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Abstract
In this chapter I begin by discussing Distributed Data Mining (DDM) for scaling up, beginning by asking what scaling up

means, questioning whether it is necessary, and then presenting a brief survey of what has been done to date. I then provide
motivation beyond scaling up, arguing that DDM is a more natural way to view data mining generally. DDM eliminates many
difficulties encountered when coalescing already-distributed data for monolithic data mining, such as those associated with
heterogeneity of data and with privacy restrictions. By viewing data mining as inherently distributed, important openresearch
issues come into focus, issues that currently are obscured by the lack of explicit treatment of the process of producing monolithic
data sets. I close with a discussion of the necessity of DDM for an efficient process of knowledge discovery.

0.1 Introduction

Until recently, research on distributed data mining (DDM) has been motivated primarily by the desire to mine very large

databases. Questioning how often it is necessary to mine huge databases, as opposed to mining a sample of the data, fuels an

interesting debate—to which DDM researchers should pay heed. Nevertheless, it is clear that faster data mining sometimes is

necessary. Its easy decomposability makes data mining an ideal candidate for parallel processing, and several lessonsemerge

from existing work.

Although scaling up is an important issue, it also is important for DDM research to look beyond scaling up, where many im-

portant research problems lie, relatively unaddressed. Thus, to counterbalance the existing body of work using DDM forscaling

up, I argue that DDM is generally preferable to monolithic data mining. Databasesare distributed. They are heterogeneous.

They have privacy restrictions. There often are myriad databases, electronic documents, websites, etc., that might contain infor-

mation relevant to a particular data mining problem. Building a monolithic database, in order to perform non-distributed data

mining, may be infeasible or simply impossible. Hopefully this argument will give additional impetus to research in potentially

fruitful areas: mining multitable databases, mining the web, mining with background knowledge, etc.

Viewing knowledge discoveryas an inherently distributed activity makes existing data mining technology seem only nar-

rowly applicable. Should not data mining algorithms be ableto take advantage of all the data, information, and knowledge

that is available only a mouse click away? Even a little of it?Currently, researchers are designing meta-data that will facilitate

machine access to the vast universe of digital information.We should prepare for automated knowledge discovery.

0.1.1 Lessons from scaling up with DDM

The most common motivation for research on distributed datamining is the need to scale up to massive data sets. Because the

run-time complexity of data mining typically is linear or worse in the total number of instances, massive data sets can bepro-

hibitively expensive to mine unless attention is paid to scaling up. Besides simply having a massive data set, other motivations

for fast data mining include: interactive induction (Buntine 1991), in which an inductive program and a human analyst interact

in real time; mining multiple models and combining their predictions (Dietterich 1997); and wrapper approaches, whichfor

a particular problem and algorithm iteratively search for feature subsets or good parameter settings (Kohavi and Sommerfield

1995; Kohavi 1996; Provost and Buchanan 1995; Provost 1992). In addition to making many runs of a data mining program,

experimenting with many machine-learning biases requiresa large data set to avoid overfitting due to bias selection (DesJardins

and Gordon 1995). Furthermore, in a wrapper approach, each evaluation may involve multiple runs to produce performance
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statistics (e.g., with cross-validation).

Venkat Kolluri and I recently surveyed the state of the art ofscaling up decision-tree/rule induction (Provost and Kolluri

1999). Four main ideas that emerge from existing work on distributed data mining are as follows.� Distributing the search space can be problematic. It does not address directly the problem of massive data, and load

balancing is difficult and costly. Shared-memory systems can alleviate the problems, because massive data transfers can

be avoided.� Operating on distributed instances can be effective and very efficient, if centralized control is possible. The gathering of

the statistics needed to evaluate a particular pattern (e.g., a rule) can be parallelized all the way down to the individual

instances, providing tremendous speedups.� Using a distributed database management system (DBMS) to control the process is not completely straightforward. There

are several ways of implementing data mining routines within a DBMS, each with its own tradeoff. Until flexible and

effective DBMS mining routines are commonly available, mining within a DBMS will require specialized program-

ming. Also, it has been observed that even with a fast database machine, mining database-resident data directly is often

considerably slower than flat-file mining (Musick 1998).� Cooperation among distributed processes allows effectivemining even without centralized control. Two main techniques

for cooperation have been particularly effective. Processors can operate independently on subsets of the data, and then

combine their models. A processor also can share potential knowledge as it is discovered, in order to get the opinions of

the other processors (e.g., their statistical assessments).

In section 0.2 I will discuss and provide references to some instances of work based on these ideas.

0.1.2 Why scale up to massive data sets?

Databases of customer, operations, scientific, and other sorts of data continue to grow rapidly (Fayyad, Piatetsky-Shapiro, and

Smyth 1996). Both manual data mining and the direct application of today’s mining techniques can be problematic when data

sets exceed 100 megabytes (Provost and Kolluri 1997; Huber 1997). Huber observes that “somewhere around data sizes of 100

megabytes or so, qualitatively new, very serious scaling problems begin to arise, both on the human and on the algorithmic

side” (Huber, 1997, p. 306).

Scaling up is desirable, because increasing the size of the training set often increases the accuracy of induced classification

models (Catlett 1991). In many cases, the degradation in accuracy when mining smaller samples stems from overfitting dueto

the need to allow the program to findsmall disjuncts(Holte, Acker, and Porter 1989), elements of a class description that cover

few data items. In some domains, small disjuncts account fora large portion of the class description (Danyluk and Provost

1993). Overfitting from small data sets also may be due to the existence of a large number of features describing the data. Large

feature sets increase the size of the space of models. Searching through and evaluating more candidate models increasesthe

likelihood that, by chance, the program will find a model thatfits the data well (Jensen and Cohen 1999), and thereby increases
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the need for larger data sets (Haussler 1988). Things get particularly difficult when there are many featuresand there is the

need to find small disjuncts. Specifically, because large feature sets lead to large and often sparsely populated model spaces, a

program biased to search for models covering special cases can be inundated with small disjuncts from among which it cannot

choose.

