvements.

Identifiers are categorical attributes with high cardinality. In our example problem we
have two such attributes: CID, the identifier of customers, and ISBN, the identifier of books.
The task of classifying customers based on the target table T clearly calls for the removal of
the unique CID attribute prior to model induction, because it cannot generalize. However, the
identifiers of related objects may be predictive out-of-sample. For example, buying Jacques
Pépin’s latest book may increase the estimated likelihood that the customer would join a

8 Actually a similarity.
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cookbook club; in a different domain, calling from a particular cell site (location) may
greatly increase the likelihood of fraud. Such identifiers may be shared across multiple target
cases that are related to the same objects (e.g., customers who bought the same book). The
corresponding increase in the effective number of appearances of the related-object identifier
attribute R.j, such as ISBN, allows the estimation of class-conditional probabilities P(r.j|c).

Beyond the immediate relevance of particular identities (e.g., Pépin’s book), identifier
attributes have a special property: they represent implicitly all characteristics of an object.
Indeed, the identity of a related object (a particular cell site) can be more important than any set
of available attributes describing that object. This has important implications for modeling:
using identifier attributes can overcome the limitations of class-conditional independence in
Eq. (12) and even permits learning from unobserved characteristics.

An object identifier Rj like ISBN stands for all characteristics of the an object. If observed,
these characteristics would appear in another table S as attributes (S.1, . . . , S.ns). Technically,
there exists a functional mapping9 F that maps the identifier to a set of values: F(r.j) → (s.1,
. . . ,s.ns). We can express the joint class-conditional probability (without the independence
assumption) of a particular object feature-vector without the identifier field as the sum of
the class-conditional probabilities of all objects (represented by their identifiers r.j) with the
same feature vector:

P(s.1, . . . , s.ns | c) =
∑

{r. j |F(r. j)=(s.1,...,s.nr )}
P(r. j | c) (16)

If F is an isomorphism (i.e., no two objects have the same feature vector) the sum vanishes
and P(s.1, . . . , s.ns | c) = P(r. j | c). Estimating P(r. j | c) therefore provides information
about the joint probability of all its attributes (s1, . . .,s ns).

A similar argument can be made for an unobserved attribute s.u (e.g., association with an
organization engaging in fraud). In fact, it may be the case that no attribute of the object s
was observed and no table S was recorded, as is the case for ISBN in our example. There
is nevertheless the dependency F′(r.j) → su, for some function F′, and the relevant class-
conditional probability is equal to the sum over all identifiers with the same (unobserved)
value:

P(s.u | c) =
∑

{r. j |F ′(r. j)=s.u}
P(r. j | c). (17)

Given that s.u is not observable, it is impossible to decide which elements belong into the
sum. If however s.u is a perfect predictor—i.e., every value of su appears only for objects
related to target cases of one class c—the class-conditional probability P(r. j | c) will be
non-zero for only one class c In that case the restricted sum in Equ (17) is equal to the total
sum over the class-conditional probabilities of all identifier values:

9 This function F does not need to be known; it is sufficient that it exists.
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∑

{r |F ′(r. j)=s.u}
P(r. j | c) =

∑

r

P(r. j | c). (18)

Note that the total sum over the class-conditional probabilities of all related identifier values
now equals the cosine distance between DVc and a special case vector CVsu that corresponds
to a bag containing all identifiers with value su prior to normalization10 by vector length,
because DV c[N (r. j)] is an estimate of P(r. j | c) and CV [N (r. j)] is typically 1 or 0 for
identifier attributes such as ISBN. The cosine distance for a particular bag CV(t) is a biased11

estimate of P(s.u|c) since the bag will typically only consist of a subset of all identifiers with
value s.u

cosine(DV c
R. j , CV ) = 1

||CV ||
∑

i

DV c
R. j [i] ∗ CVR. j [i] (19)

So far we have assumed a perfect predictor attribute S.u. The overlap between the two
class-conditional distributions DV0 and DV1 of the identifier is a measure of the pre-
dictive power of Su and also how strongly the total sum in the cosine distance deviates
from the correct restricted sum in Eq. (17). The relationship between the class-conditional
probability of an unobserved attribute and the cosine distance on the identifier may be
the reason why the cosine distance performs better than likelihood in the experiments in
Section 4.

Although this view is promising, issues remain. It maybe hard to estimate P(r.j|c) due
to the lack of sufficient data (it is also much harder to estimate the joint rather than a set
of independent distributions). We often do not need to estimate the entire joint distribution
because the true concept is an unknown class-conditional dependence between only a few
attributes. Finally the degree of overlap between the two class-conditional distributions DV0

and DV1 determines how effectively we can learn from unobserved attributes. Nevertheless,
the ability to account for identifiers through aggregation can extend the expressive power
significantly as shown empirically in Section 4.

Identifiers have other interesting properties. Identities may often be the cause of relational
autocorrelation (Jensen & Neville, 2002). Because a customer bought the first part of the
trilogy, he now wants to read how the story continues. Given such a concept, we expect
to see autocorrelation between customers who are linked through books. In addition to the
identifier proxying for all object characteristics of immediately related entities (e.g., the
authors of a book), it also contains the implicit information about all other objects linked to it
(e.g., all the other books written by the same author). An identifier therefore may introduce a
“natural” Markov barrier that reduces or eliminates the need to extend the search for related
entities further than to the direct neighbors.12 We present some evidence of this phenomenon
in Section 4.3.3.

10 The effect of normalization can be neglected, since the length of DVc is 1 and the length of CV is the same
for both the class-conditional positive and class-conditional negative cosine distances.
11 We underestimate P(s.u|c) as a function of the size of the bag. The smaller the bag, the more elements of
the sum are 0 and the larger the bias.
12 In cases with strong class-label autocorrelation, such a barrier often can be provided by class labels of
related instances (Jensen et al., 2004; Macskassy & Provost, 2004).
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Table 5 Summary of the properties of the eight domains, including the tables, their sizes, their attributes,
types, and the training and test sizes used in the main experiments. C(y) is the cardinality of a categorical
attribute and D(y) = R identifies numeric attributes

Domain Table: Size Attribute type description Size

XOR T: 10000 C(tid) = 10000, C(c) = 2 Train: 8000
O: 55000 C(oid) = 1000, C(tid) = 10000 Test: 2000

AND T: 10000 C(tid) = 10000, C(c) = 2 Train: 8000
O: 55000 C(oid) = 1000, C(tid) = 10000 Test: 2000

Fraud T: 100000 C(tid) = 100000 Train: 50000
R: 1551000 C(tid) = 100000, C(tid) = 100000 Test: 50000

KDD T: 59600 C(tid) = 59600, C(c) = 2 Train: 8000
TR: 146800 C(oid) = 490, C(tid) = 59600 Test: 2000

IPO T: 2790 C(tid) = 2790, C(e) = 6, C(sic) = 415, C(c) = 2 Train: 2000
D(d,s,p,r) = R Test: 800

H: 3650 C(tid) = 2790, C(bid) = 490
U: 2700 C(tid) = 2790, C(bid) = 490

COOC T: 1860 C(tid) = 1860, C(c) = 2 Train: 1000
R: 50600 C(tid) = 1860, C(tid) = 1860 Test: 800

CORA T: 4200 C(tid) = 4200, C(c) = 2 Train: 3000
A: 9300 C(tid) = 4200, C(aid) = 4000 Test: 1000
R: 91000 C(tid) = 4200, C(tid) = 35000

EBook T: 19000 C(tid) = 19000, C(c,b,m,k) = 2, D(a,y,e) = R Train: 8000
TR: 54500 C(oid) = 22800, C(tid) = 19000, D(p) = R, C(c) = 5 Test: 2000

4. Empirical results

After describing the experimental setup, Section 4.3 presents empirical evidence in support
of our main claims regarding the generalization performance of the new aggregates. Then
we present a sensitivity analysis of the factors influencing the results (Section 4.4).

