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Preface

This workshop is the second in a series of workshops held in conjunction with AAAI and IJCAI. The
first workshop was held in July, 2000 at AAAL. Notes from that workshop are available at
http://robotics.stanford.edu/srl/. Since the AAAI 2000 workshop, there has been a surge of
interest in this area. The efforts have been diffused across a wide collection of sub-areas in
computer science including machine learning, database management and theoretical computer
science. Much of the work is organized around applications such as hypertext mining, modeling the
World Wide Web and social network analysis. This surge in interest has been fueled by the large
interest in the Internet and web mining and interest in mining social networks for counter-terrorism
and intelligence (led by DARPA's Evidence Extraction and Link Discovery program ).

We are excited to see common topics and themes emerging from the various research camps and
cliques. We hope to use this year’s workshop to begin formulating a general theory for statistical
relational learning (and perhaps devise a better term for it, too!).

This year’s workshop will consist of the following sessions:

Feature Construction, Aggregation, and Propositionalization

Link Prediction

Identity Uncertainty, Record Linkage and Consolidation

Instances vs. Classes

General Relations/Handling Time and Space

Models and Systems

The sessions will be devoted largely to discussion; there will be no formal paper presentations.

A key to the success of the workshop will be the use of a collaboratively edited website to
encourage participation before the workshop, to support interaction during the workshop and to
provide a record after the workshop. The website is:

http://kdl.cs.umass.edu/srl2003/
The login and password are: srl2003/ijcai2003!

We'd like to give extend our sincere thanks to the program committee, the authors, and all of the
participants.

We are looking forward to a lively and productive workshop in Acapulco,

Lise Getoor, University of Maryland, College Park
David Jensen, University of Massachusetts, Amherst
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Speeding Up Multi-Relational Data Mining

Anna Atramentov, Vasant Honavar
Artificial Intelligence Research Laboratory,
Computer Science Department, lowa State University,
226 Atanasoff Hall, Ames, 1A 50011-1040, USA,
{anj uta, honavar }@s.iastate. edu

Abstract

We present a general approach to speeding up a
family of multi-relational data mining algorithms
that construct and use selection graphs to obtain the
information needed for building predictive mod-
els (e.g., decision tree classifiers) from relational
database. Preliminary results of our experiments
suggest that the proposed method can yield 1-2 or-
ders of magnitude reductions in the running time
of such algorithms without any deterioration in
the quality of results. The proposed modifications
enhance the applicability of multi-relational data
mining algorithms to significantly larger relational
databases that would otherwise be not feasible in
practice.

1 Introduction

Recent advances in high throughput data acquisition, digital
storage, and communications technologies have made it pos-
sible to gather very large amounts of data in many scientific
and commercial domains. Much of this data resides in rela-
tional databases. Even when the data repository is not a rela-
tional database, it is often convenient to view heterogeneous
data sources as if they were a collection of relations [Reinoso-
Castillo, 2002] for the purpose of extracting and organizing
information from multiple sources. Thus, the task of learning
from relational data has begun to receive significant attention
in the literature [Blockeel, 1998; Knobbe et al., 1999a; Fried-
man et al., 1999; Koller, 1999; Krogel and Wrobel, 2001;
Getoor, 2001; Kersting and De Raedt, 2000; Pfeffer, 2000;
Dzeroski and Lavrac, 2001; Dehaspe and Raedt, 1997; Jaeger,
1997; Karalic and Bratko, 1997].

Recently, [Knobbe et al., 1999a] outlined a general frame-
work for multi-relational data mining which exploits struc-
tured query language (SQL) to gather the information needed
for constructing classifiers (e.g., decision trees) from multi-
relational data. Based on this framework, several algorithms
for multi-relational data mining have been developed. Exper-
iments reported by [Leiva, 2002] have shown that MRDTL —
a multi-relational decision tree learning algorithm is compet-
itive with other approaches to learning from relational data.
One common feature of all algorithms based on the multi-
relational data mining framework proposed by [Knobbe et al.,

1999a] is their use of selection graphs to query the relevant
databases to obtain the information (e.g., statistics) needed
for constructing a model. Our experiments with MRDTL re-
vealed that the execution of queries encoded by such selection
graphs was a major bottleneck in terms of the running time of
the algorithm. Hence, this paper describes an approach for
significantly speeding up some of the most time consuming
components of such algorithms. Preliminary results of our
experiments suggest that the proposed method can yield one
to two orders of magnitude speedups in the case of MRDTL.
We expect similar speedups to be obtained with other multi-
relational data mining algorithms which construct and use se-
lection graphs.

