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Distributed Fault Tolerant Embedding of Binary Trees in

Hypercubes*
,a

Foster J. Provost Q

Rami Melhem °

Department of Computer Science -
I

A BSTR ACT ,',-

In this paper we present a distributed algorithm for embedding binary trees in hyper-

'.

cubes. Starting with the root (invoked in some cube node by a host), each node is responsi- ,,

ble for determining the addresses of its children and for invoking the embedding algorithm

for the subtree rooted at each child in the proper cube node. This distributed embedding, L

along with the wealth of comunication links in the hpercube, leads to a high potential

for fault tolerance. W 7e demonstrate the fault tolerance capability by introducing tree res-

tructuring techniques which may be used to tolerate faults during the initial embedding, as "

well as to remap nodes that fail at run-time. The distributed nature of* the embedding ... "

on Fo r

eliminates the need for global knowledge of faulty nodes: each node must only know the -,_jI

status of its neighbors.n
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1. Introduction
16 %"

Several researchers have studied the embedding of balanced binary trees in hyper-

cubes. In doing so it is important to discover embeddings which preserve the adjacency of %

S.,.

nodes so that communication can take place efficiently. It has been proven that an n -tree
-'%

cannot be embedded in an n -cube with adjacency preserved.[8] Different methods have been

,ug-ested to by--- this diffd. P~-.. and Ipsen [1] and Deshpande ana Jenevein[2]

embed a two-rooted" n -tree in an n -cube. preserving adjacency: they use the extra root as

a communications processor which routes information from the root to one of its logical

children. This provides communication with a maximum of one "hop" between processors.

where a hop denotes the passage of a message through a processor node. en route to another

node. Johnsson[4] and Wu[8] take a different approach: they embed an n -tree in an S

(n +1)-cube preserving adjacency. Wu gives a recursively defined, bottom-up algorithm for

determining a proper embedding; Johnsson. in contrast, gives a top-down algorithm. Both

algorithms rely on a "bird's eye" picture of the entire embedding -- Wu's constantly rotates

entire subtrees in order to achieve a proper alignment, while Johnsson's plucks information "

from different parts of the tree to determine the addresses on the next level of the embed-

ding. Ipsen and Bhatt's algorithm [1] is essentially an extension of Wu's. In either case. the 0

embedding has to be determined in advance (probably by a host) and tree nodes are stati-

cally assigned to processors.

The question of fault tolerance arises naturally at this point If a tree node processor ..

or communication link is faulty, the entire embedding has to be recalculated and tree nodes

reassigned to processors. Een worse, if the fault occurs during processing, the entire struc-

ture has to be remapped before the processing can continue. This is time consuming and ,

costly. especially if each tree node has to transport its program and data to the node's new

location in the hypercube. In a time critical application, this expense would not be feasible.

Fault tolerance in tree connected multiprcessors has been cor.,idered b. many

researchers (see for example [3] and [6]). lHowever in the previous research, fault tolerance
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has been achieved by adding redundant hardware to a tree structure such that the tree con-

nection is preserved even in the presence of faults. Our approach. on the other hand, uses a b

hvpercube-configured multiprocessor and takes advantage of the inherent redundancy of

communication paths to remap faulty processors and avoid faulty links, thus producing a

fault tolerant embedding of a binary tree structure. This approach is similar to that taken

by Sami and Stefanelli [7] and Kung[5] for reconfiguration in meshes.

We present. in Section 2, an algorithm for embedding a binary n -tree in an (n+l )-cube

which is entirely distributed and has a high potential for fault tolerance. The correctness of I

the algorithm is established by proving it i quivalence to an instance of Wu's bottom-up

algorithm. In Section 3 we show the fault tolerance capability of the distributed embed- "

ding by introducing a tree restructuring technique which may tolerate node or edge faults.

The technique is extremely local and entirely distributed: in most cases only the failed node N.

itself (or a node connected to a failed edge) is remapped. and only its parent and children

are aware of the change. Any single fault can be tolerated as well as many multiple fault

configurations. The tree is initially embedded with adjacency preserved: an embedding

which bypasses a faulty processor (or a set of faulty processors) may contain one-hop com-

munication between the remapped tree node and its logical neighbors. If the communica-

tions part of the processor is suitably designed. the one-hop degradation due to faulty pro-

cessors will incur only a minor increase in communication time between nodes. The same

applies if a faulty node may act as a switch (with trivial delay).