4.1. Domains

Our experiments are based on eight relational domains that are described in more detail in
Appendix B. They typical are transaction or networked-entity domains with predominantly
categorical attributes of high cardinality. The first two domains (XOR and AND) are artificial,
and were designed to illustrate simple cases where the concepts are based on (combinations
of) unobserved attributes. Variations of these domains are also used for the sensitivity
analysis later. Fraud is also a synthetic domain, designed to represent a real-world problem
(telecommunications fraud detection), where target-object identifiers (particular telephone
numbers) have been used in practice for classification (Fawcett & Provost, 1997; Cortes
et al., 2002). The remaining domains include data from real-world domains that satisfy the
criteria of having interconnected entities. An overview of the number of tables, the number
of objects, and the attribute types is given in Table 5. The equality relation of the types is
implied by identical attribute names.
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4.2. Methodology

Our main objective is to demonstrate that distribution-based vector distances for aggregation
generalize when simple aggregates like MODE or COUNTv for all values are inapplicable
or inadequate. In order to provide a solid baseline we extend these simple aggregates for use
in the presence of attributes with high cardinality: ACORA constructs COUNTv for the 10
most common values (an extended MODE based on the meta-data) and counts for all values
if the number of distinct values is at most 50, as suggested by Krogel and Wrobel (2003).
ACORA generally includes an attribute for each bag representing the bag size as well as all
original attributes from the target table.
Feature construction. Table 6 summarizes the different aggregation methods. ACORA uses
50% of the training set for the estimation of class-conditional reference vectors and the
other 50% for model estimation. The model estimation cannot be done on the same data set
that was used for construction, since the use of the target during construction would lead to
overestimation of the predictive performance. We also include distances from bags to the
unconditional distribution (estimates calculated on the full training set). Unless otherwise
noted, for the experiments the stopping criterion for the exploration is depth = 1, meaning
for these domains that each background table is used once. The cutoff for identifier attributes
IMIN was set to 400.
Model estimation. We use WEKA’s logistic regression (Witten & Frank, 1999) to estimate
probabilities of class membership from all features. Using decision trees (including the
differences of distances as suggested in Section 4.3.1) did not change the relative performance
between different aggregation methods significantly, but generally performed worse than
logistic regression. We did not use feature selection for the presented results; feature selection
did not change the relative performance, since for these runs the number of constructed
features remains relatively small.
Evaluation. The generalization performance is evaluated in terms of the AUC: area under the
ROC curve (Bradley, 1997). All results represent out-of-sample generalization performance
on test sets averaged over 10 runs. The objects in the target table for each run are split
randomly into a training set and a test set (cf., Table 5). We show error bars of ± one standard
deviation in the figures and include the standard deviation in the tables in parentheses.

4.3. Main results

We now analyze the relative generalization performance of different aggregation opera-
tors. Our main claim that class-conditional, distribution-based aggregates add generalization
power to classification with high-dimensional categorical variables was motivated by three
arguments that are considered in the sequel:

� Target-dependent aggregates, such as vector distances to class-conditional reference vec-
tors, exhibit task-specific similarity;

� This task-specific similarity, in combination with the instance discriminability conferred
by using numeric distances, improves generalization performance;

� Aggregating based on vector distances allows learning from identifier attributes, which hold
certain special properties (viz., proxying for: unseen features, interdependent features, and
information farther away in the network). Coalescing information from many identifiers
can improve over including only particular identifiers.
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Table 6 Summary of aggregation operators used in the experiments, grouped by type: counts for particular
categorical values, different vector distances, combinations of vector distances to conditional or unconditional
reference distributions, where t denotes a target case

Method Description

COUNTS ACORA constructs count features for all possible categorical values if the number of values
is less than 50. In particular this excludes all key attributes.

MCC Counts for the 10 most common categorical values (values with largest entries in
unconditional reference bag B*). MCC can be applied to all categorical attributes
including identifiers.

MDC Counts for the 10 most discriminative categorical values (Section 3.3.3) defined as the
values with the largest absolute difference in the vector B1−B0. MDC can be applied to all
categorical attributes including identifiers.

Cosine Cosine(DV1, CV(t)), Cosine(DV0, CV(t))

Mahalanobis Mahalanobis(RV1, CV(t)), Mahalanobis(RV0, CV(t))

Euclidean Euclidean(RV1, CV(t)), Euclidean(RV0, CV(t))

Likelihood Likelihood(DV1, CV(t)), Likelihood(DV0, CV(t))

UCVD All unconditional vector distances:
Cosine(DVˆ*, CV(t)), Mahalanobis(DVˆ*, CV(t)), Euclidean(DVˆ*, CV(t)),
Likelihood(DV, CV(t))

CCVD All class-conditional vector distances:
Cosine(DV1, CV(t)), Cosine(DV0, CV(t)), Euclidean(DV1, CV(t)), Euclidean(DV0, CV(t)),
Mahalanobis(DV1, CV(t)), Mahalanobis(DV0, CV(t)), Likelihood(DV1, CV(t)),
Likelihood(DV0, CV(t))

DCCVD All differences of class-conditional vector distances:
Cosine(DV1, CV(t)) – Cosine(DV0, CV(t)),
Mahalanobis(DV1, CV(t)) – Mahalanobis(DV0, CV(t)),
Euclidean(DV1, CV(t)) – Euclidean(DV0, CV(t)),
Likelihood(DV1, CV(t))– Likelihood(DV0, CV(t))

We also argued that using multiple aggregates can improve generalization performance.
As we will see, this point is not supported as strongly by the experimental results.

4.3.1. Task-specific similarity
We argued in Section 2 that task-specific aggregates have the potential to identify discrim-
inative information because they exhibit task-specific similarity (making positive instances
of related bags similar to each other). For the XOR problem, Figure 4 shows on the left the
two-dimensional instance space defined by using as attributes two class-conditional aggre-
gations of identifiers of related entities: the cosine distance to the positive distribution and
the cosine distance to the negative distribution. Although the positive target objects each has
a different bag of identifiers, when using the constructed attributes the positive objects are
similar to each other (left-upper half) and the negative are similar to each other (right-lower
half).

Importantly, it also is clear from the figure that although positive target cases have on
average a larger cosine distance to the positive class-conditional distribution (they are mostly
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on the left side of the plot) than negative cases, only the combination of both features becomes
very discriminative between the two classes. In fact, there is an approximate linear decision
boundary (the diagonal), which implies that logistic regression would be a good choice for
model induction. For a decision tree, with axis-parallel splits, the difference between the two
distances is a better feature (Perlich, 2005b). Figure 4 shows on the right the distribution of
the differences for cases of both classes with an optimal splitting point around zero.

Figure 5 on the other hand shows the feature space of unconditional cosine and Euclidean
distances. These task-independent features do not provide discriminative information. Posi-
tive and negative cases are mixed, and in particular are not more similar to each other than
to cases of the opposite class.

