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Abstract

In this chapter | begin by discussing Distributed Data Min{®DM) for scaling up, beginning by asking what scaling up
means, questioning whether it is necessary, and then giregenbrief survey of what has been done to date. | then peovid
motivation beyond scaling up, arguing that DDM is a more redtway to view data mining generally. DDM eliminates many
difficulties encountered when coalescing already-distet data for monolithic data mining, such as those assmtiatth
heterogeneity of data and with privacy restrictions. Bywiigg data mining as inherently distributed, important opesearch
issues come into focus, issues that currently are obscyrdbliack of explicit treatment of the process of produciranwiithic
data sets. | close with a discussion of the necessity of DDMificefficient process of knowledge discovery.

0.1 Introduction

Until recently, research on distributed data mining (DDMjstbeen motivated primarily by the desire to mine very large
databases. Questioning how often it is necessary to mine tatabases, as opposed to mining a sample of the data, fuels a
interesting debate—to which DDM researchers should pay.hievertheless, it is clear that faster data mining sonegiis
necessary. Its easy decomposability makes data miningeah égandidate for parallel processing, and several lessorsge
from existing work.

Although scaling up is an important issue, it also is impatrfar DDM research to look beyond scaling up, where many im-
portant research problems lie, relatively unaddresseds;Tio counterbalance the existing body of work using DDMsfmling
up, | argue that DDM is generally preferable to monolithi¢admining. Databaseare distributed. They are heterogeneous.
They have privacy restrictions. There often are myriad lolasas, electronic documents, websites, etc., that migitairoinfor-
mation relevant to a particular data mining problem. Builgla monolithic database, in order to perform non-distedudata
mining, may be infeasible or simply impossible. Hopefulistargument will give additional impetus to research ingodigally
fruitful areas: mining multitable databases, mining thdwmining with background knowledge, etc.

Viewing knowledge discovergs an inherently distributed activity makes existing dataimg technology seem only nar-
rowly applicable. Should not data mining algorithms be abléake advantage of all the data, information, and knowdedg
that is available only a mouse click away? Even a little ofGirrently, researchers are designing meta-data thatagilifate

machine access to the vast universe of digital informatida should prepare for automated knowledge discovery.

0.1.1 Lessons from scaling up with DDM

The most common motivation for research on distributed ddtang is the need to scale up to massive data sets. Becasse th
run-time complexity of data mining typically is linear or vge in the total number of instances, massive data sets carobe
hibitively expensive to mine unless attention is paid tdisgaup. Besides simply having a massive data set, othenvat@ins

for fast data mining include: interactive induction (Bur@i1991), in which an inductive program and a human analystant

in real time; mining multiple models and combining their ghicions (Dietterich 1997); and wrapper approaches, widch

a particular problem and algorithm iteratively search featiire subsets or good parameter settings (Kohavi and Sdialche
1995; Kohavi 1996; Provost and Buchanan 1995; Provost 1982)ddition to making many runs of a data mining program,
experimenting with many machine-learning biases requilesge data set to avoid overfitting due to bias selectios{Brlins

and Gordon 1995). Furthermore, in a wrapper approach, ezdhation may involve multiple runs to produce performance
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statistics (e.g., with cross-validation).
Venkat Kolluri and | recently surveyed the state of the arscdling up decision-tree/rule induction (Provost and Holl

1999). Four main ideas that emerge from existing work onritlisted data mining are as follows.

¢ Distributing the search space can be problematic. It doésddress directly the problem of massive data, and load
balancing is difficult and costly. Shared-memory systenmsadkeviate the problems, because massive data transfers ca

be avoided.

e Operating on distributed instances can be effective anglefficient, if centralized control is possible. The gathgrof
the statistics needed to evaluate a particular pattern, @mle) can be parallelized all the way down to the indigidu

instances, providing tremendous speedups.

¢ Using a distributed database management system (DBMShtootthe process is not completely straightforward. There
are several ways of implementing data mining routines witnDBMS, each with its own tradeoff. Until flexible and
effective DBMS mining routines are commonly available, mgiwithin a DBMS will require specialized program-
ming. Also, it has been observed that even with a fast dataf@shine, mining database-resident data directly is often

considerably slower than flat-file mining (Musick 1998).

e Cooperation among distributed processes allows effentiming even without centralized control. Two main techr@gqu
for cooperation have been particularly effective. Prooessan operate independently on subsets of the data, amd the
combine their models. A processor also can share potem@iledge as it is discovered, in order to get the opinions of

the other processors (e.g., their statistical assessinents

In section 0.2 | will discuss and provide references to samtances of work based on these ideas.

0.1.2 Why scale up to massive data sets?

Databases of customer, operations, scientific, and other sbdata continue to grow rapidly (Fayyad, Piatetsky{Bita and
Smyth 1996). Both manual data mining and the direct apptinaif today’s mining techniques can be problematic whea dat
sets exceed 100 megabytes (Provost and Kolluri 1997; H#$f)1 Huber observes that “somewhere around data sizeof 10
megabytes or so, qualitatively new, very serious scalimapl@ms begin to arise, both on the human and on the algoxdthmi
side” (Huber, 1997, p. 306).

Scaling up is desirable, because increasing the size ofdhmértg set often increases the accuracy of induced cleagdn
models (Catlett 1991). In many cases, the degradation mracg when mining smaller samples stems from overfittingtdue
the need to allow the program to fisdhall disjunctgHolte, Acker, and Porter 1989), elements of a class desanithat cover
few data items. In some domains, small disjuncts accourd farge portion of the class description (Danyluk and Prbvos
1993). Overfitting from small data sets also may be due toxtrstence of a large number of features describing the dataye.
feature sets increase the size of the space of models. $®atbhough and evaluating more candidate models increhses

likelihood that, by chance, the program will find a model tfigtthe data well (Jensen and Cohen 1999), and thereby sesea
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the need for larger data sets (Haussler 1988). Things gatplarly difficult when there are many featuraadthere is the
need to find small disjuncts. Specifically, because largeifeasets lead to large and often sparsely populated modeéspa
program biased to search for models covering special casebecinundated with small disjuncts from among which it @dnn
choose.