Some data mining applications are concerned not with predictive modeling, but with the discovery of interesting knowledge

from large databases. In such cases, increasing accuracy may not be a primary concern. However, scaling up nonetheless may

be an issue. For example, finding small disjuncts often is of interest to scientists and business analysts, because smalldisjuncts

may capture special cases that were unknown previously (theanalysts often know the common cases). As with classifier

induction, in order not to be swamped with spurious small disjuncts it is essential for a data set to be large enough to contain

enough instances of each special case from which to generalize with confidence (Provost and Aronis 1996).

For all its theoretical considerations, the issue of scaling up is inherently pragmatic. For scaling up induction algorithms,

the issue is not as much one of speeding up a slow algorithm as one of turning an impracticable algorithm into a practicableone.

The crucial issue is seldom “how fast” you can run on a certainproblem, but instead “how large” a problem can you feasibly

deal with. Both time and space considerations are critical.Time- and space-complexity analyses should address asymptotic

complexity as the numbers of instances and features grow. Also important, the absolute size of the main memory with which

the computing platform is equipped should be considered. Almost all existing implementations of induction algorithmsoperate

with the training set entirely in main memory; no matter whatthe computational complexity of the algorithm, if exceeding the

main memory limitation leads to virtual memory thrashing, the algorithm will not scale well.

Finally, the goal of the data mining must be considered. Evaluating the effectiveness of a scaling technique becomes

complicated if a degradation in the quality of induction is permitted. The vast majority of work on induction algorithmsuses

classification accuracy as the metric by which different algorithms are compared. In such cases, we are most interested in

methods that scale up without a substantial decrease in accuracy. For problems that require mining regularities from the data

for purposes other than classification, metrics should be chosen by which effectiveness can be measured (and compared) as the

system scales up.

0.1.3 Is subsampling sufficient?

Before moving on discuss existing work more specifically, let me tarry a while on a point that often is not treated thoroughly

enough in papers on scaling up to massive data sets.

Data sampling is well accepted by the statistics community,who observe that “a powerful computationally intense procedure

operating on a subsample of the data may in fact provide superior accuracy than a less sophisticated one using the entire data

base.” (Friedman 1997). The question of scalability asks whether the algorithm can process large data sets efficiently,while

building from them the best possible models. Thus, for anyone wanting to mine a large data set, an important question is:

must I process the whole thing? Or will sampling be effective? The answer is: it depends on the data set and the algorithm.

Just because a massive database exists does not imply necessarily that you have to mine it all. In practice, as the amount of

data grows, the rate of increase in accuracy slows (Frey and Fisher 1999). Whether sampling will be effective depends on
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how dramatically the rate of increase slows. Also, different algorithms benefit from additional data to different degrees. For

example, Harris-Jones and Haines (1997) observe that the learning curves of classic statistical algorithms tend to level off after

relatively few data, in contrast to the learning curves of algorithms considered more typically by machine learning researchers.

Determining how much data to use is difficult, in general, because the smallest sufficient amount depends on factors not

known a priori. For example, it depends on the minimum size ofthe special cases that must be discovered in order to model

the phenomenon effectively. However, if one is willing to bias an algorithm (explicitly or implicitly) against finding very

small special cases, then recent work on determining sufficient sample sizes for similar data mining problems provides relevant

results. For example, Toivonen (1996) and Zaki et al. (1997)discuss the determination of sufficient sample sizes for finding

association rules that are no smaller than a predefined size,based on tolerances on the probability of error and the size of the

error. A different view of sufficient sample size, that ofsample complexity, is provided by Valiant’s theoretical framework

(Valiant 1984; Haussler 1988), which for a given hypothesisspace allows the calculation of the number of instances sufficient

for inducing with high probability a good approximation to the “true concept,” if one exists in the hypothesis space. It should

be noted that determining the sample sizesufficientfor induction may say little about how many examples are necessary in

practice. Recent work has investigated systems that can determine empirically how many examples are necessary, by starting

small and progressively sampling larger subsets until model performance no longer improves (John and Langley 1996; Provost,

Jensen, and Oates 1999).

Published work provides differing views of how often real-world classifier learning curves level off before massive data

sets are needed. Catlett’s work shows that induction from subsets of data decreases accuracy. Despite the advantages ofcertain

sampling strategies, viz., speed-ups and improving the accuracy of the classifier over random sampling in noise-free domains,

Catlett concludes that they are not a solution to the generalproblem of scaling up to very large data sets (Catlett 1991).However,

it should be noted that at the time of Catlett’s study, “massive” data sets were much smaller than they are today, and processing

times much longer.

Oates and Jensen (1997) study inducing decision trees for nineteen data sets, and look specifically at the number of instances

necessary before the learning curves reach a plateau. They regard a plateau to have been reached when an accuracy estimate is

within a certain tolerance of the maximum (specifically, onepercent, in their experiments). Surprisingly, for these nineteen data

sets, an accuracy plateau is reached after relatively few training instances. The three data sets for which the most instances were

needed were (from the UCI repository (Blake, Keogh, and Merz1998)): letter-recognition (17,000 instances), led-24 (4500

instances), and census-income (9768 instances).

In another recent study, Harris-Jones and Haines (1997) analyze the relationship between data set size and accuracy for

two large business data sets (up to 300,000 instances), by estimating learning curves empirically. They found that while

some algorithms level off quite early, in some cases algorithms (decision-tree inducer C4.5 and its successor C5, in particular)

continue to show accuracy increases across the entire rangeof data set sizes. However, the improvements in accuracy at the

upper size limit have become quite small, and it is difficult to conclude that they would continue with another order of magnitude

increase in data set size. Even if they would, it is importantto question whether the benefit of further, diminishing improvements

is worth the associated cost (Haines 1998).

Neither these results nor Catlett’s provide ample justification for using DDM to scale up. Every data set in both studies
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would fit in the main memory of a modern desktop PC, and, given the existence of fast algorithms for mining monolithic data

sets (Provost and Kolluri 1999) and the increasing speed of desktop computers, only under very tight time constraints would

DDM be necessary.1 Distributed Data Mining, as a field of study, would benefit from a few prominent examples of the need to

scale up beyond reasonable main memory limits.