4.3.2. Comparative generalization performance
We now show that the use of aggregations based on (distances to) distributional meta-data
adds generalization power over traditional aggregations (and over our extensions to the
traditional methods). Table 7 presents the generalization performance (AUC) of the different
aggregation strategies across all domains. First, consider the second and third columns. These
correspond to the (extended) traditional aggregations: value-count features (COUNTS) and
most-common-value features (MCC). Because of the high dimensionality of the categorical
attributes, COUNTS features are inapplicable in most of the domains. (Entries with a *
denote cases where the COUNTS aggregation was not applicable because all categorical
attributes had too many distinct values and no features were constructed.) For IPO, the
AUC nevertheless is greater than 0.5 because in this domain the target table had attributes for
propositional modeling. Ebook is the only domain where COUNTS aggregates are applicable
and add generalizability.

The fourth through sixth columns correspond to the construction of different sorts of
distribution-based aggregations (respectively, unconditional distances, class-conditional dis-

Fig. 4 In the left plot, the two-dimensional feature space (XOR domain) of the class-conditional cosine
distances for the identifiers of related entities shows (i) high instance-discriminability (different target cases
are assigned unique points in this space) and (ii) task-specific similarity, where negative cases are grouped on
the lower right of the identity line and positive target cases on the upper right. This similarity leads to a high
class-discriminability using the identity line as decision boundary. In the right plot, after a transformation of
the feature space that takes the difference between class-conditional cosine distances, the distribution of the
new feature shows a good class separation. This transformation is of particular value for model induction
using decision trees, which make axis-parallel splits, and for feature selection in order to ensure that the joint
predictive information of both distances is preserved
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Table 7 Comparison of generalization performance (AUC) for different aggregation strategies (see Table 6
for a description). Entries with * denote cases where the COUNTS aggregation was not applicable because all
categorical attributes had too many distinct values. The standard deviation across 10 experiments is included
in parenthesis

Domain COUNTS MCC UCVD CCVD MDC MDC&CCVD

XOR 0.5* 0.51 (0.004) 0.62 (0.02) 0.92 (0.008) 0.51 (0.004) 0.92 (0.008)
AND 0.5∗ 0.52 (0.012) 0.65 (0.02) 0.92 (0.006) 0.52 (0.007) 0.92 (0.05)
Kohavi 0.5∗ 0.71 (0.022) 0.72 (0.024) 0.85 (0.025) 0.84 (0.044) 0.85 (0.025)
IPO 0.70* (0.023) 0.77 (0.02) 0.75 (0.021) 0.79 (0.03) 0.79 (0.003) 0.82 (0.01)
CORA 0.5∗ 0.74 (0.018) 0.67 (0.008) 0.97 (0.003) 0.76 (0.008) 0.97 (0.006)
COOC 0.5∗ 0.63 (0.016) 0.57 (0.017) 0.78 (0.02) 0.63 (0.02) 0.80 (0.04)
EBook 0.716 (0.024) 0.79 (0.011) 0.88 (0.015) 0.95 (0.024) 0.94 (0.018) 0.96 (0.013)
Fraud 0.5∗ 0.49 (0.005) 0.74 (0.020) 0.87 (0.028) 0.51 (0.006) 0.87 (0.021)

tances, and most-discriminative counts). For all domains the aggregation of high-dimensional
categorical attributes using distances to class-conditional distributions (CCVD) leads to mod-
els with relatively high generalization performance (AUC scores between 0.78 and 0.97).
In all but one case (the tie with MDC on IPO) the features based on class-conditional
distributions perform better—often significantly better—than those based on unconditional
distributions and those based on most-discriminative counts. Finally, combining MDC and
CCVD (reported in the seventh column) improved the performance over CCVD only slightly
on three domains (COOC, EBook and IPO).

Recall the two main components of the design of the CCVD aggregations: their task-
specific (class-conditional) nature and their incorporation of information from many values
(using distribution distances). The consistently superior performance of class-conditional
distribution distances over unconditional distribution distances highlights the importance of
task-specific aggregation. This also is seen clearly in the often-improved performance of
counts of most-discriminative values (MDC) over counts of most-common values (MCC).
The consistently superior performance of CCVD over MDC highlights the importance of
considering the entire distributions, more fully satisfying the design principles.

Fig. 5 The two-dimensional
feature space of the unconditional
cosine and Euclidean distances
still shows high
instance-discriminability, but
lacks task-specific similarity.
Positive cases are as similar to
negative cases as they are to other
positive cases. As a result these
features have no discriminative
power
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Fig. 6 Ranking performance (AUC) on the CORA (left) and IPO (right) domains as a function of the number
of joins for two different training sizes (400 and 3000). Beyond depth = 1 (see Figure 12 in Appendix A)
no new discriminative information is found for CORA, because the depth-one identifier attributes capture
information about all objects related further away. For IPO, the maximum performance is reached on the big
dataset after 4 joins (corresponding to depth = 2). The smaller training size shows performance gains for
further joins mostly due to improvements of the quality of the estimates of the class-conditional distributions,
because larger search depth increases the bag size and thereby the effective number of observations

For the artificial domains and the synthetic fraud domain, neither type of distribution-
based count (MCC nor MDC) provides any predictive power. This will be explained in
Section 4.4.2. For the COOC domain, on the other hand, the most common tickers related
to technology firms and the most discriminative tickers related to technology firms happen
to be the same: GE, MSFT, CSCO, IBM, AOL, INTC, ORCL, AMD, LU, SUNW.

Finally, although we conjectured when discussing the design criteria (Section 2) that using
multiple distance measures would be valuable, we find only weak support. Combining MDC
and CCVD improves slightly. CCVD itself combines various distance measures; comparing
it with the performance of its component measures alone (not shown here) shows that for
the most part the combination only improves slightly over the overall best single distance
measure (cosine). However, CCVD is more robust across domains than any individual
distance measure, yielding the highest accuracy on 6 of 8 domains, and only underperforming
the individual best13 by a percentage point or two on the other two domains. Contrast this
with likelihood, which underperformed by a large margin on every domain.

In summary, reflecting on our design principles, the experimental evidence supports the
conclusion that the good ranking performance across the eight domains is due mostly to
the combination of target-specificity and instance discriminability, while maintaining a low
dimensionality. MDC also reduces dimensionality (although not as strongly) and is target-
specific, but instance discriminability is lower than for cosine distance. The other principle of
using multiple aggregates with different similarities seems to be helpful, but less important.

4.3.3. Learning from identifier attributes

In our collection of domains, identifiers are the main source of information. The only domain
with related entities with additional information besides the identifier is EBook. Table 7 not
only shows the superiority of feature construction based on class-conditional distributions,
but also that it is commonly possible to build highly predictive relational models from
identifiers. To our knowledge, this has not been shown before in any comprehensive study. It

13 Cosine on COOC; Euclidean on Fraud.
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is important because identifiers often are used only to identify relationships between entities
but not directly as features when building predictive models.

We argue in Section 3.5 that identifiers can allow learning from concepts that violate
class-conditional independence and from unobserved properties. Our results provide some
support for this claim. In the synthetic domains AND and XOR the true concept was a
function of two unobserved attributes x, y, Therefore that AUC = 0.92 for CCVD for both
AND and XOR strongly supports the claim that aggregating identifiers allows learning from
unobserved attributes. Even if the the values are provided, these domains violate the model’s
assumption of class-conditional independence. Consider, in addition to the performances in
Table 7, the performance of COUNTS if the two attributes x and y were included: 0.5 for
XOR and 0.97 for AND. For XOR the independent information about the bags of x’s and
y’s is not at all informative about the class. For AND on the other hand, observing a large
number of 1’s for x and also a large number of 1’s for y increases the probability that the
majority of related entities have both x = 1 and y = 1 (the true concept). The XOR domain
provides an example where the aggregation of identifier attributes mitigates the effect of
violations of class-conditional independence.