Some data mining applications are concerned not with ptigdimodeling, but with the discovery of interesting knodde
from large databases. In such cases, increasing accuracgahle a primary concern. However, scaling up nonetheless m
be an issue. For example, finding small disjuncts often igtafrest to scientists and business analysts, becausedispaticts
may capture special cases that were unknown previouslya(tla¢ysts often know the common cases). As with classifier
induction, in order not to be swamped with spurious smajudists it is essential for a data set to be large enough tcagont
enough instances of each special case from which to genewiih confidence (Provost and Aronis 1996).

For all its theoretical considerations, the issue of scglip is inherently pragmatic. For scaling up induction aiidpons,
the issue is not as much one of speeding up a slow algorithmeasfdurning an impracticable algorithm into a practicaine.
The crucial issue is seldom “how fast” you can run on a cenpa@blem, but instead “how large” a problem can you feasibly
deal with. Both time and space considerations are criti€ahe- and space-complexity analyses should address asyimpt
complexity as the numbers of instances and features groso idportant, the absolute size of the main memory with which
the computing platform is equipped should be considerechost all existing implementations of induction algorithaperate
with the training set entirely in main memory; no matter wiiet computational complexity of the algorithm, if exceeaglihe
main memory limitation leads to virtual memory thrashirtg tlgorithm will not scale well.

Finally, the goal of the data mining must be considered. &Eatihg the effectiveness of a scaling technique becomes
complicated if a degradation in the quality of induction ermitted. The vast majority of work on induction algorithomses
classification accuracy as the metric by which differenbathms are compared. In such cases, we are most interasted i
methods that scale up without a substantial decrease imaycu-or problems that require mining regularities frora thata
for purposes other than classification, metrics should les@h by which effectiveness can be measured (and compartdh a

system scales up.

0.1.3 Is subsampling sufficient?

Before moving on discuss existing work more specificallyynhe tarry a while on a point that often is not treated thordygh
enough in papers on scaling up to massive data sets.

Data sampling is well accepted by the statistics commuwlty observe that “a powerful computationally intense pdare
operating on a subsample of the data may in fact provide srmecuracy than a less sophisticated one using the ergiee d
base.” (Friedman 1997). The question of scalability asketidr the algorithm can process large data sets efficiemtlje
building from them the best possible modeFhus, for anyone wanting to mine a large data set, an impbgaestion is:
must | process the whole thing? Or will sampling be effe@iviene answer is: it depends on the data set and the algorithm.
Just because a massive database exists does not implyardgdhat you have to mine it all. In practice, as the amount o

data grows, the rate of increase in accuracy slows (Frey &tteF1999). Whether sampling will be effective depends on



Running head: DDM: Scaling up and beyond 5

how dramatically the rate of increase slows. Also, différ@gorithms benefit from additional data to different degreFor
example, Harris-Jones and Haines (1997) observe thatahahg curves of classic statistical algorithms tend tel®ff after
relatively few data, in contrast to the learning curves gbaithms considered more typically by machine learningagshers.

Determining how much data to use is difficult, in general,chese the smallest sufficient amount depends on factors not
known a priori. For example, it depends on the minimum sizéhefspecial cases that must be discovered in order to model
the phenomenon effectively. However, if one is willing tabian algorithm (explicitly or implicitly) against findingewy
small special cases, then recent work on determining serfficGample sizes for similar data mining problems provieésmant
results. For example, Toivonen (1996) and Zaki et al. (12859uss the determination of sufficient sample sizes foirfimd
association rules that are no smaller than a predefinedisé®sed on tolerances on the probability of error and the dizkeeo
error. A different view of sufficient sample size, that sdmple complexityis provided by Valiant's theoretical framework
(Valiant 1984; Haussler 1988), which for a given hypothspiace allows the calculation of the number of instancesceeifi
for inducing with high probability a good approximation toet“true concept,” if one exists in the hypothesis spacehdutd
be noted that determining the sample sizdficientfor induction may say little about how many examples are ss&ey/ in
practice. Recent work has investigated systems that canndiete empirically how many examples are necessary, btirggar
small and progressively sampling larger subsets until hpeléormance no longer improves (John and Langley 1996yd3t)
Jensen, and Oates 1999).

Published work provides differing views of how often reabnid classifier learning curves level off before massiveadat
sets are needed. Catlett’s work shows that induction fransets of data decreases accuracy. Despite the advantagpataird
sampling strategies, viz., speed-ups and improving tharacy of the classifier over random sampling in noise-fremdios,
Catlett concludes that they are not a solution to the gepevalem of scaling up to very large data sets (Catlett 199 byvever,
it should be noted that at the time of Catlett’s study, “massilata sets were much smaller than they are today, and ssince
times much longer.

Oates and Jensen (1997) study inducing decision treestferagn data sets, and look specifically at the number ofiosta
necessary before the learning curves reach a plateau. €gaydra plateau to have been reached when an accuracy essmat
within a certain tolerance of the maximum (specifically, peecent, in their experiments). Surprisingly, for thessetéen data
sets, an accuracy plateau is reached after relatively fEnitig instances. The three data sets for which the mostrinsts were
needed were (from the UCI repository (Blake, Keogh, and M&8)): letter-recognition (17,000 instances), led-280@!
instances), and census-income (9768 instances).

In another recent study, Harris-Jones and Haines (199 yznthe relationship between data set size and accuracy for
two large business data sets (up to 300,000 instances),tinyating learning curves empirically. They found that vehil
some algorithms level off quite early, in some cases algorit (decision-tree inducer C4.5 and its successor C5, ticpkar)
continue to show accuracy increases across the entire mrdpga set sizes. However, the improvements in accuradyeat t
upper size limit have become quite small, and it is difficoitdnclude that they would continue with another order of nitagle
increase in data set size. Even if they would, it is importaiguestion whether the benefit of further, diminishing ioy@ments
is worth the associated cost (Haines 1998).