0.2 Existing methods for scaling up with parallel processing

Questions of necessity aside, data mining is an ideal application for parallel processing. The problem can be decomposed along

many dimensions, often to a very fine granularity. The rich decomposability is illustrated by the variety of approaches that have

seen success. Tight, fine-grained parallelization has succeeded for massively parallel machines. Coarser, looser coupling has

succeeded for collections of stand-alone computers. With some approaches, the distributed processors act independently, only

sharing their final results. With other approaches, they cooperate so that individual processors can obtain a global perspective.

0.2.1 Fine-grained parallelization

Fine-grained parallelization can take advantage of two types of decomposability:search-space parallelizationandparallel

matching. Data mining can be framed as the search of a very large space of patterns. In search-space parallelization, the space

of patterns is decomposed and different processors search different portions in parallel (Cook and Holder 1990), similar to the

parallelization of other forms of heuristic search (Kumar and Rao 1987; Rao and Kumar 1987). Load balancing and interprocess

communication add additional complexity and overhead. Search-space parallelization should be particularly useful for data

mining algorithms that perform massive search, such as the MetaDENDRAL-style, systematic-search rule learners (Buchanan

and Mitchell 1978; Clearwater and Provost 1990; Smyth and Goodman 1992; Segal and Etzioni 1994; Webb 1995; Oates,

Schmill, and Cohen 1997), and the experiments of Oates, Schmill and Cohen (Oates, Schmill, and Cohen 1997) show that,

indeed, speedups of nearlyn can be obtained withn processors (they report results withn = 2 andn = 3). Mining Bayesian

networks from data (Cooper and Herskovits 1992) also requires massive amounts of search, and Lam and Segre (Lam and

Segre 1997) show that search-space parallelization can allow much larger networks to be found than with traditional, serial

approaches.

In general, search-space parallelization does not addressthe problem of very large data sets, because each processor will

have to deal with all the data or will have to subsample. However, recently Zaki et al. (1999) have had success with search-

space parallelization of a decision-tree learner; by taking advantage of a shared-memory multiprocessor, they are able to avoid

replicating or communicating the entire data set among the processors. Using shared memory also allows the developmentof

effective load-balancing techniques. Galal, Cook, and Holder (1999) recently have had success using search-space parallelism

to scale up a scientific discovery system, dealing effectively with load balancing by having a master manage a priority queue of

search nodes, serving them to the slaves as needed.

1In fact, the experiments of Harris-Jones and Haines were conducted on a dual-processor 133MHz Compaq computer with 256MRAM running Windows

NT. The run time for C5 on 283,649 instances was fifty minutes (fifteen minutes for 99,303 instances).
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requests
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algorithm

SEQUENTIAL MACHINE PARALLEL MACHINE

Instances and matching routines
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Figure 1: Parallel matching

Massively parallel induction has been more successful whena finer-grained decomposition is used. Parallel matching is

based on the observation that search for data mining is different from most other AI searches. In data mining the cost of

evaluating a node in the search space is very high, but also ishighly decomposable. Nodes (e.g., partial rules or decision tree

branches) are hypothesized and each is matched against manyinstances to gather statistics. With parallel matching, depicted

in Figure 1, this compute-intensive matching process is parallelized by migrating the instance set and matching routines to a

parallel machine, while the main induction algorithm (themaster) may run on a sequential front end.

Parallel matching has been used by Lathrop et al. (1990), by Provost and Aronis (1996), and in the parallelization of the

SPRINT algorithm (Shafer, Agrawal, and Mehta 1996). The former two efforts use a straightforward parallelization of the

matching routines. SPRINT builds data structures called attribute lists, vertical partitions of the data set, used to facilitate

efficient construction of decision trees. In the parallel implementation, each processor builds a sublist of each attribute list, and

for each decision-tree node sends the master a portion of thestatistics needed to determine the best split.

Impressive speedups are reported for parallel matching: less than a minute to mine one million instances on a CM-2

Connection Machine with8192 bit-slice processors (Provost and Aronis 1996); 400 seconds to mine 1.6 million instances on

an IBM SP2 with16 processors (Shafer, Agrawal, and Mehta 1996).2 Kufrin (1997) uses parallelization to speed up C4.5’s

transformation of decision trees to rules (C4.5rules), using parallel matching for two phases of rule-set postprocessing, and

dividing up the rule set itself for a third. He also reports impressive speedups (efficiencies averaging more than0:9 for four

induction tasks and up to eight processors).

Zaki (1998) points out that shared-memory multiprocessor (SMP) systems are much more common than massively parallel

machines. Motivated by this observation, he presents a parallel matching approach to the design of an SMP version of SPRINT.

Instead of distributing the instances, vertical partitions corresponding to SPRINT’s attribute lists are distributed and processed

in parallel. The attribute lists are divided equally among the processors, which return the matching statistics to the master.

If the data already are resident in a data warehouse with a parallel infrastructure, parallel matching can be done by the

2These run times are given for illustration only. No comparison should be inferred.
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existing database server (Freitas and Lavington 1996). This approach is fundamentally similar to that shown in Figure 1,

except the implementation-specific parallel data representation is replaced by an existing parallel database system.Also, for

communication between the front- and back-end, implementation-specific matching requests are replaced with SQL queries.

Parallel data mining is treated in more detail by Freitas andLavington (1997) and by Provost and Kolluri (Provost and Kolluri

1999). Provost and Kolluri also discuss in more detail the use of database systems and SQL queries for scaling up.

0.2.2 Loosely coupled DDM

The previous section addressed fine-grained decompositions, where parallelism is used to speed up existing data miningalgo-

rithms so that they feasibly can be run on massive data sets. Alternatively, the data can be partitioned, and mined by a loosely

coupled collection of inductive algorithms. Data partitioning techniques separate subsets of instances or subsets offeatures;

viewing the data set as a table, this corresponds to selecting rows versus selecting columns.