For further evidence we examine the Fraud domain. The underlying concept is that
fraudulent accounts call numbers that were previously called by (now known) fraudulent
accounts. A model should perform well if it identifies accounts that have two-hop-away
fraudulent neighbors. Therefore, ACORA should construct a feature at search depth two,
aggregating the class labels of those entities. However, so far we have restricted the search to
depth 1. The results in Table 7 therefore indicate that it is possible to classify fraud already
from the direct neighbors—similar to the “dialed-digit” monitor reported as a state-of-the-art
fraud detection method (Fawcett & Provost, 1997). Exploring the two-hop-away neighbors
and their class labels increases the ranking performance only minimally—to 0.89 compared
to 0.87. This suggests that identifiers proxy not only for the (perhaps latent) properties of the
object, but also for the other objects to which it is related.

Figure 6 shows the ranking performance of class-conditional cosine distances as a function
of the number of joins for two different training sizes on the CORA and IPO domains. The
quality of the estimates of the distributions should be lower for small training sizes and might
therefore profit more from a deeper exploration, which we see for IPO. For the larger training
size, the IPO curve flattens out after 4 joins, supporting the claim that (with enough training
data) the identifiers proxy for deeper-linked information. Even for the smaller training size,
CORA needs no more than two joins. Traversing two joins obtains information about a
paper’s authors and its particular citations (cf., the search graph in Appendix A, but not
about the classes of those citations (for which a join back to Paper would be necessary). Just
knowing the author(s) and the particular papers cited apparently is enough—which can be
compared to the success that has been achieved by drawing inferences based on the classes
of linked papers (Taskar et al., 2001; Macskassy & Provost, 2004).

4.4. Sensitivity analysis

There are several properties of domains that have the potential to affect the ability of
distribution-based aggregations to capture discriminative information. In particular, noise in
class labels, the number and connectivity distribution of related objects, and the amount of
data available. We now present several brief studies illustrating limitations on the applicability
of the methods (as well as areas of superior performance).
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Fig. 7 Performance degradation for the AND domain with x and y observed, as a function of the amount of
0/1 class noise. In the left plot both training and test sets were corrupted; the right plot shows results using a
noisy training set and clean test set, as a measure of the ability to recover the true concept

4.4.1. Noise

By class noise we mean that the target classes are not known with perfect accuracy. Class noise
will disrupt the accurate estimation of the class-conditional distributions, and therefore may
be suspected to lead to degraded performance. For example, consider the use of identifiers to
stand in for unobserved attributes (as argued above). In the presence of class noise, using the
identifiers may perform considerably worse than if the attributes had been known—because
the dimensionality of the unobserved attributes is much smaller and therefore there are fewer
parameters to estimate from the noisy data.

We can illustrate this with the AND domain, if we allow x and y to be observed (in
contrast with the main results). Recall from the discussion of the identifier attributes above
that aggregation based on COUNTS considering x and y values of related entities performed
very well (AUC = 0.97). Aggregation using only the identifiers of related attributes (using
CCVD) did not perform quite as well (AUC = 0.92), but nevertheless performed remarkably
given that x and y were hidden. Now, consider how these results change as class noise
increases. The left plot in Figure 7 compares the sensitivity of CCVD and COUNTS to
class-noise as a function of the noise level (p percent of training and test class labels are
reassigned randomly from a uniform distribution). Both aggregation methods appear to be
equally noise sensitive: the performance degradations track closely.

However, such a performance reduction has two components. First, the ability of the
learner to recognize the underlying concept diminishes. Second, with increasing noise, the
class labels in the test set are increasingly unpredictable. These effects can be separated by
running the same experiment, except testing on uncorrupted (noise-free) data. The right plot
of Figure 7 shows that COUNTS (provided x and y) indeed are able to learn the original
concept with only minor degradation, despite up to 40% class noise. CCVD on the other
hand shows a significant drop in performance. For COUNTS, even if 40% of the labels
are potentially distorted, the other 60% still provide sufficient information to recognize the
concept that larger counts of x and y are associated with positive class labels. If x and y
are observed, the COUNTS aggregation can combine information about x and y from all
bags and therefore is not very sensitive to the random variation. On the other hand, for
CCVD every bag contains information about a different set of identifiers. Each identifier
appears only a few times, so the estimates of the class-conditional distributions are subject
to significant variance errors. When using the identifiers as the predictors, noise in the class
labels acts like noise in the predictors themselves; however, the x’s and y’s remain clean.
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Fig. 8 Performance sensitivity on the AND domain to attribute recording noise for related entities. Since
CCVD does not use the values of x and y (unobserved properties) it shows no performance decrease

In contrast, if attribute noise (misrecorded values of x and y) is present, we would expect
the aggregates of identifier attributes to fare much better. Indeed, Figure 8 shows that attribute
noise affects only the COUNTS aggregates since CCVD does not use the noisy observations
of x and y.

We have no firm basis to say which type of noise is more likely under what circumstances,
but in cases where reliable attribute values are hard to get (e.g., because they are distorted, as
with illegal activities) distribution-based aggregates can be a better choice. For example, for
commercial fraud, it is often much less costly to obscure attributes than to change identities
frequently. Learning from identifiers does not require that the identity be true (e.g., that Peter
Worthington is really Peter Worthington), but only that multiple actions can be related to the
same person.

4.4.2. Relational structure

Another potential point of sensitivity of the distribution-based aggregation methods is the
structure of the relationships among entities. For example, for AND and XOR, uniform
distributions were used to assign related entities to target entities (each potentially related
entity is equally likely to be chosen). In real-world domains (as we see in ours), it is often
the case that the linkages are skewed—both that the degrees of nodes vary widely,14 and also
that there is preferential attachment to particular entities (e.g., hubs on the Web).

To investigate s4nsitivity to skew, we simulate new versions of the XOR task with different
skews of the relation distributions. Technically, skew (the third moment of a distribution) is
only well defined for numeric distributions as a measure of symmetry. There is no symmetry
for categorical distributions due to the lack of order. Thus, when we speak of a skewed relation
distribution we mean that the probability of an entity to be related to some particular target

14 Jensen et al. (2003). discuss degree disparity and potential problems that it can cause for relational modeling.
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Table 8 Measures of the skewedness (differences in the likelihood of a entity to be related to some target
case) of the relational structure: counts of the links to the 5 most commonly linked entities, normalized by
the number of target cases, and in the last column the number of links to the least common entity. A uniform
distribution (XOR 1) has low counts for the most common and a high count for the least common. As the
skew increases (largest for XOR 4) the most common appearances increase and the least common decrease.

Domain 1st 2nd 3rd 4th 5th Least Common

XOR 1 0.0082 0.0076 0.0076 0.0075 0.0075 35
XOR 2 0.1712 0.0754 0.0567 0.0567 0.0500 17
XOR 3 0.5533 0.1387 0.0942 0.0757 0.0705 8
XOR 4 0.9909 0.1859 0.1258 0.0945 0.0773 5

Table 9 Ranking performance (AUC) on the XOR domain for uniform distribution (XOR 1) and highly
skewed distribution (XOR 4), including standard deviations across 10 experiments

Domain COUNTS MCC UCVD CCVD MDC MDC&CCVD

XOR 1 0.53 (0.018) 0.51 (0.02) 0.62 (0.02) 0.92 (0.008) 0.51 (0.004) 0.92 (0.008)
XOR 4 0.54 (0.02) 0.49 (0.04) 0.71 (0.012) 0.78 (0.007) 0.75 (0.011) 0.86 (0.007)

case can differ significantly across entities. Unfortunately this cannot be quantified easily as
in the numeric case of a third moment. Table 8 quantifies the skew of four different relation
distributions in terms of the numbers of occurrences of the 5 most commonly related entities,
normalized by the number of target objects (10000). The last column shows how often the
least common value appeared. As the skew increases, the values for the 5 most common
entities increase and the value of the least common appearance decreases. XOR1 represents
the uniform distribution; XOR 4 is extremely skewed (99% of the target cases are linked to
the most-common object). Table 9 compares the performances of the various aggregations
on XOR 1 and XOR 4. For the strongly skewed data, earlier comparative conclusions remain
the same with the exception of worse performance of the class-conditional distributions
(CCVD), much better performance of the most discriminative values (MDC), and a strong
relative improvement of combining the two. The performance of the combination is driven
by the predictive information captured in MDC.