The rest of the paper is organized as follows: in Section 2
we overview multi-relational data-mining framework, in Sec-
tion 3 we describe the speed up scheme for this framework
and in Section 4 we show the experimental results that we
obtained applying the scheme.

2 Multi-Relational Data Mining

2.1 Relational Databases

A relational database consists of a set of tables D =
{X1,X5,...X,}, and a set of associations between pairs of
tables. In each table a row represents description of one
record. A column represents values of some attribute for the
records in the table. An attribute A from table X is denoted
by X.A.

Definition 2.1 The domain of the attribute X. A is denoted as
DOM(X.A) and is defined as the set of all different values
that the records from table X have in the column of attribute
A.

Associations between tables are defined through primary
and foreign key attributes in D.

Definition 2.2 A primary key attribute of table X, denoted
as X.ID, has a unique value for each row in this table.

Definition 2.3 A foreign key attribute in table Y refer-
encing table X, denoted as Y.X_ID, takes values from
DOM (X .ID).

An example of a relational database is shown in Figure
1. There are three tables and three associations between
tables. The primary keys of the tables GENE, COMPO-
SITION, and INTERACTION are: GENE_ID, C_ID, and
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Figure 1: Example database

I_ID, respectively. Each COMPOSITION record references
some GENE record through the foreign key COMPOSI-
TION.GENE_ID, and each INTERACTION record refer-
ences two GENE records through the foreign keys INTER-
ACTION.GENE_ID1 and INTERACTION.GENE_ID2.

In this setting, if an attribute of interest is chosen, it is
called target attribute, and the table in which this attribute
is stored is called target table and is denoted by Tj.

Each record in Ty corresponds to a single object. Addi-
tional information about an object is stored in other tables of
the database, which can be looked up, when following the
associations between tables.

2.2 Multi-Relational Data Mining Framework

Multi-relational data mining framework is based on the
search for interesting patterns in the relational database,
where multi-relational patterns can be viewed as “pieces of
substructure encountered in the structure of the objects of in-
terest” [Knobbe et al., 1999a].

Definition 2.4 A multi-relational object is covered by a
multi-relational pattern iff the substructure described by the
multi-relational pattern, in terms of both attribute-value con-
ditions and structural conditions, occurs at least once in the
multi-relational object. ([Knobbe et al., 1999a])

Multi-relational patterns also can be viewed as subsets of
the objects from the database having some property. The most
interesting subsets are chosen according to some measure (i.e.
information gain for classification task), which guides the
search in the space of all patterns. The search for interesting
patterns usually proceeds by a top-down induction. For each
interesting pattern, subputterns are obtained with the help of
refinement operator, which can be seen as further division of
the set of objects covered by initial pattern. Top-down induc-
tion of interesting pattern proceeds recursively applying such
refinement operators to the best patterns.

COMPOSITION

GENE Complex =’ Cytoskeleton’

Chromosome=1
COMPOSITION

)

Complex =’ Cytoskeleton’ and
Class = 'Proteases’

Figure 2: Selection graph, corresponding to those GENE(S)
that belong to chromosome number 1, that have at least one
COMPOSITION record whose complex value is *Cytoskele-
ton’, but for which none of the COMPOSITION records have
complex value *Cytoskeleton’ and class value ’Proteases’ at
the same time.

Multi-relational pattern language is defined in terms of se-
lection graphs and refinements which are described in the fol-
lowing sections.

2.3 Selection Graphs

Multi-relational patterns are expressed in a graphical lan-
guage of selection graphs [Knobbe et al., 1999b].

Definition 2.5 A selection graph S is a directed graph S =
(N,E). N represents the set of nodes in S in the form of
tuples (X, C, s, f), where X is a table from D, C is the set of
conditions on attributes in X (for example, X .color = ’red’
or X.salary > 5,000), s is a flag with possible values open
and closed, and f is a flag with possible values front and
back. F represents edges in S in the form of tuples (p, ¢, a, ),
where p and ¢ are nodes and « is a relation between p and ¢
in the data model (for example, X.ID = Y.X_ID), and ¢ is a
flag with possible values present and absent. The selection
graph should contain at least one node ng that corresponds
to the target table 7.

An example of the selection graph for the data model from
Figure 1 is shown in Figure 2. This selection graph corre-
sponds to those GENE(s) that belong to chromosome number
1, that have at least one COMPOSITION record whose com-
plex value is Cytoskeleton’, but for which none of the COM-
POSITION records have complex value *Cytoskeleton’ and
class value "Proteases’ at the same time. In this example the
target table is GENE, and within GENE the target attribute is
LOCALIZATION.