Neither these results nor Catlett’s provide ample justificafor using DDM to scale up. Every data set in both studies
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would fit in the main memory of a modern desktop PC, and, gitereistence of fast algorithms for mining monolithic data
sets (Provost and Kolluri 1999) and the increasing speectsitdp computers, only under very tight time constraintsiidio
DDM be necessary Distributed Data Mining, as a field of study, would benefinfra few prominent examples of the need to

scale up beyond reasonable main memory limits.

0.2 Existing methods for scaling up with parallel processig

Questions of necessity aside, data mining is an ideal ajgitfor parallel processing. The problem can be decontpakeng
many dimensions, often to a very fine granularity. The ricbateposability is illustrated by the variety of approachesd have
seen success. Tight, fine-grained parallelization hasesdied for massively parallel machines. Coarser, loosepltmuhas
succeeded for collections of stand-alone computers. Viithesapproaches, the distributed processors act indepiiy)aerty

sharing their final results. With other approaches, theypesate so that individual processors can obtain a globapgetive.

0.2.1 Fine-grained parallelization

Fine-grained parallelization can take advantage of twasypf decomposabilitysearch-space parallelizatioand parallel
matching Data mining can be framed as the search of a very large spaedterns. In search-space parallelization, the space
of patterns is decomposed and different processors sedfetedt portions in parallel (Cook and Holder 1990), sianito the
parallelization of other forms of heuristic search (Kumad&ao 1987; Rao and Kumar 1987). Load balancing and integgso
communication add additional complexity and overhead.r@eapace parallelization should be particularly usefuldata
mining algorithms that perform massive search, such as th@DENDRAL-style, systematic-search rule learners (Buneim

and Mitchell 1978; Clearwater and Provost 1990; Smyth andd&man 1992; Segal and Etzioni 1994; Webb 1995; Oates,
Schmill, and Cohen 1997), and the experiments of Oates, #icdimd Cohen (Oates, Schmill, and Cohen 1997) show that,
indeed, speedups of neartycan be obtained with processors (they report results with= 2 andn = 3). Mining Bayesian
networks from data (Cooper and Herskovits 1992) also reguinassive amounts of search, and Lam and Segre (Lam and
Segre 1997) show that search-space parallelization caw atluch larger networks to be found than with traditionaljade
approaches.

In general, search-space parallelization does not adtiregsroblem of very large data sets, because each proceskor w
have to deal with all the data or will have to subsample. Haxerecently Zaki et al. (1999) have had success with search-
space parallelization of a decision-tree learner; by tglkidvantage of a shared-memory multiprocessor, they aegalavoid
replicating or communicating the entire data set among thegssors. Using shared memory also allows the developofient
effective load-balancing techniques. Galal, Cook, andlEio{1999) recently have had success using search-spadkelism
to scale up a scientific discovery system, dealing effelstiwith load balancing by having a master manage a priorityugiof

search nodes, serving them to the slaves as needed.

Lin fact, the experiments of Harris-Jones and Haines werduxiad on a dual-processor 133MHz Compag computer with 2B8IM running Windows
NT. The run time for C5 on 283,649 instances was fifty minufié&eén minutes for 99,303 instances).



Running head: DDM: Scaling up and beyond 7

SEQUENTIAL MACHINE PARALLEL MACHINE

Instances and matching routines

Matching
requests

Search
algorithm

Figure 1: Parallel matching

Massively parallel induction has been more successful véhBner-grained decomposition is used. Parallel matching is
based on the observation that search for data mining isrdifffrom most other Al searches. In data mining the cost of
evaluating a node in the search space is very high, but alsiglidy decomposable. Nodes (e.g., partial rules or decisiee
branches) are hypothesized and each is matched againstinséanyces to gather statistics. With parallel matchingiated
in Figure 1, this compute-intensive matching process islfgized by migrating the instance set and matching restito a
parallel machine, while the main induction algorithm (thaste) may run on a sequential front end.

Parallel matching has been used by Lathrop et al. (1990)rtyoBt and Aronis (1996), and in the parallelization of the
SPRINT algorithm (Shafer, Agrawal, and Mehta 1996). Thenfer two efforts use a straightforward parallelization of th
matching routines. SPRINT builds data structures callédbate lists, vertical partitions of the data set, usedaoilitate
efficient construction of decision trees. In the parallgbiementation, each processor builds a sublist of eaclbattriist, and
for each decision-tree node sends the master a portion stdtistics needed to determine the best split.

Impressive speedups are reported for parallel matchings fean a minute to mine one million instances on a CM-2
Connection Machine witl8192 bit-slice processors (Provost and Aronis 1996); 400 sesdmdnine 1.6 million instances on
an IBM SP2 with16 processors (Shafer, Agrawal, and Mehta 199®ufrin (1997) uses parallelization to speed up C4.5’s
transformation of decision trees to rules (C4.5rules)ng$arallel matching for two phases of rule-set postprangssand
dividing up the rule set itself for a third. He also reportyimssive speedups (efficiencies averaging more @hafor four
induction tasks and up to eight processors).

Zaki (1998) points out that shared-memory multiprocesSbfRR) systems are much more common than massively parallel
machines. Motivated by this observation, he presents di@laratching approach to the design of an SMP version of SHRI
Instead of distributing the instances, vertical partii@orresponding to SPRINT’s attribute lists are distridided processed
in parallel. The attribute lists are divided equally amolng processors, which return the matching statistics to thsten

If the data already are resident in a data warehouse with a@lehinfrastructure, parallel matching can be done by the

2These run times are given for illustration only. No compamishould be inferred.
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existing database server (Freitas and Lavington 1996)s @pproach is fundamentally similar to that shown in Figure 1
except the implementation-specific parallel data reprasiem is replaced by an existing parallel database sys#so, for
communication between the front- and back-end, implentiemispecific matching requests are replaced with SQL eseri
Parallel data mining is treated in more detail by Freitas laamngton (1997) and by Provost and Kolluri (Provost andliiol

1999). Provost and Kolluri also discuss in more detail treeafdatabase systems and SQL queries for scaling up.

0.2.2 Loosely coupled DDM

The previous section addressed fine-grained decompasitidrere parallelism is used to speed up existing data matdiny
rithms so that they feasibly can be run on massive data séternAtively, the data can be partitioned, and mined by adbo
coupled collection of inductive algorithms. Data partitiog techniques separate subsets of instances or subdetturfes;

viewing the data set as a table, this corresponds to sajg@ims versus selecting columns.

Large example
set

i

Sample selectio
procedure

’ Combining procedure

Figure 2: Mining partitioned data

Figure 2 depicts a general model showing the similaritie®mgnpartitioned-data approaches. Systems using these ap-
proaches select subsds, . . ., S,, of the data based onselection procedureData mining algorithmd.,, ..., L,, are run on
the corresponding subsets, producing concept descrgdipn . ., C,,. Then the concept descriptions are processeddnna

bining procedurewhich either selects from among, . . ., C,, or combines them to produce a final concept description—the
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distributed data mining result. Loosely coupled systenfferdin the particular procedures used for selection andlwaimg.
They also differ in the amount and style of interaction amtirgmining algorithms.

More precisely, Figure 2 shows a modelinflependent multi-sample miningecause no interaction is depicted between
the n mining runs; theC; are formed independently, and then combined. Fayyad etl@93) use a sequential version of
independent multi-sample approach in which theare decision-tree inducers; tlig are rule sets extracted from the decision
trees, and the combination procedure is a greedy covergugitim.

Independent multi-sample mining can be distributed eaBibyver is obtained through the combining procedure, which ¢
take place as a sequential post-process, or can be paedi€hs by Kufrin (1997)). Sikora and Shaw (1996) mine midtip
rule sets in this manner; their combining procedure is a ieaiyorithm. Hall et al. (1998) discuss this approach foitding
decision trees. Similar to a distributed version of the apph of Fayyad et al., their system builds trees indepehdiom
partitioned data, and the trees are converted to rules. illeesets are merged following the method described by Wikia
(1990), which resolves conflicts among similar rules. Shg4897) and his research group have implemented PC4.5abgbar
version of C4.5 (Quinlan 1993), which uses a simpler ingion of the framework of Figure 2. Specifically, ea€his a
decision tree built from a different subset of instancese €bmbining procedure evaluates ed¢hon a subset of instances
(disjoint from S;), and chooses the one with the best accuracy as the final gihescription.

Chan and Stolfo (1993, 1997) take an independent multi-Baagproach in which thé,; can be different induction algo-
rithms, as well as separate instantiations of the sameitiigurNotably, their method formSy as a hybrid of the’;. Instead of
constructing’y by combining selected pieces of thg, their approach combines tlig whole, and makes predictions using a
multiple-model, oensemblgapproach (Ali and Pazzani 1996). Domingos (1996) also raxeats with ensemble combining,
finding it superior to taking a simple union of tli&. The independent multi-sample approach also has beeredtérdim the
perspective of learning theory (Kearns and Seung 1995; ¥ieahial997).

A potential problem with creating a multiple-model hybridihe resulting loss of comprehensibility. Prodromidis Staifo
(1998) study several methods for evaluating, composingameing hybrid classifiers that reduce size while preseraneven
improving predictive performance. A quite different apach to creating comprehensible classifiers from ensembtakén by
Craven (1996), by Domingos (1997), and by Guo and Sutiwanagh998). These authors take advantage of the ability to use
machine-learning algorithms to induce understandableaisaaf complex classification systems (Craven 1996) (cf.ngiek
and Provost 1993)). Specifically, they use the predictidrik@ensemble as training labels, and induce from them asideci
tree that models the hybrid’s performance (with comparablzuracy). The resultant single tree is more understapdhbh
the multiple-model hybrid.

Kargupta et al. (1998, 2000, 1999) consider distributecc@ssing of vertically partitioned data (each processorehas
subset of the features, rather than of the instances). Kéyet@pproach is their use of an orthonormal basis-functgn r
resentation; the coefficients for most of the basis fungtican be determined from the partitions independently. dfdtare
critical dependencies among variables that do not resid®same processor, some communication is required. Howeve
for many data sets the independently learned basis fursctiay comprise the majority of the function to be learned, thied
communication needs will be small. To instantiate theirhmdi they describe how to use various basis functions ta buil

linear discriminant functions, linear regression modalsy decision trees. This work relates to the suggestiver priok of
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Provost and Buchanan, who show that if the description laggis modular, such that useful modules (in their casesyabmn
be learned from many different feature subsets, then atxglass descriptions can be built without ever processisiggle,
suitable subset of features (Provost and Buchanan 1995).

Different from the fine-grained parallel approaches désatiin section 0.2.1, accuracy may be degraded with these

partitioned-data techniques, as compared to running desinduction algorithm with all the data (if that were fedsip

0.2.3 Cooperative DDM

Large example Largesee>t<amp| g
set

initial - :
sample instance oo instance Random
selection selection selection selection

i l
()
|

I

'
-

(b)

Figure 3: Sequential multi-sample mining: (a) model-gdidestance selection, and (b) incremental batch learning

When multiple samples are being processed sequentiaiydissible to take advantage of knowledge mined in oneibera
to guide mining in the next. Examples of sequential multiple mining techniques include windowing (Quinlan 1983;
Furnkranz 1998), incremental batch learning (Clearwda@dreng, Hirsh, and Buchanan 1989; Provost and Buchanan 1995
Domingos 1996; Wu and Lo 1998), and some wrapper-based uiefoo feature selection (Kohavi and John 1997; Kohavi
1996; Provost and Buchanan 1995; Provost 1992), all of wéwietdescribed in more detail by Provost and Kolluri (Proeost
Kolluri 1999). Figure 3 shows two approachesstguential multi-sample miningn model-guided instance selectiahown
in Figure 3(a), class descriptidar; is used in the selection & ;. In incremental batch learningshown in Figure 3(b), class

descriptionC; is taken as input to the data mining program and is used idingilC’; ;1 .
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Concurrency precludes the straightforward parallel@aif partitioned-data approaches for which the resultsmfane
stage are required as input to the next. Therefore, parétieDDM must take a slightly different tack. Rather tharuass
that results are available before a stage begins, distiibalgorithms can cooperate by sharing results as they beagailable
(as depicted in Figure 4). Since many mining algorithms afgenaturally as anytime algorithms, producing some reselty
quickly and then more as time progresses, early in the DDMgs® there likely will be results that can act similarly togh
passed from stage to stage in the sequential mode.

Large example
set

Selection
procedure

:
t
e

@ '
-
@ '

~
@ '
B

Combining
procedure

Figure 4: Cooperating DDM

For distributed mining of rules and similar patterns, a ubebservation is that certain evaluation metrics obejnaariant-
partitioning property(Provost and Hennessy 1994; Provost and Hennessy 1998)isTbaery rule that is acceptable globally
(using the entire data set) according to the metric, will beeptable on at least one partition. This invariant-parting
property holds, for example, for many variants of suppod eonfidence (Provost and Hennessy 1994; Provost and Hgnness
1996; Cheung, Han, Ng, Fu, and Fu 1996). By taking advanthtigsoproperty, a superset of the rules that satisfy the imetr
will be generated when all partitions are considered inddpatly. The problem of finding the acceptable rules thusdsiced
to selecting from this superset only those rules that aretable globally.

Provost and Hennessy (1994, 1996) allow individual proeg$s cooperate, in order to select all and only the globally

acceptable rules. The cooperation takes the form of reg#sim the other induction processes or from a server with th
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entire database) for verification of statistics regardimg best discovered rules. The combining procedure takesrtioa of

the C;. Interprocess communication is minimal, because coojperatquests are limited to rules that appear acceptable to a
least one induction process, and each cooperation recqeepstes simply that the rule be passed to each processariiwbes
very few messages, especially if a logical ring network togy exists within the physical network topology). Provasid
Henessy observe speedups linear in the number of distdiprecessors. The system is effective for very large dag sgt

to the point where the individual processors run out of coeemary and page thrashing begins (for the data considerdidl, wi
64M of main memory, thrashing sets in at several hundredséiod records per processor). Other forms of cooperatia, su

as sharing pruning information, also are presented.

A similar method is employed by Cheung et al. (Cheung, HanMigand Fu 1996; Cheung, Ng, Fu, and Fu 1996) to learn
association rules. Essential to most association rulailegualgorithms is finding rules with support greater thamespecified
level. Since support satisfies the invariant-partitiorpngperty, the search can be distributed, as discussed aiwaing et

al. also discuss efficient cooperation by sharing stasistitd by sharing pruning information.

A sequential, but easily distributable, version of thisiaaeh is the basis for the algorithm Partition (Savasereigimski,
and Navathe 1995), which has been called one of the moskeffiassociation-rule algorithms in terms of database tipesa
(Toivonen 1996). Similarly, for scaling up a scientific disery system, Galal, Cook and Holder (1999) found the concur
rent/cooperative approach to be the best (among the vagghsiques they studied). They also partition the problechthen

share the best discoveries, which are evaluated by all theepsors to obtain a global perspective.

0.3 Beyond scaling up to networked, cooperating knowledgessrices

The generic model described in the previous section includsample selection procedure that partitioned a largariestset
into several subsets. However, in some cases such an éxypticedure is superfluous, because the data are partiteomed
distributed naturally. This is true for traditional dataka in corporate environments, many types of public dathywdrat are
becoming known as Digital Libraries (Fox, Akscyn, Furutagdd egsett 1995). Indeed, distributed ddé&dineghe most easily

accessible data repository of all, the Internet.

Coalescing already-distributed data at best is a timeooirgy, partially manual task. In a traditional corporateison-
ment, for example, a product database typically is storpdrsgely from a customer database—often in a different dieyzent,
in a different building, or even in a different city. The retérend toward “data warehouses” promises to collect allrtievant
data in one, huge, monolithic repository. The promise i©enaging for well-scoped, predefined analyses, such ase tgpial
of OLAP. However, it rings hollow for the purposes of data m@ Experienced data-mining practitioners know that whic
data are relevant only becomes clear as the knowledgewdiscoycle iterates. Exploration continually provides newspects
for augmenting the data, to improve the chances of makingetulidiscovery the next time around. Thus, crafting the data
set for monolithic data mining often is a substantial paraafata miner's effort. Coalescing data sets consumes muod mo

hands-on time than actually running the mining algorithms.
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0.3.1 An example: credit-card fraud detection

Consider a simple, concrete example: a company that issed# cards wants to mine its customer data for patterns that
indicate fraudulent activity (so that it can detect frautté®. What data are relevant for this mining task? Intetipge“data”
broadly, this question itself is the crux of knowledge digexy and data mining. Once just-the-right data are desdtilygust-
the-right attributes in just-the-right representationdaage, standard statistical or machine-learning algmstwill compress
them into patterns that predict fraud.

Why is this particularly relevant tdistributeddata mining? Consider some of the steps a fraud-detecttamdaer would
take to build just-the-right data set. First, historicastmmer transactions would be obtained from the billing diepant. These
include customer id, transaction id, transaction dates@ation amount, transaction type, transaction locaétm, What they
donotinclude is an indication as to whether the transaction hauh iaudulent. There is a separate database detailing which
transactions had been fraudulénTo craft his data set, our data miner must cross-refereriseséitondary table in order to
label transactions as fraudulent or legitimate. Furthenglications arise during the cross-referencing. For eXamntpe data
miner notices that the fraud database contains transactit do not appear in his transaction table! Investigativeals
that there is yet another table of “fraudulent transactitvas were never billed to the customer,” including thosesections
occurring between the date fraud was detected (recall tiid historical data) and the date the previous customienéul
been printed. In order to have a complete picture of the frthebse data must now be incorporated.

Thus thenitial data set is built. Soon our hero realizes that he wants marejttst transaction data. For example, it seems
useful to add information on the customers themselves: @wes’s address may help to decide whether or not transectio
were made locally; a customer’s credit history may help toidie whether a particular balance is unusual. Good database
design insists that these factors be stored in tables depgiaoa the transaction data, and, in fact, for organizatioeasons
they are likely to reside in separate databases. Furtherttor data miner may want to create his own auxiliary datydsr
example, customers’ favorite transactions, locationd,raarchants, or bandits’ favorite transactions, locatiansl merchants.