The reason for the improvement of MDC is the large overlap of a few related entities. There
are a few discriminative values (identifiers of particular objects with or without the XOR) that
due to the skew appear in many training and generalization bags. For a uniform distribution,
the class-conditional information for a particular value only provides information for a very
small set of test cases that are also related to this value. The reduced performance of CCVD
is a combination of two effects, the training size and the skew. Figure 9 shows the effects of
the skew (see Table 8) in combination with the training size.

Observe the interesting pattern: for stronger skew, we see better comparative performance
for small training sizes, but (relatively) worse performance for large training sizes. The
learning curves range from a steep gain for the no-skew uniform distribution to an almost
flat learning curve for highly skewed relation distributions. The reason for this pattern is the
difference in the amount of useful information available to the attribute construction process.
With strong skew, even small training sets are sufficient to capture the information of the
common related entities. This information is also very predictive for the test cases since they
also are dominantly related to these same entities. However, as the training size increases
little new information becomes available about the less-often related entities (because the
skew works both ways). With enough training data, a uniform distribution provides in total
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Fig. 9 Interaction effect of skew of relationship distribution and training size on ranking performance for the
XOR domain. A stronger skew provides more useful information early, but the marginal value of additional
training examples is lower

more information because the marginal information for each additional training case is larger
(cf., the “Least Common” column in Table 8). The relatively low performance (compared
with the uniform case) for XOR4 of CCVD in Table 9 is a result of the large training size in
combination with a high skew.

4.4.3. Domain characteristics and performance with few training data

The results in Table 7 use a large portion of the domain for training. The training size is
of particular concern for aggregation based on distributional meta-data because of the large
number of parameters to be estimated for the class-conditional distributions, and also because
only part of the training data can be used for model induction and the rest must be reserved
for estimating these parameters. The number of parameters is equal to the number of distinct
values, for our domains: 10000 for XOR and AND, 490 for KDD, 490 for IPO, 35000 for
CORA, and 1860 for COOC. We now will examine generalization performance with very
small training sets (250 examples).

Besides the amount of training data, there are various other characteristics of learning tasks
that are important for assessing the applicability of different learning techniques, such as
inherent discriminability, the number of features, the skew of the marginal class distribution
(the class “prior”), and others (Brazdil et al., 1994; Perlich et al., 2003). Relational domains
have additional characteristics; particularly important in our case are two: the skew in the
relationship distribution and the average size of bags of related values. We already have
shown that strong skew can improve performance with small training sets. The size of the
bags determines the number of effective observations for the estimation of P(t.id | c). Also
directly important is the marginal class distribution, which determines the relative quality of
the estimated positive and negative class-conditional distributions. For example, if only one
percent of the target cases are positive, very few observations are available for P(tid|1) and
many for P(t.id | 0); such class skew can be problematic if the minority class is much better
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Table 10 Performance (AUC) using cosine distance with small training sets (250 examples) and interaction
with skew (1st and Least Common, and where the latter equals 1 the number of values that appeared only
once), unconditional prior of class 1, and average bag size

Domain 1st Least common Prior 1 Bag size AUC

Fraud 0.0005 1:666 0.01 20 0.48
XOR 1 0.0082 35 0.4 5 0.60
AND 0.0080 35 0.1 5 0.65
KDD 0.0609 1:14 0.06 3 0.74
IPO 0.1352 1:192 0.55 2 0.74
Cooc 0.183 1:616 0.27 26 0.78
Ebook 0.16 1:5854 0.06 28 0.84
CORA 0.0775 1:21460 0.32 20 0.90

defined (“customers who ...”) than the majority class (“everyone else”), as is often the case.
Table 10 presents these three factors for all eight domains, and the ranking performance
(AUC) with small training sets (250 training cases) using class-conditional cosine distances.
The first two columns show the skew. The table rows are ordered by increasing generalization
performance.

We infer that the excellent performance on the CORA domain is a result of a relatively
high prior (0.32), large bags (average of 20) and strong relation skew. Of the total of 35000
possible values, 21460 appear in only one bag—the estimate of P(t.id | c) for these values
therefore is irrelevant, and the effective number of parameters to be estimated is much
lower than 35000. In particular the number of distinct values that appear in at least 10
bags is only 1169. The Ebook domain although having a much lower prior has good small-
training-size performance due to a strong skew and large bags (in addition to a high inherent
discriminability, as shown by the impressive results on the large training set in Table 7).
AND and XOR suffer mostly from the uniform distribution of related objects as shown in
Section 4.4.2 in addition to a small bag size. The lowest small-training-size performance
is in the Fraud domain: the model does not provide any ranking ability at all. The reason
is the combination of a very low prior of only 1 percent and a uniform distribution (by
construction).

The upshot of these sensitivity analyzes is a clarification of the conditions under which
the attributes constructed based on vector distances to class-conditional distributions will
be more or less effective. The class skew, the relationship skew, and the amount of training
data affect whether there will be enough (effective) training cases to estimate the class-
conditional distributions accurately. Additionally, the relationship skew determines how
important it will be to estimate the class-conditional distributions well (in the presence of
techniques like MDC, which get more effective with stronger relation skew).

4.5. Comparison to other relational learners

We do not report a comprehensive study comparing ACORA to a wide variety of statistical
relational modeling approaches (e.g., Koller & Pfeffer, 1998; Neville et al., 2003a; Popescul
& Ungar, 2003). We conjecture that these new aggregators ought to improve other relational
learners as well. Indeed, except for the methods (such as PRMs) that include collective
inferencing, ACORA is capable of approximating the other methods through appropriate
choices of aggregators and model induction methods. They all follow a transformation
approach that constructs features from the relational representation and then induces a
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Table 11 Accuracy comparison with logic-based relational classifiers (FOIL, Tilde, Lime, Progol), target
features (TF), and using no relational information (Prop) as a function of training size on the IPO domain

Size Prop FOIL TILDE Lime Progol CCVD

250 0.649 0.645 0.646 0.568 0.594 0.713
500 0.650 0.664 0.628 0.563 0.558 0.78

1000 0.662 0.658 0.630 0.530 0.530 0.79
2000 0.681 0.671 0.650 0.512 0.541 0.79

propositional model from the new features. There are, of course, exceptions. For example,
RELAGGS (Krogel & Wrobel, 2001) would be outside of ACORA’s expressive power since
it combines Boolean conditions and aggregation and can form more complex aggregations
(cf., hierarchy of aggregation complexity described by (Perlich & Provost, 2003).

More importantly, the domains used in this paper (with the exception of IPO and EBooks)
simply are not suitable for any of the above systems. To our knowledge, none has the ability to
aggregate high-dimensional categorical attributes automatically, and without those attributes
only the few attributes in EBook and IPO and the known class labels remain.

It is possible to compare classification accuracy with logic-based systems such as FOIL,
but the problem remains: such systems require the identification of constants that may be
used for equality tests in the model. Without the identifier attributes, they too would have no
information except for the few attributes in EBook and IPO. To illustrate, we compare (on
the IPO domain) ACORA to four logic-based relational learners including FOIL (Quinlan
& Cameron-Jones, 1993), TILDE (Blockeel & Raedt, 1998), Lime (McCreath, 1999), and
Progol (Muggleton, 2001). Since ILP systems typically (with the exception of TILDE) only
predict the class, not the probability of class membership, we compare in Table 11 the
accuracy as a function of training size. We also include as a reference point the classification
performance of a propositional logistic model without any background knowledge (Prop).
ACORA uses a stopping criteria of depth = 3. We did not provide any additional (intentional)
background knowledge beyond the facts in the database. We supplied declarative language
bias for TILDE, Lime, and Progol (as required). For these results, the bank identifiers were
not included as model constants.

The results in Table 11 demonstrate that the logic-based systems simply are not applicable
to this domain. The class-conditional distribution features (CCVD) improve substantially
over using no relational information at all (Prop), so there indeed is important relational
information to consider. The ILP systems FOIL and TILDE never perform significantly
better than using no relational information, and Progol and Lime often do substantially
worse.

Given that we excluded bank identifiers from the permissible constraints for equality
tests, there was no attribute in the related objects that any of the ILP methods could have
used. Allowing all constants including identifiers to be used for equality tests is similar to
constructing count aggregates for all values. However, given the extreme increase in run
times we were only able to run this experiment using TILDE. Since TILDE is able to predict
probabilities using the class frequencies at the leaves, we can compare (in Table 12) its AUC
to our results from above.15 Based on these results we must conclude that except for the
EBook and the IPO domain, TILDE could not generalize a classification model from the

15 On the IPO domain TILDE improved also in terms of accuracy over the performance without banks in
Table 11 from 0.65 to 0.753.
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Table 12 Comparison of generalization performance (AUC) for different aggregation strategies (see Table 6
for a description). Entries with * denote cases where the COUNTS aggregation was not applicable because all
categorical attributes had too many distinct values. The standard deviation across 10 experiments is included
in parenthesis

Domain COUNTS Tilde CCVD MCC

XOR 0.5∗ 0.5 (0) 0.92 (0.008) 0.51 (0.004)
AND 0.5∗ 0.5 (0) 0.92 (0.006) 0.52 (0.012)
Kohavi 0.5∗ 0.5 (0) 0.85 (0.025) 0.71 (0.022)
IPO 0.70* (0.023) 0.76 (0.28) 0.79 (0.03) 0.77 (0.02)
CORA 0.5∗ 0.5 (0) 0.97 (0.003) 0.74 (0.018)
COOC 0.5∗ 0.5 (0) 0.78 (0.02) 0.63 (0.016)
EBook 0.716 (0.024) 0.83 (0) 0.95 (0.024) 0.79 (0.011)
Fraud 0.5∗ 0.5 (0) 0.87 (0.028) 0.49 (0.005)

Fig. 10 Comparison of classification accuracy of ACORA using class-conditional distributions against a
Probabilistic Relational Model (PRM) and a Simple Relational Classifier (SRC) on the CORA domain as a
function of training size

provided identifier attributes. Note that both domains IPO and EBook also show relatively
good performance of MCC. This suggests that there are a few identifier values that are
both predictive and relatively frequent. If the discriminative power of a particular value or its
frequency was too low, TILDE did not use it. This highlights again that the ability to coalesce
information across multiple identifier values is necessary to learn predictive models.

Figure 10 shows that using identifier attributes would likely have improved other pub-
lished statistical relational learning approaches as well. For the Cora domain, the figure
shows classification accuracies as a function of training size. ACORA estimates seven sep-
arate binary classification models using class-conditional distributions for each of the seven
classes and predicts the final class with the highest probability score across the seven model
predictions. The figure compares ACORA to prior published results by (Taskar et al., 2001)
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using Probabilistic Relational Models (PRM, Koller & Pfeffer, 1998), based on both text
and relational information, a Simple Relational Classifier (SRC) by Macskassy and Provost
(2003) that assumes strong autocorrelation in the class labels (specifically, assuming that
documents from a particular field will dominantly cite previously published papers in the
same field), and uses relaxation labeling to estimate unknown classes, and wvRN (Macskassy
& Provost, 2004), a later version of SRC. ACORA using identifier attributes (the particular
papers) and target features dominates the comparison, even for very small training sets. The
main advantage that ACORA has over the PRM is the ability to extract information from
the identifier attributes of authors and papers. The PRM uses the identifiers to construct its
skeleton, but does not include them explicitly (does not estimate their distributions) in the
model.

A further indicator of ACORA’s strong performance on difficult and noisy domains
in comparison to other relational learning approaches was its winning entry at the 2005
ILP Challenge (Perlich, 2005a). The task was the classification of yeast genes into various
functional classes. The model analysis showed that the functional class of very similar genes
along with the identity of similar proteins were the strongest indicators of protein function.

5. Related work

There has been no focused work within relational learning on the role of identifiers as infor-
mation carriers. There are three main reasons: (1) a historical reluctance within propositional
learning to use them because they cannot generalize; (2) the huge parameter space implied
by using identifiers as conventional categorical values, which typically is not supported by
sufficient data (potentially leading to overfitting and excessive run time), and (3) the com-
monly assumed objective of making predictions in a “different world” where none of the
training objects exist, but only objects with similar attributes.

Aggregation has been identified as a fundamental problem for relational learning from
real-world data (Goldberg & Senator, 1995), however machine learning research has con-
sidered only a limited set of aggregation operators. Statistical relational learning often treats
aggregation as a preprocessing step that is independent of the model estimation process.
Inductive Logic Programming (Muggleton & DeRaedt, 1994) also typically considers only a
special sort of aggregation for one-to-many relationships—existential quantification—which
is an integral part of the search through the model space.

Propositionalization (e.g., Knobbe et al., 2001; Krogel & Wrobel, 2001; Krogel & Wrobel,
2003) has long recognized the essential role of aggregation in relational modeling, focusing
specifically on the effect of aggregation choices and parameters, and yielding promising
empirical results on noisy real-world domains. The numeric aggregates used by Knobbe
et al., (2001) outperform the ILP systems FOIL (Quinlan & Cameron-Jones, 1993), Tilde
(Blockeel & Raedt, 1998), and Progol (Muggleton, 2001) on a noisy financial task (PKDD-
CUP 2000). Krogel and Wrobel (2001, 2003) show similar results on the financial task
and a customer-classification problem (ECML 1998 discovery challenge) in comparison to
Progol and Dinus (Lavrač & Ďzeroski,1994), a logic-based propositionalization approach.
Similar work by Krogel et al. (2003) presents an empirical comparison of Boolean and
numeric aggregation in propositionalization approaches across multiple domains, including
synthetic and domains with low noise; however their results are inconclusive. Previous
results (Perlich & Provost, 2003) indicate that logic-based relational learning and logic-based
propositionalization perform poorly on a noisy domain compared to numeric aggregation.
They also discuss theoretically the implications of various assumptions and aggregation
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choices on the expressive power of resulting classification models and show empirically that
the choice of aggregation operator can have a much stronger impact on the resultant model’s
generalization performance than the choice of the model induction method.

Distance-based relational approaches (Kirsten et al., 2000) use simple aggregates such as
MIN to aggregate distances between two bags of values. A first step estimates the distances
between all possible pairs of objects (one element from each bag) and a second step aggregates
all distances through MIN. The recent convergence of relational learning and kernel methods
has produced a variety of kernels for structured data, see for instance the paper by Gärtner
(2003). Structured kernels estimate distances between complex objects and typically are
tailored towards a particular domain. This distance estimation also involves aggregation and
often uses sums.

Statistical relational learning approaches (Neville et al., 2003c; Jensen & Getoor, 2003)
include network models as well as upgrades of propositional models (e.g., Probabilistic
Relational Models (Koller & Pfeffer, 1998; Taskar et al., 2002), Relational Bayesian Classifier
(Neville et al., 2003b), Relational Probability Trees16 (Neville et al., 2003a)). They typically
draw from a set of simple numeric aggregation operators (MIN, MAX, SUM, MEAN for
numerical attributes and MODE and COUNTS for categorical attributes with few possible
values) or aggregate by creating Boolean features (e.g., Structural Logistic Regression by
Popescul et al. (2002) and Naive Bayes with ILP by Pompe and Kononenko (1995)). Krogel
and Wrobel (2001) and Knobbe et al. (2001) to our knowledge were the first to suggest the
combination of such numerical aggregates and FOL clauses to propositionalize relational
problems automatically.

Besides special purpose methods (e.g., recency and frequency for direct marketing) only
a few new aggregation-based feature construction methods have been proposed. Craven
and Slattery (2001) use naive Bayes in combination with FOIL to construct features for
hypertext classification.Perlich and Provost (2003) use vector distances and class-conditional
distributions for noisy relational domains with high-dimensional categorical attributes. (This
paper describes an extension of that work.) Flach and Lachiche (2004) develop a general
Bayesian framework that is closely related to our analysis in Section 3.4, but apply it only
to normal attributes with limited cardinality. Although they do not learn from identifiers,
Slattery and Mitchell 2000) present a method that takes advantage of the identity of hub
pages in a test set (and the fact that they point to many objects of the same class). This can be
viewed as a form of collective inference (Jensen et al., 2004) which also (implicitly) reasons
based on information about particular nodes.

Theoretical work outside of relational modeling investigates the extension of relational
algebra (Özsoyoǵlu et al., 1987) through aggregation; however it does not suggest new
operators. Libkin and L. Wong (1994) analyze the expressive power of relational languages
with bag aggregates, based on a count operator and Boolean comparison (sufficient to express
the common aggregates like MODE and MAX). This might prove to be an interesting starting
point for theoretical work on the expressiveness of relational models.

Traditional work on constructive induction (CI, Michalski, 1983) stressed the importance
of the relationship between induction and representation and the intertwined search for a
good representation. CI focused initially on the capability of “formulating new descriptors”
from a given set of original attributes using general or domain-specific constructive operators
like AND, OR, MINUS, DIVIDE, etc. Wnek and Michalski (1993) extended the definition

16 Relational Probability Trees are an example of a technique that uses simple aggregation operators, but
chooses them dynamically in the context of building a specific tree.
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of CI to include any change in the representation space while still focusing on propositional
reformulations. Under the new definition, propositionalization and aggregation can be seen
as CI for relational domains as pointed out by Kietz and Morik (1994), Morik (1999), and
Kramer et al. (2001) for logic-based approaches.

6. Conclusion

The empirical analysis shows that ACORA’s distribution-based aggregators facilitate learn-
ing (using traditional logistic regression) in domains where to-be-classified entities are linked
to other entities. As we highlight in the analysis, ACORA can excel even when the only in-
formation available for classification is the collection of identifiers of linked entities. Most
existing relational learning systems are not equipped to handle object identifiers. ACORA
computes class-conditional distributions of linked object identifiers (or other attribute val-
ues), and for each to-be-classified instance creates new features by computing distances from
these distributions to the particular values linked to the instance.

These new features satisfy the design principles laid out in Section 2: they discriminate
instances well, because they yield fine-grained (continuous) values; they induce a similarity
with respect to the task, because they are based on class-conditional distributions, and they
can capture different notions of similarity by using different distance measures. The results
also show that the choice of aggregation can have a significant effect on modeling ability.
In many of the domains in the analysis, traditional aggregations simply were not applicable.
Other distribution-based aggregators used by ACORA, such as binary features indicating a
connection to (i) a very common individual object or (ii) a highly discriminative individual
object, also facilitate learning in these relational domains. However, generally they are not
as effective as the distributional distances because they do not satisfy the design principles
as well—(ii) does not discriminate instances as well, and (i) in addition does not focus on
the classification task.

As suggested by the theoretical development in Section 3.5, the empirical results show that
aggregated object identifiers can: proxy for important hidden variables, proxy for information
deeper in the relational network, and deal with violations of conditional independence
assumptions among attributes. As a practical example, a wireless call from a defrauded
account may be placed from a particular “cell site,” because that cell site is the locus of
criminal activity (Fawcett & Provost, 1997). This attribute of the location may not be known
a priori; however, if defrauded accounts previously called from the cell site, then the cell
site’s identity may be sufficient for inference (especially when aggregated with other such
locations). An important area for future work is to understand the pros and cons of modeling
with identifiers as compared to explicitly trying to model (latent) groups (Neville & Jensen,
2005).

ACORA’s aggregators nonetheless have limitations that should be the subject of future
research. As explained by the theoretical development in Section 3.4, these aggregators
make several layers of independence assumptions. For example, they assume independence
among the attributes of related entities. This leads to potentially important concepts that they
cannot capture, for example: purchasing different (distributions of) products on different
days of the week; calling different numbers at different times of the day. Perlich and Provost
(2003) discuss a hierarchy of levels of complexity of aggregation for relational learning. To
our knowledge, only inductive logic programming systems address aggregations that take
into account important dependencies among attributes of related instances, and as described
above, their aggregation usually is quite limited.
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Fig. 11 Graph representation of
the CORA document
classification domain, with target
table Paper(P ID and Class), and
two background tables
Author(P ID,A ID) and
Citation(P ID,P ID). Each
identifier also produces a
self-loop, except on the target
table

Another limitation of the features constructed by ACORA is that they are not easily
comprehensible. The only conclusion that could be drawn about the use by a model of a
vector-distance feature is that the distribution of values of the attribute is different for target
cases of one class versus the other. In order to understand more fully, it would be necessary
to analyze or visualize the actual differences between DV0 and DV1.

The distribution-based approach to aggregation is not limited to categorical values. It
applies easily to numeric variables if one makes strong distributional assumptions (e.g.,
Normality). Via discretization it also can be applied to numeric attributes with arbitrary dis-
tributions. The view of feature construction as computing and storing distributional meta-data
allows the application of the same idea to regression tasks or even unsupervised problems.
For instance, it is possible to find clusters of all (related) objects and define a cluster (rather
than a class-conditional distribution) as the reference point for feature construction (cf.,
Popescul & Ungar, 2004).

Finally, this work highlights the sensitivity of generalization performance of relational
learning to the choice of aggregators. We hope that this work provides some motivation for
further exploration and development of useful aggregation methods.

Appendix A: Computation of bags of related objects

As introduced briefly in Section 3, one component of relational learning is the identification
of entities that are related to the observations in the target table. This requires knowledge
about the available background tables, the types of their attributes, and which attributes can
be used to join. ACORA first distinguishes a set of identifiers using the heuristic proposed
above that requires an identifier to be categorical and to have cardinality larger than some
constant, which we typically set to 100. Using this set of identifier attributes, ACORA
converts a domain explicitly into a graph representation and finds related information using
breadth-first search for graph traversal. As an example to illustrate this process we use the
CORA domain (McCallum et al., 2000), a bibliographic database of machine learning papers
(see Section 6). CORA comprises three tables (Paper, Author and Citation) as described in
Table 5. We do not use the text of the papers, only the citation and authorship information.

The first step is the conversion of the domain into a graph. The tables are the vertices
and an edge between two tables Q and R represents the occurrence of a pair of identifier
attributes Q.l and R.k that are compatible, i.e., they belong to the equality relation ER(Q.l,
R.k). The only condition imposed on an edge is that Q and R cannot both be the target table
T This allows for multiple edges between two tables. With the exception of the target table,
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Fig. 12 Search tree corresponding to a breadth-first search over the CORA graph in Figure 11. The exploration
for bags of related objects starts from the target table Paper. The numbers denote the order in which the nodes
are visited; attribute names on links show the identifier that was used for the join, and the attribute names to
the right of each node denote attributes that have to be aggregated

we also allow edges that link a table to itself.17 Figure 11 shows the CORA graph including
the target table, Paper, and two additional tables, Author and Citation, showing attributes in
the nodes and the linking identifiers on the edges. P ID and A ID stand for the fields PaperId
and AuthorId respectively, and are identifiers; attributes with the same name have the same
type.

ACORA’s search explores this domain graph starting from the target table using breadth-
first search as formalized in the pseudocode in Figure 3. Figure 12 shows the “unrolled”
search tree; the numbers correspond to the order of breadth-first search. The path from the
root to each node of the tree corresponds to a sequence of joins, and so the nodes in a layer
of depth n represent all possible joins over n relations. The results of the sequence of joins
are the bags of related entities from the final nodes for each object in the target table.

The only constraint on a path is that for any table, the incoming identifier attribute (a
particular column, not the type) must be different from the outgoing identifier attribute. The
intuition for this heuristic can be seen in the CORA domain. Joining the Paper table on P ID
to the citation table produces a bag of all cited papers. Joining the Paper table on P ID with
Author produces for each paper the set of its authors. A second join on P ID to the citation
table would produce for each paper-author pair a bag of all cited papers. Now each citation
appears n times where n is the number of authors of the paper. We have only duplicated the
information about the citations by a factor of n. Tables resulting from a path that reuses the
same key only result in a replication of information that is available on a shorter path that
skips that table.

Given cycles in the graph, it is necessary to impose a stopping criterion. ACORA uses
either depth (three in the case of Figure 12) or the number of joins. As the length of a path
increases, the distance to the target object increases and the relevance of those related entities
usually decreases. Alternative stopping criteria include the number of constructed features,
run time, minimum gain in model performance, etc. Finally note that linking back to the

17 Self-links currently are not included for target tables because they cannot provide any new information for
the propositional learning task.
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target table may or may not be desirable (Provost et al., 2003); doing so often is appropriate
for networked domains (Chakrabarti et al., 1998; Domingos & Richardson, 2001; Macskassy
& Provost, 2003).

Appendix B: Domain description

Below are brief descriptions of the domains used for the empirical evaluations. The table
gives summary statistics on the number of numeric, categorical (with fewer than 100 possible
values), and identifier attributes (categoricals with more than 100 distinct values). The target
table appears in bold.

XOR and AND

Each domain comprises two tables: target objects o and related entities e Related entities
have three fields: an identifier and two unobserved Boolean fields x and y that are randomly
assigned (uniformly). Each target object is related to k entities; k is drawn from a uniform
distribution between 1 and upper bound u The expected value of k is therefore (u + 1)/2
and is 5 in our main comparison. The likelihood that an entity is related to a target object is
a function of its identifier number. For the main comparison this is also uniform. Followup
experiments (in Section 4.4) vary both k and the distributions of related entities.

For XOR the class of a target object is 1 if and only if the XOR between x and y is true for
the majority of related entities. XOR represents an example of a task where the aggregation
of x and y independently (i.e., assuming class-conditional independence) cannot provide
any information. However, the identifiers have the potential to proxy for the entities’ XOR
values. For AND the class of a target object is 1 if and only if the majority of related entities
satisfy x = 1 AND y = 1. This concept also violates the independence assumption. However,
aggregations of bags of x’s or y’s using counts can still be predictive.

To demonstrate the ability of learning from unobserved attributes, in the main results we
do not include the values of x and y but provide only the identifier.

Synthetic telephone fraud

This synthetic domain isolates a typical property of a telephone network with fraudulent use
of accounts. The only objects are accounts, of which a small fraction (1%) are fraudulent.
These fraudulent accounts have the property of making a (larger than usual) proportion of
their calls to a set F of particular (non-fraudulent) accounts. This is the basis of one type
of highly effective fraud-detection strategy (Fawcett & Provost, 1997; Cortes et al., 2002);
there are many variants, but generally speaking accounts are flagged as suspicious if they
call numbers in F.

We generate a set of 1000 fraudulent accounts and 99000 normal accounts. Normal users
call other accounts randomly with a uniform distribution over all accounts. Fraudulent users
make 50% of their calls to a particular set of numbers (1000 numbers that are not fraudulent
accounts) with uniform probability of being called, and 50% randomly to all accounts.

Customer behavior (KDD)

Blue Martini (Zheng et al., 2001) published, together with the data for the KDDCUP 2000,
three additional customer data sets to evaluate the performance of association rule algo-
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rithms. We use the BMS-WebView-1 set of 59600 transactions with 497 distinct items. The
classification task is the identification of transactions that contained the most commonly
bought item (12895), given all other items in the transaction.

Direct marketing (EBooks)

Ebooks comprises data from a Korean startup that sells E-Books. The database contains
many tables; we focus on the customer table (attributes include, for example, country,
gender, mailing preferences, and household information) and the transaction table (price,
category, and identifier). The classification task is the identification of customers that bought
the most commonly bought book (0107030800), given all other previously bought items.

Industry classification (COOC)

This domain is based on a corpus of 22,170 business news stories from the 4-month period
of 4/1/1999 to 8/4/1999, including press releases, earnings reports, stock market news, and
general business news (Bernstein et al., 2002). For each news story there is a set of ticker
symbols of mentioned firms, which form a co-occurrence relation between pairs of firms.
The classification task is to identify Technology firms, labeled according to Yahoo’s industry
classification (table T), given their story co-occurrences with other firms (table C).

Initial public offerings (IPO)

Initial Public Offerings of firms typically are headed by one bank (or occasionally multiple
banks). The primary bank is supported by a number of additional banks as underwriters. The
job of the primary bank is to put shares on the market, to set a price, and to guarantee with its
experience and reputation that the stock of the issuing firm is indeed valued correctly. The
IPO domain contains three tables, one for the firm going public, one for the primary bank,
and one for underwriting banks. Firms have a number of numerical and categorical attributes
but for banks only the name is available. The classification task is to predict whether the
offer was (would be) made on the NASDAQ exchange.

Document classification (CORA)

The CORA database (McCallum et al., 2000) contains 4200 publications in the field of
Machine Learning that are categorized into 7 classes: Rule Learning, Reinforcement Learn-
ing, Theory, Neural Networks, Probabilistic Methods, Genetic Algorithms, and Case-Based
Reasoning. We use only the authorship and citation information (without the text) as shown
previously in Figure 11. We focus for the main results only on the most prevalent class:
Neural Networks. The full classification performance using the maximum probability score
across all 7 classes can be found later in Figure 10.
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