...

...

...

L L L

C C C

C final

S S S1 2 n

1 2 n

1 2 n

          set
Large example

Sample selection
  procedure

Combining procedure

Figure 2: Mining partitioned data

Figure 2 depicts a general model showing the similarities among partitioned-data approaches. Systems using these ap-

proaches select subsetsS1; : : : ; Sn of the data based on aselection procedure. Data mining algorithmsL1; : : : ; Ln are run on

the corresponding subsets, producing concept descriptionsC1; : : : ; Cn. Then the concept descriptions are processed by acom-

bining procedure, which either selects from amongC1; : : : ; Cn or combines them to produce a final concept description—the
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distributed data mining result. Loosely coupled systems differ in the particular procedures used for selection and combining.

They also differ in the amount and style of interaction amongthe mining algorithms.

More precisely, Figure 2 shows a model ofindependent multi-sample mining, because no interaction is depicted between

then mining runs; theCi are formed independently, and then combined. Fayyad et al. (1993) use a sequential version of

independent multi-sample approach in which theLi are decision-tree inducers; theCi are rule sets extracted from the decision

trees, and the combination procedure is a greedy covering algorithm.

Independent multi-sample mining can be distributed easily. Power is obtained through the combining procedure, which can

take place as a sequential post-process, or can be parallelized (as by Kufrin (1997)). Sikora and Shaw (1996) mine multiple

rule sets in this manner; their combining procedure is a genetic algorithm. Hall et al. (1998) discuss this approach for building

decision trees. Similar to a distributed version of the approach of Fayyad et al., their system builds trees independently from

partitioned data, and the trees are converted to rules. The rule sets are merged following the method described by Williams

(1990), which resolves conflicts among similar rules. Shasha (1997) and his research group have implemented PC4.5, a parallel

version of C4.5 (Quinlan 1993), which uses a simpler instantiation of the framework of Figure 2. Specifically, eachCi is a

decision tree built from a different subset of instances. The combining procedure evaluates eachCi on a subset of instances

(disjoint fromSi), and chooses the one with the best accuracy as the final concept description.

Chan and Stolfo (1993, 1997) take an independent multi-sample approach in which theLi can be different induction algo-

rithms, as well as separate instantiations of the same algorithm. Notably, their method formsCf as a hybrid of theCi. Instead of

constructingCf by combining selected pieces of theCi, their approach combines theCi whole, and makes predictions using a

multiple-model, orensemble, approach (Ali and Pazzani 1996). Domingos (1996) also experiments with ensemble combining,

finding it superior to taking a simple union of theCi. The independent multi-sample approach also has been studied from the

perspective of learning theory (Kearns and Seung 1995; Yamanishi 1997).

A potential problem with creating a multiple-model hybrid is the resulting loss of comprehensibility. Prodromidis andStolfo

(1998) study several methods for evaluating, composing andpruning hybrid classifiers that reduce size while preserving or even

improving predictive performance. A quite different approach to creating comprehensible classifiers from ensembles is taken by

Craven (1996), by Domingos (1997), and by Guo and Sutiwaraphun (1998). These authors take advantage of the ability to use

machine-learning algorithms to induce understandable models of complex classification systems (Craven 1996) (cf. (Danyluk

and Provost 1993)). Specifically, they use the predictions of the ensemble as training labels, and induce from them a decision

tree that models the hybrid’s performance (with comparableaccuracy). The resultant single tree is more understandable than

the multiple-model hybrid.

Kargupta et al. (1998, 2000, 1999) consider distributed processing of vertically partitioned data (each processor hasa

subset of the features, rather than of the instances). Key tothe approach is their use of an orthonormal basis-function rep-

resentation; the coefficients for most of the basis functions can be determined from the partitions independently. If there are

critical dependencies among variables that do not reside onthe same processor, some communication is required. However,

for many data sets the independently learned basis functions may comprise the majority of the function to be learned, andthe

communication needs will be small. To instantiate their method, they describe how to use various basis functions to build

linear discriminant functions, linear regression models,and decision trees. This work relates to the suggestive prior work of
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Provost and Buchanan, who show that if the description language is modular, such that useful modules (in their case, rules) can

be learned from many different feature subsets, then accurate class descriptions can be built without ever processing asingle,

suitable subset of features (Provost and Buchanan 1995).

Different from the fine-grained parallel approaches described in section 0.2.1, accuracy may be degraded with these

partitioned-data techniques, as compared to running a single induction algorithm with all the data (if that were feasible).

0.2.3 Cooperative DDM
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  selection

C final
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Combining procedure

Figure 3: Sequential multi-sample mining: (a) model-guided instance selection, and (b) incremental batch learning

When multiple samples are being processed sequentially, itis possible to take advantage of knowledge mined in one iteration

to guide mining in the next. Examples of sequential multi-sample mining techniques include windowing (Quinlan 1983;

Fürnkranz 1998), incremental batch learning (Clearwater, Cheng, Hirsh, and Buchanan 1989; Provost and Buchanan 1995;

Domingos 1996; Wu and Lo 1998), and some wrapper-based methods for feature selection (Kohavi and John 1997; Kohavi

1996; Provost and Buchanan 1995; Provost 1992), all of whichare described in more detail by Provost and Kolluri (Provostand

Kolluri 1999). Figure 3 shows two approaches tosequential multi-sample mining.In model-guided instance selection, shown

in Figure 3(a), class descriptionCi is used in the selection ofSi+1. In incremental batch learning, shown in Figure 3(b), class

descriptionCi is taken as input to the data mining program and is used in buildingCi+1.
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Concurrency precludes the straightforward parallelization of partitioned-data approaches for which the results from one

stage are required as input to the next. Therefore, partitioned-DDM must take a slightly different tack. Rather than assume

that results are available before a stage begins, distributed algorithms can cooperate by sharing results as they become available

(as depicted in Figure 4). Since many mining algorithms operate naturally as anytime algorithms, producing some results very

quickly and then more as time progresses, early in the DDM process there likely will be results that can act similarly to those

passed from stage to stage in the sequential mode.