In current data mining practice, much of the “art” of data minis to craft a single, monolithic table from this inhergnt
distributed information. Unfortunately, producing moitioic tables from multiple, real-world, multitable, relahal databases
is fraught with problems. The flattening-out process can lieegime consuming; substantial storage space is needed, a
keeping the monolithic tables around leads to the probldrasrelational databases are designed to avoid (e.g., &paat
delete anomalies). Indeed, flattening may create, fromraike manageable databases, monolithic tables that camnge
fit in main memory. As an example, consider a database witl thmke tables: a customer table containing one million
customers with twenty fields, including address and profteference; a state table containing fifty states with gijbtds of
information on each state; and a product field containingteducts with four hundred fields of information on each prcid
Furthermore, assume that the average size of a field is fivesbyven in this vastly oversimplified example, flatteningau
100Mbyte database results in a 2.5Gbyte flat file.

Also notice that coalescing heterogeneous databasedyarakes choices regarding which data to use and which data

to exclude, choices that may restrict the discoveries #itat Idata mining can make. Consider the realization thatiaddl

30r, more precisely, which transactions had been creditédet@ustomer as being fraudulent, only some of which wenesdlgtfraudulent.
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geographic information may be helpful to our fraud minermsaction locations may be very specific, say at the zipaads. |
Based only on this fine-grained information, a data mininggpam may notice few regularities. However, useful higiele
regularities might become apparent if transaction locegiovere grouped into neighborhoods, or cities, or statesggions,
or countries. Should every transaction be annotated ngtwith the specific location, but also with the neighborhoaity;,

county, state, region, country, and continent? If not, hbausd one decide which safely can be ignored without affgctiata

mining?

0.3.2 A DDM view of the example

Practitioners will agree that shifting perspectives byoiporating new information from additional databases (bteoinfor-
mation sources) is one of the common features of the KDD pacet does not occur more frequently at the beginning of
the process, only to taper off, and it is not an indicationn@ompetent design. Rather, it is a defining feature of e,
the process leading to discovery. A distributed data migpgroach would alleviate many of the problems sketchedén th
previous example. A data mining program should be told, &hta in database X on system Y is related to the current data
in such-and-such a way,” and the system(s) should be ab#kéocare of the details. Indeed, a proposal for true “knogded
discovery” from databases would be short-sighted if it did &t least suggest that systems be given the opportunitatoef
for themselves such relations.

Of course, viewing data mining as distributed demands tieabther databases be easily accessible. It also suggaisisah
other databases be set up for distributed data mining. Véhetimot all databases need special data-mining interfdegsnds
on the DDM design. Consider as a simple example a DDM desigreaim, except for the primary system, all data mining is
implemented as SQL queries. Such a system only requireththather databases have an accessible SQL server.

Thus, with a DDM approach, the problems vanish from our eXarapdata mining for fraud detection. The DDM system
starts with a database of historical transactions. In otdlget class labels, it queries the database of fraud crelditsrder
to include the additional transactions, it links to the @iatse of unbilled transactions. While mining, it accessegltitabases
of customer information and geographic information, inertb find relationships or patterns of similarity. If the dainer
creates auxiliary databases of bad locations, or bad metshar users’ favorites, the DDM system simply can be tolthefr
existence, their relevance, and their location. Never doeslata miner face the issue of coalescing databases ingle s
table, or even a single, multitable database. Excludireyegit information is no longer a worry. The data miner mayead
be concerned that existing relevant databases may be okeddwhich, of course, also is a problem for standard, mnitiol

data mining, but usually is buried far beneath the concdready discussed).

0.3.3 Privacy restrictions may make monolithic mining impcesible

Sometimes databases have privacy restrictions. You may the answer then is simple: these can not be mined. However,
not all restrictions are completely exclusive. They varg@ope and sometimes have complicated rules. Herein libapsthe
most convincing argument against monolithic data miningtding a monolithic data set may be prohibited. For examate

organization may choose not to, or may not be allowed to,igeaccess to individuals’ data. However, organizationsiog
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data may be interested in participating in a data miningreféomnd may be willing to provide answers to queries for aggte
statistics, even if they are unwilling to share the loweslalata.

In fact, although data mining has raised fearful concerrargigg loss of privacy (e.g., consider the KDD-98 panel on
Privacy and Data Mining), we should argue that, if done righta mining shoulthcreaseprivacy. As mentioned already, data
mining programs need not examine individual records; rathey need aggregate information. Individual informatean be
protected on a secure server that only answers certainsesjiuem trusted clients. An individual customer still migisk, why
take the chance? Why not just disallow data mining altog@tlitowever, data mining also has potential to enhance privac
Fraud detection is an obvious example, but consider aldoruail (and junk email, and junk phone calls, etc.), an oftéad
privacy concern. If target-marketing data mining were torkvperfectly, there would be no “junk.” Only consumers who
would be interested in a product would be targeted. Of codiasg mining is unlikely to be perfect, but consider the alétive:
relatively blind mass marketing.

Distributed data mining is essential to reconcile theseospy privacy concerns, namely, protecting individualkdand
reducing unwanted privacy intrusions. Let’s continue wvaithr concrete example of credit-card fraud detection, whialvides
a clear illustration of the conflict. Customers prefer to éaétveir transaction data examined as little as possible wdrah it
becomes necessary, examination by a computer system (@vitherior motives) is probably universally preferable—tarslard
billing system going through our records causes no coné@nrthe other hand, customers tend to prefer that banks tdikemac
to verify usage that appears to be fraudulent. Presumaidypomers would prefer that a computer examine their traimsac
histories (looking for indications of fraud, and nothinge), rather than a bank employee.

At Columbia University, Professor Salvatore Stolfo and stisdents, in collaboration with several large banks, haenb
studying data mining for fraud detection (Stolfo, Fan, LBeydromidis, and Chan 1997; Stolfo, Prodromidis, Tseldpés,
Lee, and Chan 1997). Indeed banks would like to collabosdtectively pooling their data, to produce more powerfalfd-
detection models. However, they are in fact prohibited byfitwm sharing individual customers’ data. Stolfo et al. ggghat
by taking a distributed approach, the data both can be mifiectigely and can be kept secure. As described in Secti2r2.
models of fraud are mined independently by the individualksaeach bank needing to see only its own customers’ da&@. Th
models of fraud then are shared and combined. To understhpad@mbining models from different banks can lead to more
effective fraud detection, consider two banks whose custerare concentrated in different areas, say New York Citylaos
Angeles. Mining the New York data, one would discover sutitieal fraud patterns that would not be sufficiently concated
in the Los Angeles data. However, when Los Angeles custo(oetheir credit-card numbers) travel to New York, their hem
bank can use these subtle New York patterns for more eftefitiud detection.

This example illustrates distributed data mining acrokstively homogeneous data sets. Although the structureantent
of the banks’ records will differ to some degree, the disttéal data sets all represent the same basic informatiotaricisl
credit-card transactions. Privacy also is a concern fdribliged, heterogeneous data. Different databases, ioorgalifferent
information, will have different levels of required sedyriSome may be too sensitive for any data mining, but othergaiow
limited querying for aggregate information. In some caggsacy concerns may stem from a desire to profit from codidct
data. A company that has a lot of data may decide to issue spti@as to a data-mining server, which provides aggregate

information mined from their data. By allowing only limiteplierying, and by stipulating query restrictions in the suipsion
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contract, companies may be able to profit from the massivemwelof data they collect routinely, while protecting indivals’

privacy.

0.3.4 s this view of DDM realistic or far-fetched?

These arguments notwithstanding, our current discussanoibe incomplete if we did not address whether this view DD
is realistic or far-fetched. With respect to mining relaliyhomogeneous databases for purposes of classificateayswer is
easy. Itis not far-fetched, and in fact Stolfo’s group po®s web-accessible software for distributed data miningjfc1998).

With respect to mining heterogeneous databases (congainimpletely different, but related, tables), there alsevidence
that it is not far-fetched. At its most simple, heterogereBIDM could involve SQL queries to auxiliary databases foatvh
to this point | vaguely have called “aggregate statistids.this realistic? In other words, is it technically feasilfbr data
mining to be performed through SQL queries for statistickh@ut access to the underlying data? The answer, of course,
is “yes.” Several authors discuss how to do just this. Thenniasight is that matching hypotheses against the data is not
necessary: for most of the processing, all that is neededés afsufficient statisticérom which the results of matching can
be computed (Fayyad 1997). Separating the generation stifieient statistics from their use in the evaluation of bypeses
allows each to be treated separately—first using the datagalpte the statistics data structure and then operatilygoorthe
data structure—which affords both optimized use of memany improved run-time complexity (Aronis and Provost 1997).
More specifically, consider mining classification modelsar Fost of the critical data mining operations, such as cimgos
nodes when constructing decision trees, one must tallylfth@instances (at a particular point in the search) thesclabels
associated with the different values of each attribute. rAightforward data structure to store such statistics isrgingency
table of instance counts for each attribute, indexed bybate-value and class. This data structure can be poputst&DL
requests for statistics (Agrawal and Shim 1995; Agrawal @hiin 1996; John and Lent 1997; Graefe, Fayyad, and Chaudhuri
1998).

Sarawagi et al. (1998) provide perhaps the most comprefedscussion of integrating data mining with database man-
agement systems. Their focus is on mining association,rolgshey illustrate principles that apply more generalligey point
to several efforts to extend SQL to support mining operajamd discuss expressing mining algorithms in SQL. In palei,
Sarawagi et al. discuss pushing into the database systésgbdne application program that perform intensive corafiahs
on the individual records, instead of bringing the recorithe database into the application program. One methodaatap-
sulate the statistics gathering as a stored procedurehis@xecuted on the database machine. A somewhat diffggpriiach
is to represent the individual data mining operations as-dséned functions placed in SQL data scan queries (whisb al
will run on the database machine) (Agrawal and Shim 1995aAgt and Shim 1996). Sarawagi et al. also consider the more
general case where a preprocessor translates data mirgngtioms into the appropriate form for a particular enviramt.

There also has been work demonstrating the feasibility stfiduted mining of heterogeneous data. Aronis et al. (1997
describe the WoRLD (Worldwide Relational Learning Daemsygtem, that mines multiple, multitable databases disteil
across networks. The key to the WoRLD'’s ability to treatrilisited databases transparently is its use of spreadingtoh

(Quillian 1968), instead of item-by-item matching, as tlasib operation of the inductive engine. Each instance isllied
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with a marker, and the WoRLD propagates these markers thrdatabases looking for features where markers of one class
accumulate. This process can span several database$lpossiifferent machines, with markers transmitted acrostsvork
links. As with the WWW, there is no need for a master map of thiére structure—each database can have its own links to

other related databases, which the WoRLD can follow as ibenters them.

0.4 Discussion

Besides being tedious, being prohibited by privacy restms, and potentially losing information, the process aélescing
already-distributed databases introduces other probl@rhe content of many databases is dynamic: it changes immesp
to changes in the world. Once data miners create their owrngidatabase that incorporates information from auxiliary
databases, the mining database quickly can become obs@eta miners do not want to, and often are not equipped to,
duplicate the management of the auxiliary data. Neitherhaéy tvant to rebuild their mining database repeatedly. A DDM
system that can query the existing auxiliary databasesedeake leaving their management to their managers, woulctv
this problem—also created by the awkward, non-distribwied.*

At this point, you may feel that | have glossed over a lot ofpaeaird problems—and you would be right. As an example of
a particularly telling problem, how is ontological mismiato be resolved? Different databases may use the same tenestio
different things, and may use different terms to refer togame thing. A DDM system would have to either (partially)vsol
this problem, or would have to make very strong assumptibmguld counter this (correct) observation by pointing dusit
this is not a problem specific to distributed data miningugtjcomes to the fore when it has to be automated. This is a hard

basic research problem for data mining, tbatrentdata mining research is glossing over.

0.4.1 The DDM view opens new avenues for research

Lots of other fundamental KDD research problems, that g@bdylesigning new or faster induction algorithms, also tleeir
attractive heads. Solutions to some technical DDM problaeraseginning to be addressed (Grossman and Bailey 1998). Fo
example, how can heterogeneous processors and netwoskdast be used (Grossman, Bailey, Kasif, Mon, Ramu, and Malhi
1998)? However, consider a different type of problem. Whildding their monolithic database, data miners oftenceothat
“database X is relevant in such-and-such a way,” and workdorporate X. Few authors address the fundamental issu&: Ho
and from where do such insights come? Taking a DDM view (asdragg the existence of database maps or metadata, other
relevant research areas), systems themselves shouldebtatutice that “database X is relevant in such-and-suchyd aad
query it. Once again, the attempt to automate this part optbeess brings it into the research spotlight.

DDM as simply issuing SQL queries, while currently the mestdible approach, certainly is not the most ambitious risio

4At first it may seem that in such cases, managing the data istabdited database management system (DDBMS), with incargd mining routines,
would be sufficient. However, although mining DDBMSs is oeepninteresting method for DDM, this view is incomplete. Boganizational reasons, many
auxiliary databases are not, and will not be, managed in a @BByet it still may be useful to use them when mining. Viewid®M only as mining a
DDBMS either (1) demands that a particular DDBMS incorperalt auxiliary data whenever they are deemed potentialgvaat, or (2) restricts the use of

some such data.
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A DDM visionary might see distributed mining agents coopiegain a knowledge economy. Closer to feasibility are data
mining servers, available on the network, that publishrtbapabilities for data mining clients to consider. Theg®eses could
sit atop data with varying degrees of privacy, and if neagssauld serve only trusted clients or clients under cortrdde
emergence of a knowledge economy for data mining may not Ilthat! far away. Once distributed data mining becomes
a reality, it is not a stretch to foresee organizations dmyel that profit by providing knowledge services. They wsiibre
and manage large and potentially changing databases, @mdhitzers will pay for access. For instance, fraud detecocs
target marketers would be delighted if a demographic dat&iger were established, which for a small fee would provide

just-the-right auxiliary knowledge for a particular prei.

0.4.2 DDM as knowledge discovery

Section 0.2 presented arguments for distributed data gpibased on computational efficiencies due to parallelinatiothe
distributed mining processes. | have tried to argue thabalgh the effect of parallelization is important, it is lésgortant
than the effect of taking a distributed view of the problemheTquestion of whether the distributed mining processed mus
reside on separate processors, or whether they profitablg di® simulated on a single processor, does not seem garticu
important when juxtaposed with the conceptual neatnesseoDIDM problem formulation. Of all the examples heretofore
presented, the most convincing in this respect may be DDMtential to eliminate much of the manual effort needed to
coalesce heterogeneous, multitable databases. It seatmntlight of the current state of the art, a data miner wordtlie

a reduction in the manual effort (of coalescence) more Kigihn the corresponding reduction in computational effbyt
parallization).

There is another way in which a distributed view of data mininay lead to remarkable computational efficiencies. Data
mining is one element of a larger process of discovery. Thegethe correct direction and manner to proceed are imttigril
defined. A single explorer must try one thing, then anothmemtanother, and so on, until either he finds something istiege
or he runs out of resources. This describes the essentigienaf the process of exploration, including not only what baen
called “the knowledge discovery process,” but also gedgaexploration (e.g., in the fifteenth and sixteenth cee)rand
the typical process of science. The length of a discovelfaydis related directly to the explorer’s ability to pritze possible
paths of exploration.

On the other hand, a (distributed) group of explorers folamany paths simultaneously. Indeed, different explow@iew
different paths almost by necessity. Herein lie two keyghss. First, the speed of the group progresses at the speéd of
fastest member of the group. Second, the entire group diapgan the discovery (once it is made known), and ratcheissu
goals. Examples abound. In geographic discovery, oncergestioute was found to a desired destination, explorerd iige
set their sights even higher for future discoveries. Inrsoig once a (sub-)problem has been solved by one reseang, gne
results are published and all research groups can now “stanldeir shoulders” (paraphrasing Newton). Why is thisvefe
to distributed data mining? As with other explorations, tsniery nature knowledge discovery is an ill-defined proc@sais
we must try and try again to formulate just-the-right difentand manner of search. We may have many possibilitieseat th

outset, but little reason to prefer one over another. If dadime consuming, discovery may be inefficient. Howeveergv
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weather-worn data miner has experienced the phenomenbariba the right problem formulation is concocted, disc@ser
are made remarkably, sometimes embarassingly, quickly.

If many different starting points and directions are beguamutaneously, and the “right one” is among the group, then t
discovery may be made very quickly in real time, and perhaps &ith much less combined effort than in the sequentiad.cas
In a different context, this phenomenon has been called mbdamatorial implosion” (Kornfeld 1982), and has been stadi
in other areas of artificial intelligence (e.g., for consitasatisfaction (Clearwater, Huberman, and Hogg 1991a@later,
Huberman, and Hogg 1992)).

0.5 Summary

Distributed data mining lately has been receiving incregisittention. Most work uses distributed processing toesoal to
large databases, and the rich decomposability of data mjriablems has led to successful techniques all along thersipe
from fine- to coarse-grained. The search space can be paeitiand different processors can search different partéieo
data can be partitioned. Nevertheless, scaling up is butmortézation for distributed data mining. Distributed daténing
also eliminates the need to coalesce already distributéal daoalescence is severly problematic, both in principid &
practice. Often, certain data are left out of a problem fdation not because they are deemed irrelevant, but becaciseling
them is too awkward. Distributed data mining avoids thesdblems, and also eliminates storage, time, and data maregem
inefficiencies associated with coalescence. Finally,gagvconcerns may prohibit coalescence altogether. Dig&tbdata
mining can allow access to a wide variety of data, while pritg data privacy.

Potential consumers of auxiliary knowledge already exisbrsumers who are not shy about spending money on data
mining. Potential suppliers await the development of istinacture. Once DDM becomes a practical reality, implyiogonly
solutions to the computational and network-related issdiekstributed mining, but also the existence of publishathdnaps

and meta-data, then data-mining-supported knowledgeoecias will develop.
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