In Section 3.2, we enhance the algorithm so that it tolerates any configuration of two

faults. and finally, in Section 4. we give simulation results which show the robustness of

the fault tolerant algorithms.

2. A Top-Down, Distributed Embedding Algorithm

We have developed a top-down, distributed algorithm for embedding an (n -1 )-tree in

an n -cube, preserving adjacency. In this algorithm, each node receives a small packet of

information from its parent, determines which nodes will be its children and ,,ends them

%
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the 'nformation they need to continue the configuration. The information needed to deter-

mine the addresses of a node's children consists of: (i) the height of the subtree rooted at

the node: and (ii) an "interchange word" which specifies some axes along which the subcube

has to be reflected in order to yield a proper embedding.

The addresses of the node's children are calculated based on the bit positions which

differ between the node's address and its child's. Since adjacent nodes in ? hypercube differ

in only a single bit position. a single integer will suffice to differentiate between the neigI,

bors of a node. In the subsequent discussion, neighbors of a given node will be referred to

by the bit position differentiating them from this node. The interchange word, which in our

algorithm is passed _rom a parent to its children, consists of a string of bits. Numbering

the bits with zero corresponding to the rightmost (least significdnt) bit, a "I" in the jth posi-

tion specifies an interchange of the form (j/j+1), where an interchange of the form (i/k)

indicates that subsequent children that are mapped to neighboring nodes across the ith

dimension (if any) have to be remapped to the neighboring nodes across the k th dimension

and vice versa.

More specifically, a node receives the height h of the subtree rooted there. and ini-

tially takes its left child to be its neighbor in the h dimension, and its right child the neigh-

bor in the (h -2) dimension. These bit positions are then modified by applying the inter-

changes specified in the node's interchange word. The word is read right to left. applying a

given interchange to the bit position addresses of both children if the corresponding bit in

the interchange word is set. To the right child, whose dimension has just been determined.

the node sends height (h -1) and its interchange word unmodified. To the left child the

node sends height (h-1) and its interchange word, modified by setting bit (h -2). The

embedding can be rooted at any node in the cube by invoking procedure EMBED there with4"i
the height h of the tree to be embedded and the interchange word rot =0.

procedure EMIED(h .rot)
begin

4 '..
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1'  L height h of subtree to be rooted at this node-

/* interchange word rot */

if h =1 then this is a leaf node

else if h > 1 then

r :=h"
1 :=h -2;

for i := 0 to (length of rot) loop

if (bit i of rot =1) then

if (r =i ) then r :=i +1:
else if (r =i +1 ) then r :=i
end if;

if ( =i ) then I :=i +1;

else if ( =i +1) then I :=i
end if:

end if:

end loop;

end if:

rotr =rot
rot, =rot +2 h -2

invoke EMBED(h -1.rotr) at the node across dimension r '* right child */

invoke ENIBED(h -1.rot,) at the node across dimension I /* left child */

end EMBED

We will. now prove that this algorithm always yields a correct embedding. 0

2.1. Correctness of the Algorithm

In [8] Wu gives an algorithm for embedding an (n -1)-tree in an n -cube and shows

that the embedding is correct. We will show that our algorithm always produces an

embedding identical to an instance of Wu's and therefore is also always correct.

We first introduce a preliminary -ezult. let R=x _ I,_2 A, fei to a specific _

node and i.j refer to specific dimensions in the n -cube. For any node
i i.R

Q=(y y, 'y., y) in the h, percube. define the address transformation Ti as

%
:,-9 "--;-"---.':-'-," -'-"'" """ '
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follows:

TijR (Q)=Y"- 1 "Y, ."Y- YO ify,=x, andy, =xJ
T-1 = - " - " Yj " Y0  if V, =x i  and y , =x

TI (Q )=Y- - r " .- y 0 ify,=x, a n d y, = X

TI""R(Q )=v",,-1 ...'YI 'j YO if v, =x, and y=X

Given an embedding E of an (n -1)-tree in an n -cube rooted at node R. Ti>'j R creates a new

embedding E, by performing a Gray-code rotation of the embedded structure about dimen-

sions i and j.
Ti.jR

Another transformation, T2 . is defined such that if the embedding E is rooted at

node R, then T4jJR creates a new embedding E2 by remapping the root via T i j.R and embed-

ding the rest of the tree via the same dimensional structure as in the original tree with
iIj.

dimensions i and j swapped. More precisely, the transformation TijR is defined inductivelv

on the level of the tree as follows:

T: (R T J.(R)

For each node Q which is a child of some node P in the tree:

if Q =P XOR 2 d d *i and d j then T 'J.R(Q) = T4ijR(P XOR 2 d

if Q =P NOR 2' then T2J(Q T2 TJ(XOR 2j.
i j.R

ifQ=P XOR 2' then T 2 '(Q)= TiJ'(P) XOR 2'.

S dThe notation Q =P XOR 2 indicates that Q is the neighbor of P across dimension d the

addresses of P and Q differ only in bit position d.

Lemma 1: Let E be an embedding of an (n -] )-tree in an n -cube rooted at node

R =x, _x, .x,, if E, and E2 are the two embeddings created by applying Ti and

jTUR
T, to the nodes of E. then E, and E2 are identical.

Proof:

We can see that under either transformation the physical adjacency of logically adja-

cent nodes will remain -- due to the fact that the first is a Gray-code rotation and by con-

struction in the second. By induction on the level of the tree we show that a tree node in E

is mapped to the same cube node in E, and E,. The root (the only level I node) is mapped

PP~~~~ %-''' V %. . . -



to the same node in E1 and E,. Suppose each level n tree node occupies the same cube node

in E 1 and E.. In E. let N be a level n +1 node which is adjacent to its parent N' (a level n

node) across dimension d. We show that N is mapped to the same cube node in E, and E2

In E1 and E. node N is mapped to cube nodes T,'JR(N ). and Ti'JR (N ) respectively (simi-

larlv for N'). Now we consider three different cases.

Case (i) d ;:i and d ;2- j:

N =N' XOR 2 "
T JR(N)=T' j R(N ' XOR 2 )

-~~i R dN'  O
=T1 W ) XOR 2

=T2W() XOR 2'
. ~=T2 j(N)':

since bv the induct ion hypothesis we know that TijR(N ')=TijR(N ).

Case (i) d =i

Notice that for any node P:

T1 \OR 2L )-T''(P) XOR 2'

TUR(P XOR 2' )=T JR(P) XOR 2'.

From this and the definiiion of Ti.JR. it follows that if N =N' NOR 21 then

Tj R (N )=Ti R(N \OR 2')

=T1j N') NXOR 2'

=T2J(N) NOR 2'

=Ti(A ' ' X()R 2')
=TiR( N)

Case (iii) d =j -- similar to case (ii).

Q ED.

We no'k prove by induction on the size of the tree that our algorithm produces an

emhedding isomorphic to an instance of \Vus algorithm. For a height one tree the proof is

trivial. Suppose that the algorithms produce identical emheddings for trees of height n if

we start our algorithm at the roo: produced by Wu's. \Vu constructs an (n +1 tree

embedded in an (n +2)-cube by:
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(i) taking two identical n -trees embedded in (n +1)-cubes rooted at R such that R has a

free neighbor A (no tree node mapped to it) across some dimension x and A has a

free neighbor B across some dimencion y (!his is referred to as the "frce-free-

neighbor" property):

(ii) transforming one embedding via an adjacency preserving transformation T such that

T(R )=A and T(A )=B -- we will call this cube the second, and the remainini cube

(identical before transformation) the first:

(iii) connecting identical cube nodes in the two (n +1)-cubes across a new dimension n +2

prefixing addresses in the first subcube with 0 and in the second with 1:

(iv) making node 0.4 the new root (with the left child across dimension x and the right

ch;ld across dimension n +2).

NoticC Lhat now the root GA has as iLs left subtree the first n -tree embedding. rooted at R

and has as its right subtree the rotated (second) n -tree embedding. rooted at 1.4 =IT(R ).

(Notice also that the free-free-neighbor property still holds with 0.4 connected across

dininsion v to 0B which is connected across dimension n +2 to 1B= 1T(A )). If we stud%

this recursive procedure which assigns new dimension n +2 as the tree grows from an n -

tree Lo an (n +1)-tree. we see Lilat the corn'ecnion between A and B in an (n +1)-cube is

always across dimension n +1 and the connection between R and A is always across

dimension n . This means that the transformation T in (ii) will havc to be such that gi\en

.R =(x, •x . T(R )=A =R XOR 2' and T(R XOR 2'" "=T(A )=B =A NOR 2'

n n+1 RT1 is a transformation which will satisfy these criteria.

Suppose our algorithm for embedding anl (n +1)-tree in an (n +2)-cube starts at the

root A and recursively embeds its left subtree. an nz -tree rooted across dimension n at

R =A XOR 2 . in the (n +1)-subcube not containing dimension rn +2. It then embeds its

right subtree across dimension n +2: this subtree is an embedding of an n -tree (in the

remaining (n +1)-,ubcube) which is identical to the embedding of the left subtree except

for a swap between dimensions n and n +1. Applying T n R to each node in the
VA2



embedding of the left subtree produces the embedding of the right subtree.

We can see that if Wu's algorithm is applied for embedding an (n +I )-tree in an

(n +2)-cube. and our algorithm is applied for embedding an (n +1)-tree in an (n +2)-cube

.F, rooted at the same node A :

(1 ) the left subtree of each is a recursively embedded n -tree rooted at A XOR 2" and by

the induction h\ pothesis they are identical:

n +4-2
(2) the right subtree s rooted at A XOR 2 -. Consider the embeddings of the right sub-

trees in each case.

(a) The right subtree in Wu's embedding can be embedded by applying T, to

the left embedding

(b) The right subtree in our embedding can be embedded by applying T nn-IR to the

left embedding

(c) By Lemma 1. these right subtrees are identical

Thus. our algorithm creates an embedding identical to that created by an instance of Wus.

if it starts from the root produced by Wu's algorithm. Wu shows that her algorithm

alxa\s produces a proper embedding, therefore our algorithm always produces a proper

embedding (by proper xe mean that adjacency is preserved, and that the mapping is one-

i' to-one)

3. Modifications for Fault Tolerance

\We make fe~x assumptions regarding the ar hitecture of The h\ percube machine Fach

node must ha'-e processing as well as commuicitions capabilities. It is desirable. although

not necessary, that these be separated into a computation processor and a communicat ions

processor. ,xith message routing considerably faster than processing. Thus the "one-hop"

incurred by the remapping of a failed processor will not significantly delay the netxork's

(otherx ise. adjacent node) communications.

.. % % % %
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Our fault model takes into account both faulty processors and faulty communications

links. A node is considered faulty if:

(i) The node itself does not function properly (i.e. the computation and 'or the communi-

cation p.rt I a:-,

t~ A comm-n;,, ions link used in the embedded tree structure for communications A ith L

the n . :,e- not function properl."

We assume tha, a nriie can detect faults in it's immediate neighbors.

Our faul, tolerance scheme is based on the fact that in embedding an n -tree into an

(n +1)-cube i ,ur scheme), the (n +1)-cube can be divided into two n-cubes, one o.

which containm three-fourths of the nodes, the other contains only one-fourth. This can be

seen by stud-, in the embedding algorithm. Specifically, bit zero of the exchange ,.ord is

never used: it i- <e: i-\ the le', ei 2 nodes, but the level one nodes (the leaves) do not use it
a.

This implies that an, embeddings across dimension zero come from the initial assignment of N.
p

I or r Mloreo'.er note that in EMBED, only I can ever be zero, and it will be zero for every

level 2 node (,:nd on.i for these nodes). Thus, dimension zero separates the (n +1)-cube.

into two sub: :be- ,e of 'v hich contains one-half of the leaves of the tree (one fourth o,

the total tree nodesO. the other contains the rest of the tree (three-fourths of the total tree

nodes)

This sepi:-:::,;.-n of the tree nodes yields a structure which is amenable to a ver\ loca"

and distribulet 'al! tlerane scheme. If we look at a "mirror image" of the tree structure "-'
'-p

across dimen,; re- . e can notice that the only nodes which do not have a free ima,,e.

are the heighi 2 nodc, and their left children. Hence the image suhcube may be used to

remap fault% r'r,,e~srs l or an\. node at a level higher than 2. For the leaf nodes and thei-

parents, a difflren', strategy must be employed. In other words, the scheme is di\. ed into '%

two parts Oe applies to the lea'.es and their parents: the other applies to the rest ot the

nodes

p:
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The algorithm for restructuring the tree due to faulty processors or links can be

applied both at the initial embedding (to bypass already faulty nodes) or during execution

(to locally and distributedly remap failing nodes. without disturbing processing elsewhere

in the tree). Any single fault is guaranteed to be tolerated. This guarantee. by itself,

downplays the strength of the algorithm. The extreme "localness" of the restructuring

along with the relatively empty image subcube allows the system to tolerate many faults

simultaneously, including groups and strings of faults in the original tree.

For nodes of height greater than two. if a child is detected to be faulty. the node will

route all information (for that child) to the child's image across dimension zero. This will

incur a "one-hop" delay. Once in the image subcube, the embedding algorithm of Section 2

will 1e used to determine each node's children. After the initial node remapping. a node in

the image subcube will always attempt to "bounce back" (i.e. return processing to the origi-

nal subcube) before taking over processing duties. Thus, for a single fault, the faulty

processor s image will take over the processing duties, determine its children (the images of

the faulty node's children), and route information to them. These image children will

"bounce back" to the original children -- meaning that they will act as "one-hop" communi-

cations elements between the remapped node and its children. The net effect is a distributed

shift of the node into the image subtree with the rest of the tree structure remaining

unchanged (see Figure 1). If one of the original children is also faulty. its image will not be

able to bounce back and hence will automatically take over the processing: the logical tree

structure in each branch will return to the original subcube as soon as a non-fault\ node is

available. In this way sections or branches of the original tree can be fault,, as long as

their images are not (see Figure 3).

For nodes on the bottom two levels (leaves and their parents) a special remapping

must be employed. The parent will bypass a faulty node by routing the information for

one leaf through the other (see Figure 2). At this point \,e must note that for each height 2

n de (leaves' parent). the left child is originall\ connected across dimension zero and the

S..5
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- \0one-hop'
C</

unused image fault-free tree : - - - - -
one hop"

dimension zero dimension zero

(a/ (b)

'C0 non-tree nodes

tree nodes

fauito nodes

Figure 1
(a) a fault-free tree and its image

(b) local remapping for a single fault
h-2 nd,

h= ndedimension zeroI-
h2node

le1f nodes

(a) (b)

O non ire nodes

-ee nde,

€' uli U ndes

Figure 2
(a) fault-free leaf embedding

(b) remapping of a faulty leaf node
right child is originally connected across some other dimension (we refer to this dimension

as dimension r). If a child of a height 2 node is faulty, the algorithm will map it to the

node diagonally across dimensions r and zero. Whether the parent node is in the image sub-

cube or the original subcube. its children occupy the same two cube nodes, mirrored about

dimension zero. We consider the two-dimensional subcube containing the parent and its

two children: if one of these four nodes is faulty, we will use the other three -- never

incurring more than a one-hop delay in communications between logically adjacent nodes.

It can be seen that communications between any two logically adjacent nodes will

incur at most a "one-hop" delay. This is the cost of the fault tolerant scheme. Notice also

-_,
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L%

0 :%
O non-tree nodes

tree nodes-

f a u l t v n o d e s 
d i m e n s i o n z e r o - - -

Figure 3 - remapping of a faulty sec-Lion of the tree
that the remapping of an interior (h > 2) node will never interfere ith the remapping of

another node, and that no remapping of a node in one parent/leaf triad will interfere with

the remapping of an,, node outside that triad.

3.1. The Fault Tolerant Algorithm

The crucial step is the remapping of nodes originally mapped to faulty processors. We

assume that a node will remember the addresses of its parent and children for subsequent

information routing. The remapping algorithm is very simple. consisting of only a few-

cases. The only technicality which has been added is a method for determining %xhen to
bounce back." Different schemes can be en\ :sioned, we use a pair of "correction" bits w.Xhich

signify different states in the remapping process:

0- indicates a node in the original embed:ding;

01 -indicates the first in a sequence of remapped nodes in the image cube:

1 1 -indicates any subsequent nodes which Must decide whieter to bounce back or to

,,

take over processing.

:..1

%..
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When we say "invoke" we refer to initiating the embedding of the appropriate subtree at the

node specified. When we say a node across dimension x /y" we designate a node whose

address differs from the current node in both the x and y positions. In the single fault case.

a fault-free path is guaranteed to exist to that node either through dimension x and then y

or through y and then x.

procedure EMBEDFT(h .rot .correction

begin

determine r and I and interchange words rot, and rot, according to EMBED

if h =1 then this is a leaf node

else if h >2 then

case correction of

00 =>
for a E{r .l} loop

if node across dimension a is non-faultv then
invoke EMBEDFT(/h -1,rot 0 .00) at the node across dimension a

else
invoke EMBEDFT(h -1 .rot o,01 ) at the node across dimension zero a

end loop

01 =>
invoke EMBED FT(h -l.rot .11) at node across dimension r

invoke EMBEDFT(h -l.rot A1) at node across dimension I

11 =>

if node across dimension zero is non-faulty then

invoke EMBEDFT( rot .00) at node across dimension zero
else

invoke EMBEDFT(/, -l.rot, .11) at node across dimension r

invoke EMBED_FT(ih -l.rot, .11) at node across dimension I

end case:

else-if h =2 then /* I =zero */

for a E{r .zero) loop
if node across dimension a is non-faulty then

invoke EMBED_ FT(h -1 ,rot o,00) at the node across dimension a
else

invoke EMBED_ LT(h -1,rot o.01) at the node across dimension zero/r
end loop

%I

a . .L . . . .. • •.% . . % "__ % " . % % % ' .% % . % ' " % " .'% 
'  

. " " '€'',
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end if:

end EMBEDFT:

Even though the algorithm is presented such that it produces an initial fault tolerant

embedding. it should be clear that the same strategy may be used to remap nodes that

become faultv during runtime into non-faulty nodes. In fact. if we were to ignore run-

time faults and consider onl\ faults at the initial tree embedding. the al,,orithm

EMBED FT might be written in a simpler form. Namely, there would be no need to

bounce back to the original subcube. For this we can disallow state 11 and replace it with

state 00.

3.2. An Enhanced Fault Tolerant Algorithm

The algorithm EMBED FT is very good for tolerating multiple faults, but certain

double fault configurations cannot be tolerated. When a node is faulty, its image across

dimension zero should not be faulty -- neither should the images of its parent or its chil-

dren. Thus for each node that is faulty there are four nodes which must all be non-faultv.

We now modify our algorithm so that it will tolerate any configuration of two faults, and

many multiple fault configurations. For this. we consider distance 2 fault detection. This

could be implemented by having a node request a status report from some distance 2 neigh-

bor via both one-hop paths, if it fails to receive an acknowledgement. it assumes (for the

purpose of the algorithm) that this neighbor is faulty- We can modify the scheme for

immediate neighbor fault detection by adding an extra fault check state. but for clarity we

assume distance 2 fault detection.

The modifications st, -i from the fact that if a node can communicate with another

node across dimension x and then y (one-hop), it can also communicate across dimension v

and then x (also one-hop). Thus if we encounter a second fault when attempting to remap

a node, we can initiate the embedding at a neighbor and "one-hop" to the children bypassing

the faulty node. We also use backtracking if the embedding gets stuck due to faults. If a

node discovers that it cannot embed its children, it declares itself faulty and lets its parent

. -_-.s
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they would have been mapped in a fault-free embedding (see Figure 4). Thus, there are

two one-hop paths from the remapped node to its children, and a second fault can be

bypassed. For example. a node which was originally adjacent to its parent across dimension

d (and whose children were across dimensions r and I ) is remapped to its parent's neighbor

across dimension zero (due to a fault in the original embedding). It can now map its chil-

dren across dimensions d and then a (where aE ir .1 )). If the node acr.-;s dimension d is

faulty, there is still a fault-free path across dimensions a and then d . This "bypass" of the

node across dimension d enables the embedding algorithm to tolerate any configuration of

two faults. As in the single fault algorithm, we indicate the traversal of dimensions x and

Y in either order (depending upon the position of faults) by "across dimensions x /Y ." In our

example, if the node across dimensions d /a is faulty, the corresponding child can be

mapped to the node across dimension a. and its children can be remapped using a similar

bypass routing. In general. if a large subtree and its corresponding image are faulty, an

embedding can still be realized with only one-hop communication: an example is given in

figure 5.

The algorithm utilizes the relative emptiness of the image subcube to embed leaf nodes

which, because of certain fault configurations. would otherwise not be successfull% embed-

ded. A leaf node's parent (h =2 node) in the image subcube that cannot embed the leaf in

the node specified by EMBED attempt to embed the leaf in any unoccupied. fault-free node

(at most distance 2) whose address's bit parity is different from that of a leaf node's. It can

be shown that this will never interfere with a fault-free embedding of another part of the

tree.

In the following algorithm, two correction bits are used to record the state of the

remapping process as follows:

00 -- indicates a node in the original embedding:

10 -- indicates a node in the imiige subcube x hich must map its children using bypass

routing:
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01 -- indicates that the current node is mapped to the image of the node's position in a
or

fault-free embedding:

11 -- indicates any subsequent node in the image subcube which must decide whether

to bounce back or take over processing.

A handshaking protocol is necessary to enable the backtracking to function properly.

When backtracking occurs,. some nodes may have to be removed from the tree structure and

* should become available for subsequent embedding attempts. There are four different types

of messages needed to synchronize the embedding. When a node decides to backtrack, an

invalidate" message is passed to any child at which the embedding of a subtree has already

been invoked: this message is propagated throughout the subtree. Then a "failure" message

is passed to the node's parent to indicate that the corresponding subtree could not be rooted

at this node. Since the algorithm is distributed among the nodes, a "confirmation" message

', should be propagated from the leaf nodes to the root to indicate a successful embedding,

and in response the root should initiate a "success" message which will propagate through

the tree. This is a typical handshaking protocol used in distributed computing.

procedure EMBEDFT_2( .rot correction d )
begin

if this node is alread\ in use as a tree node tnen backtrack

determine r and I and interchange words rot, and rot,, according to EMBED

if h =1 then this is a leaf node

else if h > 2 then -

case corrcction of

00 =>
if any 2 of neighbors across dimensions r .1 or zero are faulty then backtrack

/* parent x ill reconfigure *

end if
for a Ejr .11 loop

if node across dimension a is non-faulty then
invoke EMBEDFT_2( -1.rot.O0.0) at the node across dimension a

else
invoke EMBED FT 2(h -1 rot .10.a) at the node across dimension zero

end if

V ".0 % ,.
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end loop

10 =>
for a e{r .1 loop

if nodes across both dimensions a and d are faulty then backtrack
if node across dimensions aid is non-faultv then

invoke EMBEDFT_2(h -1,rot 01.0) across dimensions a/d
else

invoke EMBEDFT_2(h -1.rot ,10,d ) across dimension a
end if

01=> -

for a E({r .1 ) loop
if node across dimensions a/zero is non-faultv then

invoke EMBEDFT(h --1 ,rot ,,000) at the node across dimensions a/zeroelse,,

invoke EMBED FT(h -1.rot,11.0) at the node across dimension a
end loop

11=>
if neighbor across dimension zero is non-faulty then

invoke EMBEDFT_2(h ,rot ,00.0) at node across dimension zero

else
invoke EMBEDFT_2(h -1,rotr 11,0) at node across dimension r
invoke EMBEDFT_2(h -1,rot, .11.0) at node across dimensior. I

end case:

else if h =2 then /* I =zero */

case correction of

00 =>
if anv 2 of nodes across r. zero or r and zero are faulty then backtrack
for a E{r .zerol loop

if node across dimension c is non-faulty then
invoke EMBEDFT_2(h -1.rot 0 .00.0) at the node across dimension a'

else
invoke EMlBED FT 2( -l .rot 0.00.0) at the node across dimensions zero r

end loop

01111 =>
for a e{r J 1 loop

if neighbor across dimension a is non-faulty then
invoke E.MBF) FT 2(1.rot _.00.0) across dimension a

else
invoke EMBED FT 2(l.rot o.00.0)
at any unoccupied, non-faulty neighbor

end if

10 =>
for a1 E{r .11 loop

.-
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if neighbor across dimensions d Ic is non-faulty then
invoke EMBEDFT_2(l.rot ,00.0) across dimensions d /a

else
invoke EMBEDFT_2(lrot 0 ,00.0)
at any unoccupied. non-faulty, distance 2 neighbor

end if

en,: ase

end EMBEDFT 2:

4. Performance Evaluation and Concluding Remarks

In or"je- :o tcot the robustness of our fault-tolerant algorithm, we performed a simu-

lation study with various size hypercubes and varying numbers of faults. We ala'.s

invoked the algorithm at a non-faulty node, and simulated the fault-tolerant em+heddinis

on many different random fault configurations.

The simulation programs were written in C and the random faults were generated by

calls to the Unix s.,- tem function srandomo. Attempts were made to embed a tree of a

given height for different distributions of a specific number of faults, and results ,,ere col-

lected as to the number of successful attempts. For the first fault tolerant olgorithm.

EMBED _FT. the simulation results showed. as expected. that embeddings with /er(, or one

fault were always successful (100 percent of the attempts succeeded). For the enhanced

algorithm, FMBEDFT2. embeddings with up to two faults were always successful. The

performance of the embedding algorithms degraded nicely as the number of faults

increased. The results for trees of heights 6 and 8 are shown in Figures 6 and 7. respec-

tivelv. From these figures it is clear that the additional cLmplexity in EMBED 1-T 2 pro-

vides a more robust Iault tolerant embedding algorithm.

The above results show the average number of aults that can be tolerated g iven an

initial non-faulty starting node. This corresponds to the case of run-time fault-tolerance.

At run-time, the basic structure of the tree embedding has already been established and. as

faults occur, this basic structure should not change. The problem of fault tolerance at the

initial embedding of the tree in the hypercube is slightly different. If the algorithm fails to

% ' %I
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Figure 6 - Performance of the Fault Toierant Algorithms

for a height 6 tree in a 128 node hypercube.

embed the tree starting at the given root, there is no reason why it might not succeed from

another root. Also. if the algorithm fails to embed the tree for some set of faults, it is pos-

sible that choosing some dimension other than zero as the dimension across which faultyv

nodes are remapped may produce a successful embedding (this will, of course, change the

basic structure of the embedding). We investigated the first of these two possibilities:

specifically, if the algorithm EMBED FT 2 failed to embed a tree rooted at a given node.

alternative nodes were tried until either a successful embedding was achieved, or the algo-

rithm failed to embed a tree rooted at any of the cube's nodes. Tables 1 and 2 give the

results for trees of heights 6 and 8. respectively. For each specific number of faults. 100

different fault distributions were considered. The number of times that a successful

embedding was achieved and the average number of roots tried before success are recorded

in the second and third rows of the tables.

We tried to make as few assumptions as possible regdrding the hardware model. The

fault model includes both node and link faiuies and assumes that the

-. : . '.''-~-
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Figure 7 - Performance of the Fault Tolerant Algorithms
for a height 8 tree in a 512 node h% percube.

Numberof faults 5 10 15 20 25'

Probability of finding 10 110 10 .2 4
,tidbeoesccs 1 _ 1.0 1016.0 552 .4

successful em bedding __0 __ ____ 1_ _ __ _ _ __0_ _

Average number of roots 1. 12 20 40

Table 1 - mbedding attempts at different roots for a height 6 tree.

Number off -lilts 10 20 30 40150 60 .0 s. 90 100 0
r bi 1.0 1. 1.0 .96 .72 .50

a successful ofmbending 10 ~ 1 0 1

em e dn _ _ __ _ _ __ _ _ _ _ _ _ _

Aoer e number of roots1

1. 1.20 1.1 .0 1.5 2. 4"12 3 1 1

tried before success I ______ __________

Table 2 - Embedding attempts at different roots for a height S tree. '

.om municat ions routing facilities associated with a node fail along \% ith the processing

faciFies. Certain hardware !'odels , ould simplif the fault tolerant algorihms and make

them more robust. If the communications part of a node remains operable when the com-

putation part fails (e.g. there is a separate routing part). this node would not ha'e o be

by passed for communications purposes and more fault configurations could be toreraed If

I i
: ~ r..nu.ro*oos. . 1.0 11 1. 1~~ V. 2. .2 12' 31 lO. 213
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upon failure a node short circuits all communication across a certain dimension (zero), a

technique can be developed where only the relocated node is aware of any change in the

embedded structure -- the parent and children send messages to the original location and

these messages are transmitted across the short circuit to the node's image.

Finally, we notice that the algorithms that have been developed for embedding a

binar' n-tree in and (n +l)-cuhe[4] .[8] and our algorithm all produce isonmorphi embed-

dings (in fact, it can be shown that Johnsson's and our algorithm are isomorphic and

correspond to an instance of Wu's). We conjecture that the recursive embedding of an n -

tree in an (n +1 )-cube is unique.
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