In graphical representation of a selection graph, the value
of s is represented by the presence or absence of a cross in
the node, representing the value open and closed, respec-
tively. The value for e, in turn, is indicated by the presence
(present value) or absence (absent value) of a cross on the
corresponding arrow representing the edge. An edge between
nodes p and ¢ chooses the records in the database that match
the joint condition, a, between the tables which is defined by
the relation between the primary key in p and a foreign key



in ¢, or the other way around. For example, the join condi-
tion, a, between table GENE and COMPOSITION in selec-
tion graph from Figure 2 is GENE.GENE_ID = COMPOSI-
TION.GENE_ID.

A present edge between tables p and ¢ combined with a list
of conditions, ¢.C and p.C, selects those objects that match
the list of conditions, ¢.C' and p.C', and belong to the join
between p and ¢, specified by join condition, e.a. On the
other hand, an absent edge between tables p and ¢ combined
with a list of conditions, ¢.C and p.C, selects those objects
that match condition p.C' but do not satisfy the following:
match ¢.C' and belong to the join between tables at the same
time.

Flag f is set to front for those nodes that on their path to
ng have no closed edges. For all the other nodes flag f is set
to back.

[Knobbe et al., 1999b] introduces the algorithm (Figure 3)
for translating a selection graph into SQL query that returns
the records in the target table covered by this selection graph,
where subgraph(sS, j.q) procedure returns the subgraph of the
selection graph S starting with the node ¢ as the target node,
with label s reset to open, removing the part of the graph that
was connected to this node with the edge j and reseting all
the values of flag f at the resulting selection graph by defi-
nition of f. Notation j.q.key means the name of the attribute
(primary or foreign key) in the table ¢ that is associated with
the table p in relation j.a.

TRANSLATE(S, key)
Input Selection graph S, key (primary or foreign) in the

target node of S
Output SQL query for creating sufficient information about
graph S
1  table_list:="
2 condition_list ;="
3 join.list:="
4  foreachnodeiin S do
5 if (i.s =’open’ and i. f = "front’)
6 table_list.add(i.table_name + 'T" + 7)
7 for each condition cin i do
8 condition_list.add(c)
9 foreachedge jinSdo
10 if (j.e = "present’)
11 if (j.q.s ='open’ and j.q.f = "front’)
12 join_list.add(j.a)
13 else
14 join_list.add(

j.p+')+ jpprimary key +’ notin’ +

TRANSLATE( subgraph(S, j.q), j.q.key))

15 return’select distinct’ + 'T;.” + key +
"from’ + table_list +
"where’ + join_list +’ and ' + condition_list

Figure 3: Translation of selection graph into SQL query

Using this procedure the graph in Figure 2 translates to the
SQL statement shown in Figure 4.

select  distinct Tp.gene_id
from GENE T, COMPOSITION T}
where  Tjy.gene_id =T} .gene._id

and Ty.chromosome = 1

and 77.complex = "Cytoskeleton’

and T.gene_id not in

('select Ty.gene-id

from COMPOSITION Ty

where Ty.complex = "Cytoskeleton’
and Tj.class = Proteases)

Figure 4: SQL query corresponding to the selection graph in
Figure 2
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Figure 5: Complement refinements for adding condition to
the node: a) positive condition, b) negative condition

2.4 Refinements of the Selection Graphs

Multi-relational data mining algorithms search for and suc-
cessively refine interesting patterns and select promising ones
based on some impurity measure (e.g. information gain). The
set of refinements introduced by [Knobbe et al., 1999b] are
given below. Note that all of these refinements can only be
applied to the open, front nodes in the selection graph S.

e Add positive condition (Figure 5 a)). This refinement
will simply add a condition ¢ to the set of conditions
C' in the node T; of selection graph S without actually
changing the structure of S.

e Add negative condition (Figure 5 b). If the node which is
refined is not ng, this refinement will introduce a new ab-
sent edge from the parent of the selection node in ques-
tion. The condition list of the selection node will be
copied to the new closed node, and will be extended by
the new condition. This node will also get the copies of
the children of the selection graph in question and open
edges to those children will be added. If the node which
is refined does represent the target table, the condition
is simply negated and added to the current list of con-
ditions for this node. This refinement is complement to
the add positive condition refinement”, in the sense that
it covers those objects from the original selection graph
which were not covered by corresponding "add positive
condition” refinement.

e Add present edge and open node (Figure 6 a)). This re-
finement introduces a present edge together with its cor-
responding table to the selection graph S.



Figure 6: Complement refinements for adding edge to selec-
tion graph: a) adding present edge and open node, b) adding
absent edge and closed node

e Add absent edge and closed node (Figure 6 b). This re-
finement introduces an absent edge together with its cor-
responding table to the selection graph S. This refine-
ment is complement to the “add present edge and open
node”, in the sense that it covers those objects from the
original selection graph which were not covered by "add
present edge and open node” refinement.

It is important to note that only through the "add edge” re-
finements the exploration of all the tables in the database is
done. We can consider "add condition” refinement on some
attribute from some table only after the edge to that table has
been added to the selection graph. What happens if the val-
ues of the attributes in some table are important for the task
but the edge to this table can never be added, i.e. adding
edge doesn’t result in further split of the data covered by the
refined selection graph? Look ahead refinements, which are
a sequence of several refinements, are used for dealing with
this situation. In the case when some refinement doesn’t split
the data covered by the selection graph, the next set of refine-
ments is also considered as refinements of the original selec-
tion graph.

3 Speeding Up Multi-Relational Data Mining

Let S be some selection graph. Any refinement of .S covers
the subset of instances covered by S. Since all the refinements
of S usually need to be examined, storing intermediate results
obtained from S will reduce the amount of time needed to
examine all its refinements.

The goal of this section is to show what intermediate infor-
mation should be stored for each selection graph S so that the
instances covered by each of its refinements can be recovered
quickly.

The knowledge of the structure of the selection graph S is
enough to restore all the objects in the database correspond-
ing to any refinement R of S. This can be done by first ap-
plying the refinement to S to obtain a refined selection graph
R(SS), which in turn is then transformed into an SQL query
as described in Subsection 2.3. The size of the resulting SQL
query increases with the complexity of the graph, resulting in
the corresponding increase in the execution time of the query.

It is possible to substantially speed up this step of the algo-
rithm as follows. For each object covered by selection graph
S we store only its class label and the primary key values
from the tables corresponding to the open, front nodes in the
selection graph S. We call the resulting table the sufficient
table for S and denote it by Ig.

The procedure that transforms selection graph .S into SQL
query for creating sufficient table Is is shown in Figure 7.

SUF_TABLE(S)
Input Selection graph S
Output SQL query for creating sufficient table 7s
1 table_list, condition_list, join_list :=
extract_from(TRANSLATE(S))
2 primary_key_list := 'Tj.target_attribute’
3 foreachnodeiin .S do
4 if (:.s ='open’ and i. f = "front’)
5 primary_key_list .add(z.1D)
6 return’create table g as’ +
" (select’ + primary key_list +
" from’ + table_list +
"where’ + join_list +
"and’ + condition_list + /)’

Figure 7: Algorithm for generating SQL query corresponding
to the sufficient table I's of the selection graph S

Given a sufficient table I, we can restore all the records
from the target table that are covered by the selection graph
S, by applying the following SQL query on table Ig:

select distinct Ty.primary_key from Ig.

The sufficient table s stores all the records corresponding
to the selection graph S, i.e., all the records satisfying the
constraints imposed by S, even though these constrains are
not explicit anymore.

Let R be a refinement of the selection graph .S, and R(S)
a new selection graph resulting from refining S with R. The
procedure for obtaining the sufficient table for R(.S) given I's
is shown in Figure 8.

The sufficient table for a selection graph contains all the
information necessary to obtain the database objects that are
covered by the selection graph and any of its refinements.

Proposition 1 Given a selection graph S, its sufficient ta-
ble Is, and a refinement R, the table constructed by REFINE-
MENT_SUF_TABLE(/s, R) will contain the same records as
the table constructed by SUF_TABLE(R(S))

Proof sketch: Selection graph can be viewed as multi-
relational pattern consisting of two subpatterns. The one that
corresponds to all the open, front nodes in the selection graph,
and the complement one. Let’s denote the first subpattern as
EXPLICIT subpattern, and the latter as IMPLICIT subpat-
tern. The sufficient table contains the information about the
EXPLICIT subpattern. Information about IMPLICIT subpat-
tern is hidden in the sufficient table. It is important to note
though, that objects stored in sufficient table still match IM-
PLICIT subpattern. Refinements can be applied only to the
open, front nodes. Let’s consider applying either "add pos-
itive condition’ refinement or *add present edge’ refinement.
The resulting refined selection graph consists of extended (re-
fined) EXPLICIT subpattern and unchanged IMPLICIT sub-
pattern. This means that applying the refinement only to the
sufficient table (as it is done in Figure 8) will result in ob-
jects matching to the extended EXPLICIT subpattern and in-
herently matching to the IMPLICIT subpattern, which means
that they are matching to the refined selection graph. Similar



REFINEMENT_SUF_TABLE(Is, R)
Input Sufficient table Is for selection graph .S,
refinement R
Output SQL query for sufficient table for R(S)
table_list := "I
condition_list := "
join_list :="
primary _key_list := primary _keys(Is)
if R == add positive condition, ