AO-A192 929 DISTRIIUTED FAULT TOLERANT EMEDNIGS BINARY T

IDES(U) PITTSIWGH UNIV_PA DEPT OF COWPYU
T ET AL. TR-88-3

UNCLASSIFIED F/G 12/%

N

e TR T

Pl AR

|-8
—
_—
Ee——rd

I
l

e
——

e

—— —
B]
——— =

£ 1l

.
I

v~ TEST CuART

S STANDARTS < 4E?

INA. 8REAL

N

b Bl A VRS B PP T B i% 3t e e %0 28

“w;-?ﬂLE 00?‘!

Unlversny of Plttsburgh
Plttsburgh Pennsylvama 15260

DISTRIBUTION STA'

Dist

rLoinneal 1TV LV 0o-J

Foster Provost
and
Rami Melhem

A

‘- N
A (o IR
r N
e
[;
1'.'
el "
Nty e
‘I
: N
'
« !
E‘q' -
’
xe
?‘. o : N
|]
ME
oo !
i - :
W - -
S " \ \“ \
- A x\:\\
= s
KR Lot
Voo - s
ER ‘{ .
' .:,) . a .
o 28 et
ot
LT
[°
-~ :?4\ T ~
4 \“
’ B \\ >y N
' "« ‘).
! SR
- .

f
ANt I AP ASAR LT

Approved for public relecse;
Distdbution UnUthd

{
L

o & bt i ¢

LY

-!.aﬂ.}.ﬁ_..{"

J'J'-f"‘f‘c"-f_-'\'-f"-f\-fu o o
B WS Wy W Ny

A

i

'DEPARTMENT
~ OF
COMPUTER SCIENCE

riouted Faul: Tolerant Embedg)ings of
Binary Trees in Hypercubes

F TN Y Y

>

NS N

i

AA RS s T

-y
.

WYy

J

L Th TR A AT

Technical report 88-3

Distributed Fault Tolerant Embedg)ings of
Binary Trees in Hypercubes

N

Foster Provost
¥ and
Rami Melhem

T TR

2 -
o

Department of Computer Science
The University of Pittsburgh

N GE KA

T 'f 7

/988

-

I

: MAY 191988 5

. '.'\ .l."l IR A 'I‘f- ”

r
L

- .
-‘l-' LI

s Y

AL Sy

)
"1 This research s, in part, supported under ONR Contract NOOO14 80 C 04558, ".\:
'I
~
. o
| THRTYVIRUTION STATHLINT A)
& St T Bl peleceey r
‘ i ’ IS o
e R - RS
N
I~

'~ a »
a f R

‘ o . . -~ \ . . . e Wi M h e . ' T st - o "
: "'-*N . '&.{‘\‘\‘."\-’\'_s 'VJ[‘- w '\w"v_.\f\"'h A *“t i’.\f v'.. 5 v{"-._'\'._ - --’-)'-‘. P S e '..‘-)\.,. ’-.'-."l":‘ {‘,:‘(\‘v‘\. _‘r_. gAY
-SAY, Y 0 0 . . 9oy . Wy Wy PW. W . h y A A 5ot 3 3

>

) AU Ay AL AN G e 2 A ANt 4° G 0 AR A VA L At S LR AN S ALAA A A L S AV AL N N SR R LSS sh SO0 Rl g

TN

Ay g o

.-.,_.‘\.
P s

ey

Distributed Fault Tolerant Embedding of Binary Trees in

*)
Hypercubes

NN O

Foster J. Provost

i
1

Rami Melhem

~
Department of Computer Science o
-
Universiiv of Pittsburgh ? X
t
]
Pittsburgh, PA 15260 :“,-
l-\I
L ¢
’
e
S
ABSTRACT Bt
.
»
L3
In this paper we present a distributed algorithm for embedding binary trees in hyper- -
i
cubes. Starting with the root (invoked in some cube node by a host), each node is responsi- N
-
L ¢
ble for determining the addresses of its children. and for invoking the embedding algorithm »
g
for the subtree rooted at each child in the proper cube node. This distributed embedding. :‘_':-
~ ~
-
along with the wealth of communication links in the hypercube, leads to a high potential }_':
l.f
for fault tolerance. We demonstrate the fault tolerance capability by introducing tree res- »
w3
tructuring techniques which may be used to tolerate faults during the initial embedding. as]
..~‘,.
well as to remap nodes that fail at run-time. The distributed nature of the embedding .___ ___ ::'_-'
an For) ,:-::i
eliminates the need for global knowledge of faultv nodes: each node must only know the n:1 1w“9
. o — r0
. . . T
status of its neighbors. Lo need ﬂ-‘. [
!J'.A R ‘4‘”."1 __4 «
- <
- phy TR
i ritation/ !
A\"}flﬂbllity (o oan —i '.;'l
! Avulil anéd/or A
Dist ‘ srecial

AN
‘\-I'\.r A . .r

2 g0 P8

- “pla-gia"g¥a"giay ™ S DA S Sak L A) R A S S AL A

1. Introduction

Several researchers have studied the embedding of balanced binary trees in hyper-
cubes. In doing so it is important to discover embeddings which preserve the adjacency of
nodes so that communication can take place efficiently. It has been proven that an n -tree
cannot be embedded in an n -cube with adjacency preserved.[8] Different methods have been
cuggested to bypace this diffculty. Phatt and Ipsen [1] and Deshpande ana senevein{2]
embed a "two-rooted" n -tree in an n -cube. preserving adjacency: they use the exira root as
a communications processor which routes information from the root to one of its logical
children. This provides communication with a maximum of one "hop” between processors.
where a hop denotes the passage of a message through a processor node. en route to another
node. Johnsson[4] and Wu[8] take a different approach; they embed an n-iree in an
(n +1)-cube preserving adjacency. Wu gives a recursively defined. bottom-up algorithm for
determining a proper embedding: Johnsson. in contrast. gives a top-down algorithm. Both
algorithms rely on a "bird's eye" picture of the entire embedding -- Wu's constantly rotates
entire subtrees in order to achieve a proper alignment, while Johnsson's plucks information
from different parts of the tree to determine the addresses on the next level of the embed-
ding. lpsen and Bhatt's algorithm [1] is essentially an extension of Wu's. In either case. the
embedding has to be determined in advance (probably by a host) and tree nodes are stati-

cally assigned to processors.

The question of fault tolerance arises naturally at this point If a tree node processor
or communication link is faulty. the entire embedding has to be recalculated and tree nodes
reassigned to processors. Even worse, if the fault occurs during processing. the entire struc-
ture has 1o be remapped before the processing can continue. This is time consuming and
costly. especially if each tree node has to transport its program and data to the node's new

location in the hypercube. In a time critical application. this expense would not be feasible.

Fault tolerance in tree connected multiprocessors has been conaidered by many

researchers (see for example [3] and [6]). However in the previous research, fault tolerance

W N RIS TR Y ST ST BN A *.:_-_.‘-.“-_. el
RN e, AU 0 A N O B, R T ITIR A v SA

AR

v

» o T
-.‘.J:.' [N

l'l,
3

Car e

Wl

s
L
.

4
4 4
C

A
?l

Lalnm

et
,‘l "X.
¥
'y
]

A2
L3

hYst
' %
T,

<y

Y

Dyl el S

(R]

P
,

e N

ot
'- r

CPLP L A g b L S s g T et Db R g T i St b Sk it
-
’F
4
4
»
l\ y

Py

27

has been achieved by adding redundant hardware 10 a tree structure such that the tree con-

nection is preserved even in the presence of faults. Our approach. on the other hand. uses a
hypercube-configured multiprocessor and takes advantage of the inherent redundancy of
communication paths to remap faulty processors and avoid faulty links. thus producing a
fault tolerant embedding of a binary tree structure. This approach is similar to that taken

by Sami and Stefanelli [7] and Kung[5] for reconfiguration in meshes.

We present. in Section 2, an algorithm for embedding a binary n -tree in an (n+1)-cube

which is entirely distributed and has a high potential for fault tolerance. The correctness of

AT

the algorithm is established by proving its eauivalence to an instance of Wu's botiom-up

%11

Sl

algorithm. In Section 3 we show the fault tolerance capability of the distributed embed- -
: -

ding by introducing a tree restructuring technique which may tolerate node or edge faults. 4
%

The technique is extremely local and entirely distributed: in most cases onlyv the failed node ~
-,,"

itself (or a node connected 10 a failed edge) is remapped. and only its parent and children ;‘_

are aware of the change. Any single fault can be tolerated as well as many multiple fault

Pl A
?‘r\\

configurations. The tree is initially embedded with adjacency preserved: an embedding

2

which bypasses a faulty processor (or a set of faulty processors) may contain one-hop com-

27T
S b A

SN

munication between the remapped tree node and its logical neighbors. If the communica-

tions part of the processor is suitably designed. the one-hop degradation due 10 faulty pro-

A

tr

cessors will incur only a minor increase in communication time between nodes. The same s
applies if a faulty node may act as a switch (with trivial delay). !‘,
)

. . . . --’

In Section 3.2. we enhance the algorithm so that it tolerates any configuration of two S
faults. and finally. in Section 4. we give simulation results which show the robustness of -]

LA 4
y »

the fault tolerant algorithms.

1\-II

.\-

I.*

2. A Top-Down, Distributed Embedding Algorithm o
We have developed a top-down, distributed algorithm for embedding an (n —1)-tree in »

« e

an n-cube. preserving adjacency. In this algorithm. each node receives a small packet of

information from its parent. determines which nodes will be its children and sends them

B s e O O L G 7 T S s A AR A Gy LA s s

240 Ba® 0a® 02" I’ 900 gt g B aud ja 0 gt et S At fat Lt “hat tal et b * et falt abat. (NN AR T R e gwa =y o

the informaticn they need to continue the configuration. The information needed to deter-
mine the addresses of a node's children consists of: (i) the height of the subtree rooted at
the node: and (ii) an "interchange word" which specifies some axes along which the subcube

has 1o be reflected in order to vield a proper embedding.

The addresses of the node’s children are calculated based on the bit positions which
differ between the node’s address and its child’s. Since adjacent nodes in 2 hypercube differ
in only a single bit position. a single integer will suffice 1o differentiate between the neigu-
bors of a node. In the subsequent discussion, neighbors of a given node will be referred to
by the bit position differentiating them from this node. The interchange word, which in our
algorithm is passed .rom a parent to its children, consists of a string of bits. Numbering
the bits with zero corresponding to the rightmost (least significant) bit, a "1" in the jth posi-
tion specifies an interchange of the form (j/j+1). where an interchange of the form (i/k)
indicates that subsequenf children that are mapped to neighboring nodes across the ith

dimension (if any) have to be remapped to the neighboring nodes across the kih dimension

and vice versa.

More specifically, a node receives the height A of the subtree rooted there. and ini-
tially takes its left child 1o be its neighbor in the A dimension, and its right child the neigh-
bor in the (h —2) dimension. These bit positions are then modified by applving the inter-
changes specified in the node’s interchange word. The word is read right to left. applving a
given interchange to the bit position addresses of both chiliren if the corresponding bit in
the interchange word is set. To the right child, whose dimension has just been determined.
the node sends height (A —1) and its interchange word unmodified. To the left child the
node sends height (A —1) and its interchange word. modified by setting bit (h—2). The
embedding can be rooted at any node in the cube by invoking procedure EMBED there with
the height & of the tree to be embedded and the interchange word rot =0.

procedure EMBED(A 7ot)
begin

P m e~

3
;;
i
;
i

/* height h of subtree to be rooted at this node */
/* interchange word rot */

if A =1 then this is a leaf node
else if h >1 then

r:=h;:
l:=h-2;

for i := 0 to (length of ror) loop
if (bit i of 7or =1) then
if (> =i) thenr =i +1;
else if (r =i +1) thenr:=i;
end if;
if ({=i)then!:=i+1;
else if (I =i +1) then!:={;
end if;
end if;
end loop:

end if;

rot, =rot
rot, =rot +2

h=2
invoke EMBED(h —1.ror,) at the node across dimension r /* right child */
invoke ENBED(h —1.70t,) at the node across dimension { /* left child */

end EMBED

We will. now prove that this algorithm always vields a correct embedding.

2.1. Correctness of the Algorithm

In [8] Wu gives an algorithm for embedding an (n —1)-tree in an n -cube and shows
that the embedding is correct. We will show that our algorithm alwayvs produces an

embedding identical to an instance of Wu's and therefore is also alwavs correct.
We first introduce a preliminary vesult. let R=x, _x _, A, tefer 10 a specific
node and i.j refer to specific dimensions in the n-cube. For any node

. : i iR
Q=(y,_, "'y, -y, =¥ in the hypercube. define the address transformation T1” as

5
%)

e e
. L4
a g
e

]
[s
¥

‘@Y

T S
& 5,05

r
')
4

r,
1

N
.

I,l-
Y

e

.)"‘ -’I

x
-
”

e
'y %y

LA

MY Y {
PRI Ry
NS

h R

- »
D@ NNV

-

. ‘\.: P

2 ate’s

1
T s s

’,

A A

Pl

Y .
LA s

e

P XA)
el ®

A
L7

e

<.

v

.
'

l.‘_

P X
%

{\

o~

nY

4, 4

%

7

+ fe fe
e

.,
]

”
<y

1;40'

A -;, ‘,"5- w;-
»

Y Re

4

o
PR A

o

s

40

s 5 &

BN

follows:

T

Ty™MQ)=y, -y, -y, -y ify,=x, and ¥, =x,
LJ-R(Q)=yn o)_x_ . .yj Yo if ¥, =X, and yj =_;'— ‘
ij

-

@)=y, v, Y, Yo if_y,=:;andy/=x
iR —
I” (Q)=yn-1”'y; ey

. . . ijR
Given an embedding E of an (n —1)-tree in an n -cube rooted at node R, T;”" creates a new

Fala v v
‘e
~

"¥o if ¥y, =x, and y, =x . ,

embedding E; by performing a Gray-code rotation of the embedded structure about dimen-

%
' sions i and j.
Another transformation, T;'j'n. is defined such that if the embedding E is rooted at
O
(A node R, then TB"J'R creates a new embedding E, by remapping the root via T;”‘R and embed-
Ny
3 ~J
K 2 ding the rest of the tree via the same dimensional structure as in the original tree with
- e, dimensions i and j swapped. More precisely, the transformation Tzi‘j'R is defined inductively

}Y

ﬂ.‘
":: on the level of the tree as follows:
~ y y
T, "R) = TIRR).
N For each node Q which is a child of some node P in the tree:
~T)
N if 0=P XOR 2’ d i andd #j then T."*(Q) = TJ*(P) XOR 27 /
Ny 2

- ij ;

b if 0 =P XOR 2' then T;*®(Q) = TJR(P)XOR 2’

' if Q=P XOR 2’ then T,®(Q) = T,*"(P) XOR 2'.

o+
B~
‘_:" The notation Q =P XOR 2% indicates that Q is the neighbor of P across dimension d ; the
A

> addresses of P and ¢ differ only in bit position d.
5 Lemma 1. Let E be an embedding of an (n—1)-tree in an n-cube rooted at node
D \r
a .
:.: R=x, _x, _, - x, if E; and E, are the two embeddings created by applving T;'J'R and

. . !
i~ :”‘R lo the nodes of E. then E| and E, are identical.

.-: Proof':

b
[«
:: We can see that under either transformation the physical adjacency of logically adja-
K" .
A

cent nodes will remain -- due to the fact that the first is a Gray-code rotation and by con-
'.
:-: struction in the second. By induction on the level of the tree we show that a tree node in E
¥
is mapped to 'he same cube node in E| and E,. The root (the only level 1 node) is mapped X

B S T o \"'r' -'('\'-'.”"-‘r P A NN A A RANN

=,
»
n,

>

y v s

s &)

Y

/O

‘.80 24000 TR AR - %l Mo i g Rve Rog BN s Pacdia i glaiing gl A e At g PN R

to the same node in E, and E,. Suppose each level n tree node occupies the same cube node
in E, and E,. In E. let N be a level n +1 node which is adjacent to its parent N’ (a level n
node) across dimension d . We show that N is mapped to the same cube node in E; and E,.
In E, and E,. node A" is mapped 1o cube nodes T, ®(N). and To (N) respectively (simi-

larlv for N'). Now we consider three different cases.

Case (i) d #i andd =

N =N"XOR 2*
THRN)=T %N XOR 29)
=T®(N") XOR 2¢
=T, ®(N") XOR 27
=T2‘"'“(N)

i.jR

since by the induction hypothesis we know that T;'j' (N)=T,"(N").

Case (1) d =i

Notice that for any node P:

IJR ijR

(P XOR 2)=T""(P) XOR 2’
f"R(P XOR 2/)=T;"“(P) NOR 2"
From this and the definition of T'%. it follows that if A =N" XOR 2’ then

XJR ijR

(M)=THHN " XOR2')
(N) XOR 2’
(M) XOR 2/
'”‘(w' NOR 2')

=TJRN)

lJR

l_jR

Case (ii1) d =/ -- similar to case (ii).
QED.

We now prove by induction on the size of the tree that our algorithm produces an
embedding isemorphic to an instance of Wu's algorithm. For a height one tree the proof is
trivial. Suppose that the algonithms produce identical embeddings for trees of height n if
we start our algorithm at the rool produced by Wu's. Wu constructs an (n +1) -tree

embedded 1n an (n +2)-cube by:

A AT S e _r A A A N S N N

T Tt TN N e N L e e T NN e T T e e et LT e

e

".r

R

‘2 %% m e m

AN

. v e om
PPy

S,

[SR i S% o8 3
-

j'f/f

\-"\f\-?'\-f\'f’"f

BT R T N VN T . A e PAL LG LI AR T AL AL e LA SN A LA L LS A
':
) ’-
ol
TR 7
\
Py
$ - (i) taking two identical n -trees embedded in (n +1)-cubes rooted at R . such that R hasa
fo¥
4 free neighbor A (no tree node mapped to it) across some dimension x and A has a
»‘J: free neighbor B across some dimencion y (this is referred 1o as the "frce-free-
kY
rL4 . 3
) neighbor" property):
b ‘ -
v
: (i) transforming one embedding via an adjacency preserving transformation T such that
- T(R)=A and T(A)=B -- we will call this cube the second. and the remaining cube
e (identical before transformation) the first:
(iii) connecting identical cube nodes in the two (n +1)-cubes across a new dimension n +2
WA L]
”
.r:. prefixing addresses in the first subcube with O and in the second with 1:
H'\-
-
e
:‘_—: (iv) making node 04 the new rcot (with the left child across dimension x and the right
. child across dimension n +2).
N
.
A ‘) - . .
&‘ Notice chat now the root OA has as its left subtree the first n -tree embedding. rooted at R
™
S and has as its right subtree the rotated (second) n -tree embedding. rooted at 1.4 =1T(R).
&
=
e (Notice also that the free-free-neighbor property still holds with 04 connected across
(s dimieinsion ¥ to 0B which is connected across dimension n +2 to 1B =1T(4)). If we studyv
-.‘J
o this recursive procedure which assigns new dimension n +2 as the tree groews from an n -
o tree 0 an (n +1)-tree. we sec wiat the cornection between A and B in an (n +1)-cube is
o . . .
i~ always across dimension n +1 and the connection between R and A is alwavs across
- dimension n . This means that the transformation T in (ii) will havc to be such that given
- 5 - ’ . 2N . v+l
N R=(x, - -x,). T(R)=A=R XOR 2" and T(R XOR2")=T(A)=B=4 XOR2 7
":: nn+lR
<l T, 1s a transformation which will satisfy these criteria.
- Suppose our algorithm for embedding an (n +1)-tree in an (n +2)-cube starts at the ‘
- root A and recursively embeds its left subtree. an n -tree rooted across dimension n at
o R=A XOR2".in the (n +1)-subcube not containing dimension n +2. It then embeds its
-
- right subtree across dimension n +2: this sublree is an embedding of an n -tree (in the
,,J". remaining (n +1)-subcube) which is identical 1o the embedding of the left subtree except
e
W, : . R :
A for a swap between dimensions n and n+1. Applving TQnnH 10 each node in the
Jﬂ
D) 1
n.

R B e N
BT R o AR
P e B S

T i I N G e T N N, L e T T S T L N T VL AT A T o T T T e T e TR

- % -

embedding of the left subtree produces the embedding of the right subtree.

We can see that if Wu's algorithm is applied for embedding an {n +1)-tree in an
(n +2)-cube. and our algorithm is applied for embedding an (n +1)-tree in an (n +2)-cube
g FF g

rooted at the same node A :

(1) the left subtree of each is a recursively embedded n -tree rooted at A XOR 2" and by

the induction hypothesis theyv are identical;

(2} the right subtree is rooted at 4 \OR 2" *? Consider the embeddings of the right sub-
trees in each case.

nn+1R

(a) The right subtree in Wu's embedding can be embedded by applving T, o

the left embedding

oy i : ; : +1R

-l (b) The right subtree in our embedding can be embedded by applying T, © " Lo the
-\‘

:‘: left embedding.

-

o

X

(¢) By Lemma 1. these right subtrees are identical

Thus. cur algorithm creates an embedding identical to that created by an instance of Wu's,
if 1t starts from the root produced by Wu's algorithm. Wu shows that her algorithm
always produces a proper embedding, therefore our algorithm alwavs produces a proper
embedding (by proper we mean that adjacency is preserved. and that the mapping 1s one-

to-one)

3. Modifications for Fault Tolerance

We make few assumptions regarding the ar hitecture of the hy percube machine. Fach
node must have processing as well as communications capabilities. Tt i desirable. although
not necessary. that these be separated into a computation processor and a communications

. . . . g ” -
provessor. with message routing considerably faster than processing. Thus the “one-hop
rneurred by the remapping of a failed processor will not significantly delay the network's

(otherwise-adjacent node) communications.

ISR P RE Wl Wl W I R AL \\ .\ ~ .\\.\-‘\'\‘1 '
= A N *, » o PR J‘
Lot "'::" ‘oA ﬂuﬂ\{'.'f:‘" NS " " '"'&L.}i;. 1.‘5_.&_..)'}1.“.1}& T hi s \41'\.;1.:‘.. 2ana M.Jhm‘

T E Y X

WP PP TT ¢ e vY &R LY

. ~ A M e O T
%’\‘\"&"’ M SRV LTRSS R o (R O ".\"-."-." (RO O P P PO O OS
. 3 L) L) - . L) - - B L) - w - o » - » b

Our fault model takes into account both faulty processors and faulty communications

links. A node 1s considered faulty if:

(i) The node itself does not function properly (i.e. the computation and or the communi-
cation pari fuiis
iy A communiceoions link used in the embedded tree structure for communications with

the nove ~ o cves not function properly .
We assume that a n.de can detect faulls in it’s immediate neighbors.

Our fauit teierunce scheme is based on the fact that in embedding an n -tree into ar
(n +1)-cube (using our scheme). the (n +1)-cube can be divided into two n -cubes. one of
which contains thre=-fourths of the nodes. the other contains only one-fourth. This can be
seen by studsiny the embedding algorithm. Specifically, bit zero of the exchange word 1s
never used: 11 1~ vei iy the ievel 2 nodes. but the level one nodes (the leaves) do not use 1t
This impiies that unv embeddings across dimension zero come from the initial assignment of
{ or r Moreover note that in EMBED., only [can ever be zero, and it will be zero for every
level 2 node {und only for these nodes). Thus. dimension zero separates the (n +1)-cube
INto two subcubes one of which contains one-half of the leaves of the tree (one fourth of

the total tree nodes’, the other contains the rest of the tree (three-fourths of the total iree

nodes)

This serurztion of the iree nodes vields a structure which is amenable to a very locas
and distributed fault tolerance scheme. If we look at a "mirror image” of the tree structure
across dimens: n e . we can notice thal the only rodes which do not have a free "imaye”
are the height 2 nodes and their left children. Hence the image subcube may be used to
remap faulty processors for any node at a level higher than 2. Fc;r the leal nodes ;md ther
parents. a different strategy must be emploved. In other words. the scheme is divided inte
two parts. One applies to the leaves and their parents: the other applies to the rest ot the

nodes

a) Al

-

TR PRy
SRS

'l .

SO AONY

N

e J

o

P Al

L2 B

” ¢ .

. ow .

e \'l-

T s

. WL

VAT

K}
L]
. ? " a e

e

"I"- .
PRk

BNV o

P

.

f/‘l
3

" ‘l " a3

g

[P

N e

Xt 2
]

(RS

-
N N 4

by

x 'z v 2
Pl s Wy

2

o3
AR oA

b - h n » - W W et e, o - .
b)
3
“
-10 -)
'1" g
h , by
W The algorithm for restructuring the tree due to faulty processors or links can be y
i applied both at the imitial embedding (to bypass already faulty nodes) or during execution
(to locally and distributedly remap failing nodes. without disturbing processing elsewhere
?
v . . .) ‘
> in the tree). Any single fault is guaranteed to be tolerated. This guarantee. by itself.
] " " "
R downplays the strength of the algorithm. The extreme 'localness” of the restructuring
N along with the relatively emptyv image subcube allows the sysiem to tolerate many faulis -
- ,
- simultaneously. including groups and strings of faults in the original tree. -
™ - R
N y
. For nodes of height greater than two, if a child is detected to be faulty. the node will
X, K
2 route all information (for that child) to the child’s image across dimension zero. This will
‘]
w ‘X
:: incur a "one-hop" delay. Once in the image subcube, the embedding algorithm of Section 2 3
y .
wl

will be used to determine each node’s children. After the initial node remapping'. a node in
the image subcube will always attempt to "bounce back” (i.e. return processing 1o the origi-
, nal subcube) before taking over processing duties. Thus. for a single fault. the faulty
processor’'s image will take over the processing duties. determine its children (the images of
the faulty node’s children). and route information to them. These image children will
"bounce back” to the original children -- meaning that they will act as "one-hop” communi-

cations elements between the remapped node and its children. The net effect is a distributed

-
o shift of the node into the image subiree with the rest of the tree siructure remaining
o unchanged (see Figure 1). If one of the original children is also faulty. its image will not be v
- '
\ able to bounce back and hence will automatically take over the processing: the logical tree ’
>)
- structure in each branch will return to the original subcube as soon as a non-faulty node 1s
-"
\'. available. In this way sections or branches of the original tree can be faulty. as long as
“~
their images are not {see Figure 3). ;
<« 4
o "
- For nodes on the bottom two levels (leaves and their parents) a special remapping N
il °
- must be emploved. The parent will bypass a faulty node by routing the information for (
one leaf through the other (see Figure 2). At this point we must note that for each height 2
K -
5 ’
2 node (leaves' parent). the left child is originally connected across dimension zero and the

-
»
»
»
.
)
.
K

o

S

¢
r
'~

W IR IO P L
S A S A S A A A

M S S0 3 i AAnci i ~ahe et <4
AL AN ST a N fcyie S g

11 -

5%y

e
Y

oY

B A7
Q\

N
5
Q
AN
d/

~J

=5

uvnused image fault-iree tree

one "hop”

dimension zero dimension zero

(a? (b
non-tree nodes

tree nodes

-_"L,«Il."l.—';
B ® O

faulty nodes

Figure 1 :
(a) a fault-free tree and its image '
(b) local remapping for a single fault

Fé
1";'f ."}

h=2 n>de

dimension zero / 1

2°
h=2 node é
dimension zerp

e . \\ dimensic 1 1
. \ //7

leaf nodes

ME s %
S

[
A

S '
-

DAL
e
7

.

) (b)

O non Lree nodes
@ tree nodes
@ fauit s nodes

.{I

. Figure 2

- (a) fault-free leaf embedding

3 (b) remapping of a faulty leaf node

N right child is originally connected across some other dimension (we refler 1o this dimension)
) as dimension r). If a child of a height 2 node is faulty. the algorithm will map it to the ;
.'_- node diagonally across dimensions r and zero. Whether the parent node is in the image sub-

cube or the original subcube. its children occupy the same two cube nodes. mirrored about
g P)
A dimension zero. We consider the two-dimensional subcube containing the parent and its
I-’ ¢
o 4 . . .
two children: if one of these four nodes is faulty. we will use the other three -- never
NG A
%
:', incurring more than a one-hop delay in communications between logically adjacent nodes.
"':'; It can be seen that communications between any two logically adjacent nodes will
Y
. " " . . - .
: incur at most a one-hop delay. This is the cost of the fault tolerant scheme. Notice also
>
L~
R o .
.:‘ .
-~ :
<,

(g

N o N
~ N / ’
~ N | /
~ N [
- S o SoN - e _ - - vy
~ ~ . N - - v
~ - SN - .-
N ~ NN - - /1
T~ o R = -
————— - N s
N ’ i
N
NN 7 |
O non-tree nodes N~ ,
: NI 4
. : ~ ~ s 1
@ tree nodes ; NN - ,
M - -
@ faulty nodes dimension zero . -7

Figure 3 - remapping of a faulty section of the tree
that the remapping of an interior (A >2) node will never interfere with the remapping of
another node, and that no remapping of a node in one parent/leaf triad will interfere with

the remapping of any node outside that triad.

3.1. The Fault Tolerant Algorithm

The crucial step is the remapping of nodes originally mapped to faulty processors. We
assume that a node will remember the addresses of its parent and children for subsequent
information routing. The remapping algorithm is very simple. consisting of onlv a few
cases. The only technicality which has been added is a method for determining when to
"bounce back.” Different schemes can be en\ :sioned. we use a pair of "correction” bits which

signify different states in the remapping process:
00 -- indicates a node in the original embecding;
01 -- indicates the first in a sequence of remapped nodes in the image cube;

11 -- indicates any subsequent nodes which must decide whether to bounce back or to

take over processing.

NN N

. i ASRISASY oA

T AR SR R SRR O I R A R Y

NN

LAY

OO0
A,

AW

SNANEER AL S

o *
.

st
P
.

5 s

D

r 2
»

s .1"-

Yo

P

X 2

.
RIS

AR

.
PRE]
G
e

.
»

[4

SO

LI
\'\.\'.‘.

o

RN,
PN M 114. -
[NASE PRI 'I'I'J‘ \‘

e

]

P
Yy LA
, .

e
"S"-

5

/..J'

¥

4
.’!

P 'c’,-.‘j.s,? v

L3
P

Wi ¥ " ¥ R I I T T N AT IR L O R W) LSaota) Sol Ael S Nad okl Tal St) o" Slan i RS A AU IAC JR e I a VDb R A Al p =

.

R - 13 -
: : When we say "invoke" we refer to initiating the embedding of the appropriate subtree at the
' node specified. When we say " a node across dimension x /y " we designate a node whose
; address differs from the current node in both the x and y positions. In the single fault case,
o a fault-free path is guaranteed to exist 1o that node either through dimension x and then y
>
_~‘ or through y and then x.

N procedure EMBED_FT(h .rot .correction)

o begin)

~
€ determine r and ! and interchange words ror, and rot; according to EMBED

¥

if ~ =1 then this is a leaf node

Y else if A >2 then

?

- case correction of

N 00 =>
‘N for o €{r .1} loop
'\' if node across dimension a is non-faulty then
2 invoke EMBED_FT(h —1.ror ,00) at the node across dimension a
j else

o invoke EMBED_FT(h =1.rot 0,01) at the node across dimension zero/a
_ end loop
2 01 =>

‘ invoke EMBED_FT{h —1.ror, .11) at node across dimension r

: invoke EMBED_FT(/t —1.ror ,11) at node across dimension [
11 =>

. if node across dimension zere is non-faulty then

. invoke ENIBED _FTt(/ ror .00) at node across dimension zero

. else

5 invoke EMBED_FT(/. —1.ror, .11) at node across dimension r

. invoke EMBED_FT(/: =1.ror.,11) at node across dimension {

w

9 end case:
F- else-if A =2 then /* [=zero*

2 for a €lr .zero} loop

' if node across dimension « is non-faulty then

- invoke EMBED_FT(/t —1.r0r ,,00) at the node across dimension a

else

) invoke ENIBED_FT(h —1.r0t o,()l) at the node across dimension zero/r -
:!. end loop ' .

B I R T SR S
PR, AL .".f".',-’ ‘o

PP RN N N L L I .~
ATRVACATN ‘.. ': J:.' \t‘."\' T _,': .' .'Z\.'.s .-."t-.’_'._._'

‘\\‘ ‘e

.

R O A T SR L N A 0
Ao

~ %

W NV W N WL L TN L aniat) COA A2 A5G 't AL AN AN W

14 -

end if;

end EMBED_FT;

Even though the algorithm is presented such that it produces an initial fault tolerant
embedding. it should be clear that the same straltegy may be used 10 remap nodes that
become faulty during runtime into non-faulty nodes. In fact. if we were 10 ignore run-
time faults and consider only faults at the initial tree embedding. the alvorithm
EMBED_FT might be writlten in a simpler form. Namely. there would be no need to
bounce back to the original subcube. For this we can disallow state 11 and replace it with

state 00.

3.2. An Enhanced Fault Tolerant Algorithm

The algorithm EMBED_FT is very good for tolerating multiple faults. but certain
double fault configurations cannot be tolerated. When a node is faulty, its image across
dimension zero should not be faulty -- neither should the images of its parent or its chil-
dren. Thus for each node that is faulty there are four nodes which must all be non—féult_v.
We now modifyv our algorithm so that it will tolerate any configuration of two faults. and
many multiple fault configurations. For this. we consider distance 2 fault detection. This
could be implemented by having a node request a status report from some distance 2 neigh-
bor via both one-hop paths, if it fails to receive an acknowledgement. it assumes (for the
purpose of the algorithm) that this neighbor is faultyv. We can modify the scheme for
immediate neighbor fault detection by adding an exira fault check state. but for clarity we

assume distance 2 fault detection.

The modifications st. from the fact that if a node can communicate with another
node across dimension x and then ¥ (one-hop). it can also communicate across dimension v
and then x (also one-hop). Thus if we encounter a second fault when attempting to remap
a node. we can initiate the embedding at a neighbor and "one-hop" to the children by passing
the faulty node. We also use backiracking if the embedding gets stuck due to faults. If a

node discovers that it cannot embed 1ts children. it declares itself faulty and lets its parent

- - e T T m AT e N A
. X \I_ {\f\f\J‘ﬁ. R AR L AN, _'-':\J'\'{.\¢‘.','.J'.' NE s
- - L 9 - - » e L

e Wi W) .
Sadl) 3

M e tm e s e et e
'-:\- e '-.-\‘: \I ~ s{"‘,\-\- -‘.'

MO G E LA AE LA LA
b

Py

-~

% L5 5
L .-hf-'{

Y.
4

CARRY
2

-

o ol b o i

e 1o
i

i T L
R A
.f'.'b\'x'r‘-

A
P4 l,
oo !

e’s

.'-‘.) S
a0,

WA N/
’llll-‘ u" -_}l,)l.' .T

)

l' ",n
x

)

]
2

R A
A

Iy & % e 0
e 4

. s v
.
-

‘u‘b'\.'

Y
s

A L A

5% N,

Ll LS

7

e
L

7

-
»

he,

-«

Wp b
aiading

»

-

worry about reconfiguration.

bypass faully image

C non-tree nodes

@ 1 ee nodes
E fiulty nodes

- 15 -

N s s
~ s ,
s s ’ /
, .
~ . /
o~ .
N F N Ve //
N N ~
\ ~ R 7 /
N i ~ <
/
\ x: >
N PN s ~ ’ ’
~ e ~ - S o Ve
N - > o S5 ad
~ > 7 -7 ~ - - i

dimension zero

Figure 4 - a node and its image are both faulty

(non-tree nodes

@ tree nodes
E] faulty nodes

Figure 5 - a section of the tree

In our modified algorithm. a faulty node is remapped 1o the image of its parent across

dimension zero. This node’s children are then remapped to the images of the nodes where

SadSe 1S5 A NS

N\
\
N
/
N
/
~

\/
AN
AY

AY
N
X
4
!

dimension zefo

and a section of its image are faulty

T L "3-"0-"3-‘}"’}"}" &}-‘{1‘,}_\\;‘\1) ./~ 5y 's.‘;,‘\),‘- _, ,',» o ',/’x ” ¥ -.;(, TR AT 'y

*’\(" AT RN TR TN
L] . .

P a -

«

6 XN
a

.
<

Ny

L750 T S e B B T .
Y AR N

~
T e {

bl e e

e,

WA L ALK,

o~

v L

Y & v

W AVER RPN 4
a"f.xrt"
s LIV

PR

PR .
PREAE L A
St e A '-'- "

r <

‘L, 1

.
ot
v

.
oL
5
RN

Y B
e
Yt

1

Rt

g LA N T

-

FIL 2%

r‘v"a
al .

1- /'{. 'fl

, %5 % "

P,

s

0y . o - - -, \] . 0 » N
, Byt Y " W ?)

LS
- 16 -
hy
\.
>, .) .)
) they would have been mapped in a fault-free embedding (see Figure 4). Thus, there are
2,
" two one-hop paths from the remapped node to its children, and a second fault can be
;\:; bypassed. For example. a node which was originally adjacent to its parent across dimension
X _
R
\.': d (and whose children were across dimensions » and [) is remapped 10 ils parent’s neighbor
:-.J. :
- across dimension zero (due to a fault in the original embedding). It can now map its chil-
o ‘ . .
. dren across dimensions d and then a (where a€ {r .[}). If the nude acress dimension d is
T .
"“ . . . - oo " ~
o faulty. there is still a fault-free path across dimensions & and then d . This "bypass” of the
-\': .)
node across dimension d enables the embedding algorithm to tolerate any configuration of
) , . _ o . .
.‘; two faults. As in the single fault algorithm, we indicate the traversal of dimensions x and
5
»
[
» . . . oo J . . "
I ¥ in either order (depending upon the position of faults) by “across dimensions x /y." In our
= example, if the node across dimensions d /& is faulty. the corresponding child can be
N : ‘ ‘ _
_FJ mapped to the node across dimension a, and its children can be remapped using a similar
*
o
:'\- bypass routing. In general. if a large subtree and its corresponding image are faulty, an
)
b embedding can still be realized with only one-hop communication; an example 1s given in
W '
. figure 5.
o
=
: The algorithm utilizes the relative emptiness of the image subcube to embed leaf nodes
A »
which, because of certain fault configurations, would otherwise not be successfully embed-
v
7 ded. A leaf node’s parent (h =2 node) in the image subcube that cannot embed the leaf in
"'
'_'.': the node specified by EMBED attempt to embed the leaf in any unoccupied. fault-free node
L
(at most distance 2) whose address’s bit parity is different from that of a leaf node’s. It can
'_:'_ be shown that this will never interfere with a fault-free embedding of another part of the
:r-- lree.
s, In the following algorithm. two correction bits are used to record the state of the !
AN
’l
:f_,' remapping process as follows:
.
o, {
L < o , . .
- 00 -- indicates a node in the original embedding: ;
N 10 -- indicates a node in the imuge subcube which must map its children using by pass '
i
.]
routing;

L~ A0 YY)

T

ity

"V" Jon -"\-"'51 - " SRRGLA .r‘_.r\.n, "\"‘\-'r '(‘- \."'\."' "\'{.ﬂ.".\"\"- < ' \’- e \.'r\' = "*.".- - \ \ - ¥ \" -’-&"\':\\.
o . v, R

-

-17 -

-

01 -- indicates that the current node is mapped to the image of the node’'s position in a

fauli-free embedding;

11 -- indicates any subsequent node in the image subcube which must decide whether

FEETA TIULNARNS T TIg A N

to bounce back or take over processing.

<,
A handshaking protocol is necessary to enable the backiracking to function properly.)

)
When backtracking occurs. some nodes may have to be removed {rom the tree structure and ;
~
should become available for subsequem.embedding atlempts. There are four different types ‘::‘

of messages needed to synchronize the embedding. When a node decides 1o backtrack. an '
RS

«

“invalidate” message is passed 1o any child at which the embedding of a subtree has already

" been invoked: this message is propagated throughout the subtree. Then a "failure” message
is passed 10 the node's parent 10 indicate that the corresponding subtree could not be rooted
at this node. Since the algorithm is distributed among the nodes. a "confirmation” message
should be propagated from the leaf nodes to the root 1o indicate a successful embedding,.
and in response the root should initiate a "success” message which will propagate through
the tree. This is a typical handshaking protocol used in distributed computing.

procedure EMBED_FT_2(h ror .correction .d)
begin

1

&
if this node is alread\ in use as a tree node then backtrack s
determine » and [and interchange words ror, and rot, according to EMBED i

if A =1 then this is a jeaf node

gy -

else if h >2 then

case correction of

L N T

00 =>
if any 2 of neighbors across dimensions » .l or zero are faulty then backtrack
/* parent will reconfigure *-
end if
for a €{r .l } loop
if node across dimension a is non-faulty then
invoke EMBED_FT_2(k =10t ,.00.0) at the node across dimension a
else
invoke ENMBED_FT _2(7 —1.r0r [10.a) at the node across dimension zero
end if

EPRE
3

S

AN

P
e

S ciutiat dut St ol O N bt 2 M P KT KRR A TR v RS 0 AN - ‘;:.
I
3
- 18 - et
£
end loop "
,\
10 => £
for a €{r I} loop °
if nodes across both dimensions a and d are faulty then backtrack :_‘:-.
if node across dimensions a/d is non-faulty then 'S
invoke EMBED_FT_2(k —1ror ,,01,0) across dimensions a/d .
else ‘y"‘
invoke EMBED_FT_2(h —1.rot ,,10.d) across dimension a :
end if gy
.1"
-.l
01 => N
for o €{r I} loop _-f
if node across dimensions a.'zero is non-faulty then ;
invoke EMBED_FT(hA --1,ror ,,00,0) at the node across dimensions a/zero =
else !\
invoke EMBED_FT(h —1.ror ,,11.0) at the node across dimension a 2
end loop :'.\‘
~.\1
N
,._?
11 => °
if neighbor across dimension zero is non-faulty then T
invoke EMBED_FT_2(h ror ,00.0) at node across dimension zerc }::’;
)
else NS
invoke EMBED_FT_2(h ~1.ror, ,11,0) at node across dimension ::'\-:‘
invoke ENIBED_FT__2(h —1.rot;.11.0) at node across dimensior. { a
end case; __:
-._".
else if # =2 then /* [=zero*/ :f;
)
case correction of 3
x
00 => R
if any 2 of nodes across r . zero or r and zero are faulty then backtrack f-c‘
for « €{r .zero} loop e
if node across dimension « is non-faulty then . RS
invoke E.\lBED_FT_2(hV—1 rot .00.0) at the node across dimension o Y
else e
invoke EMBED_FT_2(h —1.rot ,.00.0) at the node across dimensions zero r ::;-';
end loop R
0111 => o
®

for o €fr L'} loop
if neighbor across dimension a is non-faulty then
invoke EMBF_FT_2(1.ro0r ,.00.0) across dimension «

e
oy ! ',.1

s L PR

else .
invoke EMBED_FT_2(1.rot ,.00.0) .
at any unoccupied. non-faulty neighbor -

end if

10 =>
for o €{r L} loop i
e

,\

10

1
I]
L,

[qu.'-r,'-‘:__ 4’-\.'__4-.‘.: _‘f__.-\{\.r U ,\-:_.4','4_' \ r_..r:.'-- .-f_‘f;\d'.’-‘\f_..‘.‘n: _'1-
L S 2 s N & 3 2l . 0 - ' i o A X oA

e Y

Ta
.
»
.
'

S SO - .« 8 s o
TR S PN R ARG S N NN e LN N PN I
SRR I I T T Rt I T S I WA

e e

%S

3 _1)_1‘1'

-

SYVE SN

Sy

D ‘“J}J":”t‘-

4

SN,

%

Sa

LAAAR

el

5% 4% %%

.y
* - - -~ - - N
" N A N N Y S N N D RN N

- 19 -

if neighbor across dimensions d /a is non-faulty then
invoke EMBED_FT_2(1 .70t ,,00.0) across dimensions d /a
else
invoke EMBED_FT_2(1.rot ,.00.0)
at any unoccupied. non-faulty. distance 2 neighbor
end if
end vaxe

end EMBED_FT_2:
4. Performance Evaluation and Concluding Remarks

In order 15 tosi the robustness of our fault-tolerant algorithm. we performed a simu-
lation study with various size hypercubes and varving numbers of faults. We alvwavs
invoked the algorithm at a non-faulty node. and simulated the fault-tolerant embeddings

on many different random fault configurations.

The simulation programs were written in C and the random faults were generated by
calls 10 the Unix s.~tem function srandom(). Attempls were made 10 embed u tree of a
given height for different distributions of a specific number of faults. and results were col-
lected as to the number of successful attempts. For the first fault tolerant :lgorithm.
EMBED _FT. the simulation results showed. as expected. that embeddings with verc or one
fault were alwavs successful (100 percent of the atiempts succeeded). For the enhunced
algorithm, EMIBED_FT_2. embeddings with up to two faults were always successful. The
performance of the embedding algorithms degraded nicely as the number of faulis
increased. The results for trees of heights 6 and & are shown in Figures 6 and 7. respec-
tivelv. From these figures it is clear that the additional complexity in EMBED_FT_2 pre-

vides a more robust fault tolerant embedding algorithm.

The above resulis show the average number of Taults that can be tolerated given an
initial non-faulty starting node. This corresponds to the case of run-time fault-tolerance.
At run-time, the basic structure of the tree embedding has already been established and. as
faults occur. this basic structure should not change. The problem of fault tolerance at the

initia] embedding of the tree in the hypercube is slightly different. If the algorithm fails 1o

LTS A

) . L A

BT AL S L e e T A T T
B oA O T O ST AT A AN TN D AN AT

SR LT LR P PR YV DRI PO

.'n:-.-f.‘-‘..v ,'r \' A‘l . |

.

Phs
.

% T 0 N N)

-20 -

percentage of
successful embeddings
100 T S N ~ © EMBED_FT

| a

i o o & EMBED_FT2
%0

i

I

! a
80 L °©

‘ a
70 -

° a

60 -+

!
S0 -~ oS

©

40 -+ o
0 L ° a

20

-
D

° Nuroer of
i 2 " TR FE—1 T L L 1 L FE— : Q 1 1 1 »

S 10 15 20 25

fauily nodes

Figure 6 - Performance of the Fault Tolerant Algorithms
for a height 6 tree in a 128 node hypercube.

embed the tree starting at the given root, there is no reason why it might not succeed {rom
another root. Also. if the algorithm fails to embed the tree for some set of faults. it is pos-
sible that choosing some dimension other than zero as the dimension across which faulty
nodes are remapped may produce a successful embedding (this will, of course. change the
basic structure of the embedding). We investigated the first of these two possibilities:
specifically. if the algorithm EMBED_FT_2 failed to embed a tree rooted at a given node.
alternative nodes were tried until either a successful embedding was achieved. or the alge-
rithm failed to embed a tree rooted at any of the cube’'s nodes. Tables 1 and 2 give the
results for trees of heights 6 and 8. respectively. For each specific number of faults. 100
different fault distributions were considered. The number of times that a successful
embedding was achieved and the average number of roots tried before success are recorded

in the second and third rows of the tables.

We tried to make as few assumptions as possible regarding the hardware model. The

fault model includes both node and link [aiiuies and assumes that the

-

-21 -
percentage of
successful embeddings
o
100
e & o & L 4 © EMBED_FI
R N & EMBED. FT2
90 - o
; o
80 -
<
o
K -
o
<
0 A
so . o
J
40 -
©
30 -
20 -]
1w . e
o
. ‘ o S Numne: of
N . : Lo P B P olaulty roges
10 20 30 40 50
Figure 7 - Performance of the Fault Tolerant Algorithms
for a height § tree in a 512 node hy percube.
" Number of faults | 5 110] 15][20]25] 30 '35

.q i ! o
' Probability of finding 10l 10110110110 ‘ 92 . 44
- . - - . I‘ . - H . .

- & successful embedding

Average number of roots

10112]20|40] 16 40 55
. tried before success

' .
i
|

|
|

Table 1 - Embedding attempts at different roots for a height 6 tree.

"Number of funlis 110720730 [40[50 716070809 "100 110]
. ¢ : o | ! 1 | | : | :
Probaility of finding o 1000 g 10| 10 96 | .72 50 |
- a successful embedding ‘ ‘ 1 ! » ! ,

I , | . [1 ! ; !
Aver genumberof roots |y o [y qy Dy | s |2 |42 12| 310108 | 213
tried before success ! ! ! ‘ i

Table 2 - Embedding attempts at different roots for a height § tree.
communications routing facilities associated with a node fail along with the processing
facilities. Certain hardware models would simplify the fault tolerant algorithms and make
them more robust. If the communications part of a node remains operable when the com-
putation part fails (e.g. there is a separate routing part), this node would not have to be

bypassed for communications purposes and more fault configurations could be tolerated 1f

fJ‘.IJ‘-:d‘I"'J‘. .\.r..f/.f.r-..‘ .’.-J‘J-.‘J‘-J‘-J'v"q’-'-“'l'"'-r-"-
- ~ - -~ ~ - .- A,
S e G e N e L A e e N o AN e

l'

l.’l'.

54

-) o Ry
e @

"’(l':"

x ‘\l

L0 7,

YN Y
]

hh]
Ld

S

.
(’gl'~'"k‘ .

(909
» -l .l

: ". ('.

- -’
0 ",

. i ey
L ANCSINENTNY

A

’,
d
o
g

Y L
* N e

'

NN I
o -"‘.. -.':. [:' .

lb{f. y

N)
oA

TSR] Rt

e,

Prats

upon failure a node short circuits all communication across a certain dimension (zero). a
technique can be developed where onlyv the relocated node is aware of any change in the
embedded structure -- the parent and children send messages to the original lecation and

these messages are transmitted across the short circuit to the node's image.

Finally, we notice that the algorithms that have been developed for embedding a
binary n -tree 1in and (n +1)-cube{4] [8] and our algorithm all produce isomorphic embed-
dings (in fact. 1t can be shown that Johnsson's and our algorithm are isomorphic and
correspond 1o an instance of Wu's). We conjecture that the recursive embedding of an n -

tree in an (n +1)-cube is unique.

Refercaces

1 S Bhatt and I Ipsen. "How to Fmbed Trees in Hypercubes.” Research Report

YALEU DCS RR 443, December 1985.

tv

S Deshpande and R. Jenevein, "Scalability of a Binary Tree on a 1} percube.” Proceed-

ings of the ICPP. pp. 661-668. 1986 .

3. S Hesseim J Kuhl. and S, Reddy, "Distributed Fault Tolerance of Tree Structures.”

IFEE Transactions on Computers, vol. C-36. no. 11. pp. 1375-13482, November 1957,

4. S.L. Johnsson., "Communicauion Fflicient Basic linear Algebra Computations on
Hype-cube Architectures.” Journal of Farallel and Distributed Compuring. vol. 4. pp.

133-172. 1987

3 SY kung. CW Chang and C.W. Jen, "Real-Time Configuration lor Fault-Tolerant
VILSI Array Processors.” Proceedings of Real-Time Systems Syvmposium. pp. 46-54

December 1956.

6 C. Raghavendra. A. Aviziems. and M. FErcegovac. “Fault-Tolerance in Binary Tree

Architectures,” [FEE Troisactions on Coniputers, vol. C-33. no. 6, pp 566-572. lune

1984

PP
A N B A !

0

T A T
LA
P

v

P N e Y Y a Y -,
'.."‘,,'_._.,’,,.

'

. Pl L
RN

o0

N e 3 _®
l' l. I. "
T TS

x. » e

<
2

“ e oa e ,,
SO

) g
PN Xy
P T) ‘

YA

IS
g

P et
W
‘x

MR A TN
] J Py al Fars o

S R 4
k)

(AR

o
[

v /@

Hr.l

‘0,

I ISy X
XRAATRALL
r a4 L 4

e
2y %

¥
»
‘.

o

(P atattat e it g b b p AR iog A 8% 150 4% 000 % tTaatupie e pie it a el LS Ml Mol S AM ARSI SRS S MRS A P A A ACPC L A

g
-23- °

7. M. Sami and R. Stefanelli, "Reconfigurable Architectures for VLSI Implementation.” .

Proc. Nat'l Computer Conf., pp. 565-577, May 1983.

8§ A Wu. "Embedding of Tree Networks inte Hyvpercubes,” Journal of Parallel and Dis-

triduted Computing. vol. 2, pp. 238-249, 1985,

. ,..
_'.b'l .

..': .n‘:_.';gs . N

)

N ¥y B .
.

(R

BT DR | .
lllr\l.
h r Nt e B v

.
»

’ /.'_.‘ '/'.." .'. . -,

3 (‘.4..

L
Py

T 4
g

p o

a1t .
o

el
Py

o e fr '1'_'-4.:n
i LS

W P O T PN N B N L SRR SR AL I A SR R R R A A
T e N G Vv S e A G A SN S YA VR G TG Y

R [IR

PATSRINSNANSASA

»

.

oy

.

g

LN
P I

~
P

« Ty “a
o,

.

N

ol
)

DoV V.

N N

-

o

C e
‘A

“« - .
V. ATV S P O DR PY JP)

A
N

l-‘ l‘
-

D77

A, ‘.F‘J"‘.'*} \‘.y-

AN IE NN

[
“x
'
-
5
%
.
Y
’

KRR s ‘,‘\,ﬂ -, ‘I.u-:,.‘d--r.-.‘- P 12%,..' v, y --v \: 3 .-1-1-.-1-'-‘ ol '-Jlu\it-i.-nnn ..‘-.... ety _\l\.w\-aﬂﬂqn . ‘u.. v.”." P n‘