... S S S

L L L

C C C

1 2 n

1 2 n

1 2 n

...

...

          set
Large example

C final

Selection
procedure

Combining
procedure

Figure 4: Cooperating DDM

For distributed mining of rules and similar patterns, a useful observation is that certain evaluation metrics obey aninvariant-

partitioning property(Provost and Hennessy 1994; Provost and Hennessy 1996). That is, every rule that is acceptable globally

(using the entire data set) according to the metric, will be acceptable on at least one partition. This invariant-partitioning

property holds, for example, for many variants of support and confidence (Provost and Hennessy 1994; Provost and Hennessy

1996; Cheung, Han, Ng, Fu, and Fu 1996). By taking advantage of this property, a superset of the rules that satisfy the metric

will be generated when all partitions are considered independently. The problem of finding the acceptable rules thus is reduced

to selecting from this superset only those rules that are acceptable globally.

Provost and Hennessy (1994, 1996) allow individual processes to cooperate, in order to select all and only the globally

acceptable rules. The cooperation takes the form of requests (from the other induction processes or from a server with the
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entire database) for verification of statistics regarding the best discovered rules. The combining procedure takes theunion of

theCi. Interprocess communication is minimal, because cooperation requests are limited to rules that appear acceptable to at

least one induction process, and each cooperation request requires simply that the rule be passed to each processor (which uses

very few messages, especially if a logical ring network topology exists within the physical network topology). Provostand

Henessy observe speedups linear in the number of distributed processors. The system is effective for very large data sets, up

to the point where the individual processors run out of core memory and page thrashing begins (for the data considered, with

64M of main memory, thrashing sets in at several hundred thousand records per processor). Other forms of cooperation, such

as sharing pruning information, also are presented.

A similar method is employed by Cheung et al. (Cheung, Han, Ng, Fu, and Fu 1996; Cheung, Ng, Fu, and Fu 1996) to learn

association rules. Essential to most association rule learning algorithms is finding rules with support greater than a prespecified

level. Since support satisfies the invariant-partitioningproperty, the search can be distributed, as discussed above. Cheung et

al. also discuss efficient cooperation by sharing statistics and by sharing pruning information.

A sequential, but easily distributable, version of this approach is the basis for the algorithm Partition (Savasere, Omiecinski,

and Navathe 1995), which has been called one of the most efficient association-rule algorithms in terms of database operations

(Toivonen 1996). Similarly, for scaling up a scientific discovery system, Galal, Cook and Holder (1999) found the concur-

rent/cooperative approach to be the best (among the varioustechniques they studied). They also partition the problem and then

share the best discoveries, which are evaluated by all the processors to obtain a global perspective.

0.3 Beyond scaling up to networked, cooperating knowledge services

The generic model described in the previous section included a sample selection procedure that partitioned a large instance set

into several subsets. However, in some cases such an explicit procedure is superfluous, because the data are partitionedand

distributed naturally. This is true for traditional databases in corporate environments, many types of public data, and what are

becoming known as Digital Libraries (Fox, Akscyn, Furuta, and Legsett 1995). Indeed, distributed datadefinesthe most easily

accessible data repository of all, the Internet.

Coalescing already-distributed data at best is a time-consuming, partially manual task. In a traditional corporate environ-

ment, for example, a product database typically is stored separately from a customer database—often in a different department,

in a different building, or even in a different city. The recent trend toward “data warehouses” promises to collect all the relevant

data in one, huge, monolithic repository. The promise is encouraging for well-scoped, predefined analyses, such as those typical

of OLAP. However, it rings hollow for the purposes of data mining. Experienced data-mining practitioners know that which

data are relevant only becomes clear as the knowledge-discovery cycle iterates. Exploration continually provides newprospects

for augmenting the data, to improve the chances of making a useful discovery the next time around. Thus, crafting the data

set for monolithic data mining often is a substantial part ofa data miner’s effort. Coalescing data sets consumes much more

hands-on time than actually running the mining algorithms.
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0.3.1 An example: credit-card fraud detection

Consider a simple, concrete example: a company that issues credit cards wants to mine its customer data for patterns that

indicate fraudulent activity (so that it can detect fraud better). What data are relevant for this mining task? Interpreting “data”

broadly, this question itself is the crux of knowledge discovery and data mining. Once just-the-right data are described by just-

the-right attributes in just-the-right representation language, standard statistical or machine-learning algorithms will compress

them into patterns that predict fraud.

Why is this particularly relevant todistributeddata mining? Consider some of the steps a fraud-detection data miner would

take to build just-the-right data set. First, historical customer transactions would be obtained from the billing department. These

include customer id, transaction id, transaction date, transaction amount, transaction type, transaction location,etc. What they

do not include is an indication as to whether the transaction had been fraudulent. There is a separate database detailing which

transactions had been fraudulent.3 To craft his data set, our data miner must cross-reference this secondary table in order to

label transactions as fraudulent or legitimate. Further complications arise during the cross-referencing. For example, the data

miner notices that the fraud database contains transactions that do not appear in his transaction table! Investigationreveals

that there is yet another table of “fraudulent transactionsthat were never billed to the customer,” including those transactions

occurring between the date fraud was detected (recall that this is historical data) and the date the previous customer bill had

been printed. In order to have a complete picture of the fraud, these data must now be incorporated.

Thus theinitial data set is built. Soon our hero realizes that he wants more than just transaction data. For example, it seems

useful to add information on the customers themselves: a customer’s address may help to decide whether or not transactions

were made locally; a customer’s credit history may help to decide whether a particular balance is unusual. Good database

design insists that these factors be stored in tables separate from the transaction data, and, in fact, for organizational reasons

they are likely to reside in separate databases. Furthermore, the data miner may want to create his own auxiliary databases, for

example, customers’ favorite transactions, locations, and merchants, or bandits’ favorite transactions, locations, and merchants.

In current data mining practice, much of the “art” of data mining is to craft a single, monolithic table from this inherently

distributed information. Unfortunately, producing monolithic tables from multiple, real-world, multitable, relational databases

is fraught with problems. The flattening-out process can be quite time consuming; substantial storage space is needed, and

keeping the monolithic tables around leads to the problems that relational databases are designed to avoid (e.g., update and

delete anomalies). Indeed, flattening may create, from otherwise manageable databases, monolithic tables that can no longer

fit in main memory. As an example, consider a database with only three tables: a customer table containing one million

customers with twenty fields, including address and productpreference; a state table containing fifty states with eighty fields of

information on each state; and a product field containing tenproducts with four hundred fields of information on each product.

Furthermore, assume that the average size of a field is five bytes. Even in this vastly oversimplified example, flattening out a

100Mbyte database results in a 2.5Gbyte flat file.

Also notice that coalescing heterogeneous databases usually forces choices regarding which data to use and which data

to exclude, choices that may restrict the discoveries that later data mining can make. Consider the realization that additional

3Or, more precisely, which transactions had been credited tothe customer as being fraudulent, only some of which were actually fraudulent.



14 Running head: DDM: Scaling up and beyond

geographic information may be helpful to our fraud miner. Transaction locations may be very specific, say at the zipcode level.

Based only on this fine-grained information, a data mining program may notice few regularities. However, useful high-level

regularities might become apparent if transaction locations were grouped into neighborhoods, or cities, or states, orregions,

or countries. Should every transaction be annotated not only with the specific location, but also with the neighborhood,city,

county, state, region, country, and continent? If not, how should one decide which safely can be ignored without affecting data

mining?

0.3.2 A DDM view of the example

Practitioners will agree that shifting perspectives by incorporating new information from additional databases (or other infor-

mation sources) is one of the common features of the KDD process. It does not occur more frequently at the beginning of

the process, only to taper off, and it is not an indication of incompetent design. Rather, it is a defining feature of exploration,

the process leading to discovery. A distributed data miningapproach would alleviate many of the problems sketched in the

previous example. A data mining program should be told, “thedata in database X on system Y is related to the current data

in such-and-such a way,” and the system(s) should be able to take care of the details. Indeed, a proposal for true “knowledge

discovery” from databases would be short-sighted if it did not at least suggest that systems be given the opportunity to frame

for themselves such relations.

Of course, viewing data mining as distributed demands that the other databases be easily accessible. It also suggests that the

other databases be set up for distributed data mining. Whether or not all databases need special data-mining interfacesdepends

on the DDM design. Consider as a simple example a DDM design wherein, except for the primary system, all data mining is

implemented as SQL queries. Such a system only requires thatthe other databases have an accessible SQL server.

Thus, with a DDM approach, the problems vanish from our example of data mining for fraud detection. The DDM system

starts with a database of historical transactions. In orderto get class labels, it queries the database of fraud credits. In order

to include the additional transactions, it links to the database of unbilled transactions. While mining, it accesses the databases

of customer information and geographic information, in order to find relationships or patterns of similarity. If the data miner

creates auxiliary databases of bad locations, or bad merchants, or users’ favorites, the DDM system simply can be told oftheir

existence, their relevance, and their location. Never doesthe data miner face the issue of coalescing databases into a single

table, or even a single, multitable database. Excluding relevant information is no longer a worry. The data miner may instead

be concerned that existing relevant databases may be overlooked (which, of course, also is a problem for standard, monolithic

data mining, but usually is buried far beneath the concerns already discussed).

0.3.3 Privacy restrictions may make monolithic mining impossible

Sometimes databases have privacy restrictions. You may think the answer then is simple: these can not be mined. However,

not all restrictions are completely exclusive. They vary inscope and sometimes have complicated rules. Herein lies perhaps the

most convincing argument against monolithic data mining: building a monolithic data set may be prohibited. For example, an

organization may choose not to, or may not be allowed to, provide access to individuals’ data. However, organizations owning
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data may be interested in participating in a data mining effort, and may be willing to provide answers to queries for aggregate

statistics, even if they are unwilling to share the lower-level data.

In fact, although data mining has raised fearful concern regarding loss of privacy (e.g., consider the KDD-98 panel on

Privacy and Data Mining), we should argue that, if done right, data mining shouldincreaseprivacy. As mentioned already, data

mining programs need not examine individual records; rather, they need aggregate information. Individual information can be

protected on a secure server that only answers certain requests from trusted clients. An individual customer still might ask, why

take the chance? Why not just disallow data mining altogether? However, data mining also has potential to enhance privacy.

Fraud detection is an obvious example, but consider also junk mail (and junk email, and junk phone calls, etc.), an often-cited

privacy concern. If target-marketing data mining were to work perfectly, there would be no “junk.” Only consumers who

would be interested in a product would be targeted. Of coursedata mining is unlikely to be perfect, but consider the alternative:

relatively blind mass marketing.

Distributed data mining is essential to reconcile these opposing privacy concerns, namely, protecting individual data and

reducing unwanted privacy intrusions. Let’s continue withour concrete example of credit-card fraud detection, whichprovides

a clear illustration of the conflict. Customers prefer to have their transaction data examined as little as possible, andwhen it

becomes necessary, examination by a computer system (with no ulterior motives) is probably universally preferable—a standard

billing system going through our records causes no concern.On the other hand, customers tend to prefer that banks take action

to verify usage that appears to be fraudulent. Presumably, customers would prefer that a computer examine their transaction

histories (looking for indications of fraud, and nothing else), rather than a bank employee.

At Columbia University, Professor Salvatore Stolfo and hisstudents, in collaboration with several large banks, have been

studying data mining for fraud detection (Stolfo, Fan, Lee,Prodromidis, and Chan 1997; Stolfo, Prodromidis, Tselepis, Fan,

Lee, and Chan 1997). Indeed banks would like to collaborate,effectively pooling their data, to produce more powerful fraud-

detection models. However, they are in fact prohibited by law from sharing individual customers’ data. Stolfo et al. report that

by taking a distributed approach, the data both can be mined effectively and can be kept secure. As described in Section 0.2.2,

models of fraud are mined independently by the individual banks, each bank needing to see only its own customers’ data. The

models of fraud then are shared and combined. To understand why combining models from different banks can lead to more

effective fraud detection, consider two banks whose customers are concentrated in different areas, say New York City and Los

Angeles. Mining the New York data, one would discover subtle, local fraud patterns that would not be sufficiently concentrated

in the Los Angeles data. However, when Los Angeles customers(or their credit-card numbers) travel to New York, their home

bank can use these subtle New York patterns for more effective fraud detection.

This example illustrates distributed data mining across relatively homogeneous data sets. Although the structure andcontent

of the banks’ records will differ to some degree, the distributed data sets all represent the same basic information: historical

credit-card transactions. Privacy also is a concern for distributed, heterogeneous data. Different databases, containing different

information, will have different levels of required security. Some may be too sensitive for any data mining, but others may allow

limited querying for aggregate information. In some cases,privacy concerns may stem from a desire to profit from collected

data. A company that has a lot of data may decide to issue subscriptions to a data-mining server, which provides aggregate

information mined from their data. By allowing only limitedquerying, and by stipulating query restrictions in the subscription



16 Running head: DDM: Scaling up and beyond

contract, companies may be able to profit from the massive volume of data they collect routinely, while protecting individuals’

privacy.

0.3.4 Is this view of DDM realistic or far-fetched?

These arguments notwithstanding, our current discussion would be incomplete if we did not address whether this view of DDM

is realistic or far-fetched. With respect to mining relatively homogeneous databases for purposes of classification, the answer is

easy. It is not far-fetched, and in fact Stolfo’s group provides web-accessible software for distributed data mining (Stolfo 1998).

With respect to mining heterogeneous databases (containing completely different, but related, tables), there also isevidence

that it is not far-fetched. At its most simple, heterogeneous DDM could involve SQL queries to auxiliary databases for what

to this point I vaguely have called “aggregate statistics.”Is this realistic? In other words, is it technically feasible for data

mining to be performed through SQL queries for statistics, without access to the underlying data? The answer, of course,

is “yes.” Several authors discuss how to do just this. The main insight is that matching hypotheses against the data is not

necessary: for most of the processing, all that is needed is aset ofsufficient statisticsfrom which the results of matching can

be computed (Fayyad 1997). Separating the generation of thesufficient statistics from their use in the evaluation of hypotheses

allows each to be treated separately—first using the data to populate the statistics data structure and then operating only on the

data structure—which affords both optimized use of memory and improved run-time complexity (Aronis and Provost 1997).

More specifically, consider mining classification models. For most of the critical data mining operations, such as choosing

nodes when constructing decision trees, one must tally for all the instances (at a particular point in the search) the class labels

associated with the different values of each attribute. A straightforward data structure to store such statistics is a contingency

table of instance counts for each attribute, indexed by attribute-value and class. This data structure can be populatedby SQL

requests for statistics (Agrawal and Shim 1995; Agrawal andShim 1996; John and Lent 1997; Graefe, Fayyad, and Chaudhuri

1998).

Sarawagi et al. (1998) provide perhaps the most comprehensive discussion of integrating data mining with database man-

agement systems. Their focus is on mining association rules, but they illustrate principles that apply more generally.They point

to several efforts to extend SQL to support mining operations, and discuss expressing mining algorithms in SQL. In particular,

Sarawagi et al. discuss pushing into the database system parts of the application program that perform intensive computations

on the individual records, instead of bringing the records of the database into the application program. One method is toencap-

sulate the statistics gathering as a stored procedure, which is executed on the database machine. A somewhat different approach

is to represent the individual data mining operations as user-defined functions placed in SQL data scan queries (which also

will run on the database machine) (Agrawal and Shim 1995; Agrawal and Shim 1996). Sarawagi et al. also consider the more

general case where a preprocessor translates data mining operations into the appropriate form for a particular environment.

There also has been work demonstrating the feasibility of distributed mining of heterogeneous data. Aronis et al. (1997)

describe the WoRLD (Worldwide Relational Learning Daemon)system, that mines multiple, multitable databases distributed

across networks. The key to the WoRLD’s ability to treat distributed databases transparently is its use of spreading activation

(Quillian 1968), instead of item-by-item matching, as the basic operation of the inductive engine. Each instance is labelled



Running head: DDM: Scaling up and beyond 17

with a marker, and the WoRLD propagates these markers through databases looking for features where markers of one class

accumulate. This process can span several databases, possibly on different machines, with markers transmitted acrossnetwork

links. As with the WWW, there is no need for a master map of the entire structure—each database can have its own links to

other related databases, which the WoRLD can follow as it encounters them.

0.4 Discussion

Besides being tedious, being prohibited by privacy restrictions, and potentially losing information, the process of coalescing

already-distributed databases introduces other problems. The content of many databases is dynamic: it changes in response

to changes in the world. Once data miners create their own mining database that incorporates information from auxiliary

databases, the mining database quickly can become obsolete. Data miners do not want to, and often are not equipped to,

duplicate the management of the auxiliary data. Neither do they want to rebuild their mining database repeatedly. A DDM

system that can query the existing auxiliary databases as needed, leaving their management to their managers, would obviate

this problem—also created by the awkward, non-distributedview.4

At this point, you may feel that I have glossed over a lot of very hard problems—and you would be right. As an example of

a particularly telling problem, how is ontological mismatch to be resolved? Different databases may use the same term tomean

different things, and may use different terms to refer to thesame thing. A DDM system would have to either (partially) solve

this problem, or would have to make very strong assumptions.I would counter this (correct) observation by pointing out that

this is not a problem specific to distributed data mining; it just comes to the fore when it has to be automated. This is a hard,

basic research problem for data mining, thatcurrentdata mining research is glossing over.

0.4.1 The DDM view opens new avenues for research

Lots of other fundamental KDD research problems, that go beyond designing new or faster induction algorithms, also reartheir

attractive heads. Solutions to some technical DDM problemsare beginning to be addressed (Grossman and Bailey 1998). For

example, how can heterogeneous processors and network links best be used (Grossman, Bailey, Kasif, Mon, Ramu, and Malhi

1998)? However, consider a different type of problem. Whilebuilding their monolithic database, data miners often notice that

“database X is relevant in such-and-such a way,” and work to incorporate X. Few authors address the fundamental issue: How

and from where do such insights come? Taking a DDM view (and assuming the existence of database maps or metadata, other

relevant research areas), systems themselves should be able to notice that “database X is relevant in such-and-such a way,” and

query it. Once again, the attempt to automate this part of theprocess brings it into the research spotlight.

DDM as simply issuing SQL queries, while currently the most feasible approach, certainly is not the most ambitious vision.

4At first it may seem that in such cases, managing the data in a distributed database management system (DDBMS), with incorporated mining routines,

would be sufficient. However, although mining DDBMSs is one very interesting method for DDM, this view is incomplete. Fororganizational reasons, many

auxiliary databases are not, and will not be, managed in a DDBMS; yet it still may be useful to use them when mining. ViewingDDM only as mining a

DDBMS either (1) demands that a particular DDBMS incorporate all auxiliary data whenever they are deemed potentially relevant, or (2) restricts the use of

some such data.
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A DDM visionary might see distributed mining agents cooperating in a knowledge economy. Closer to feasibility are data

mining servers, available on the network, that publish their capabilities for data mining clients to consider. These servers could

sit atop data with varying degrees of privacy, and if necessary could serve only trusted clients or clients under contract. The

emergence of a knowledge economy for data mining may not be all that far away. Once distributed data mining becomes

a reality, it is not a stretch to foresee organizations developing that profit by providing knowledge services. They willstore

and manage large and potentially changing databases, and data miners will pay for access. For instance, fraud detectorsand

target marketers would be delighted if a demographic data provider were established, which for a small fee would provide

just-the-right auxiliary knowledge for a particular problem.

0.4.2 DDM as knowledge discovery

Section 0.2 presented arguments for distributed data mining based on computational efficiencies due to parallelization of the

distributed mining processes. I have tried to argue that although the effect of parallelization is important, it is lessimportant

than the effect of taking a distributed view of the problem. The question of whether the distributed mining processes must

reside on separate processors, or whether they profitably could be simulated on a single processor, does not seem particularly

important when juxtaposed with the conceptual neatness of the DDM problem formulation. Of all the examples heretofore

presented, the most convincing in this respect may be DDM’s potential to eliminate much of the manual effort needed to

coalesce heterogeneous, multitable databases. It seems that, in light of the current state of the art, a data miner wouldvalue

a reduction in the manual effort (of coalescence) more highly than the corresponding reduction in computational effort(by

parallization).

There is another way in which a distributed view of data mining may lead to remarkable computational efficiencies. Data

mining is one element of a larger process of discovery. Therefore, the correct direction and manner to proceed are inherently ill

defined. A single explorer must try one thing, then another, then another, and so on, until either he finds something interesting

or he runs out of resources. This describes the essential nature of the process of exploration, including not only what has been

called “the knowledge discovery process,” but also geographic exploration (e.g., in the fifteenth and sixteenth centuries) and

the typical process of science. The length of a discovery’s delay is related directly to the explorer’s ability to prioritize possible

paths of exploration.

On the other hand, a (distributed) group of explorers follows many paths simultaneously. Indeed, different explorers follow

different paths almost by necessity. Herein lie two key insights. First, the speed of the group progresses at the speed ofthe

fastest member of the group. Second, the entire group capitalizes on the discovery (once it is made known), and ratchets up its

goals. Examples abound. In geographic discovery, once a shorter route was found to a desired destination, explorers used it to

set their sights even higher for future discoveries. In science, once a (sub-)problem has been solved by one research group, the

results are published and all research groups can now “standon their shoulders” (paraphrasing Newton). Why is this relevant

to distributed data mining? As with other explorations, by its very nature knowledge discovery is an ill-defined process. Thus

we must try and try again to formulate just-the-right direction and manner of search. We may have many possibilities at the

outset, but little reason to prefer one over another. If eachis time consuming, discovery may be inefficient. However, every
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weather-worn data miner has experienced the phenomenon that once the right problem formulation is concocted, discoveries

are made remarkably, sometimes embarassingly, quickly.

If many different starting points and directions are begun simultaneously, and the “right one” is among the group, then the

discovery may be made very quickly in real time, and perhaps even with much less combined effort than in the sequential case.

In a different context, this phenomenon has been called a “combinatorial implosion” (Kornfeld 1982), and has been studied

in other areas of artificial intelligence (e.g., for constraint satisfaction (Clearwater, Huberman, and Hogg 1991; Clearwater,

Huberman, and Hogg 1992)).

0.5 Summary

Distributed data mining lately has been receiving increasing attention. Most work uses distributed processing to scale up to

large databases, and the rich decomposability of data mining problems has led to successful techniques all along the spectrum

from fine- to coarse-grained. The search space can be partitioned and different processors can search different parts, or the

data can be partitioned. Nevertheless, scaling up is but onemotivation for distributed data mining. Distributed data mining

also eliminates the need to coalesce already distributed data. Coalescence is severly problematic, both in principle and in

practice. Often, certain data are left out of a problem formulation not because they are deemed irrelevant, but because including

them is too awkward. Distributed data mining avoids these problems, and also eliminates storage, time, and data management

inefficiencies associated with coalescence. Finally, privacy concerns may prohibit coalescence altogether. Distributed data

mining can allow access to a wide variety of data, while protecting data privacy.

Potential consumers of auxiliary knowledge already exist—consumers who are not shy about spending money on data

mining. Potential suppliers await the development of infrastructure. Once DDM becomes a practical reality, implying not only

solutions to the computational and network-related issuesof distributed mining, but also the existence of published data maps

and meta-data, then data-mining-supported knowledge economies will develop.
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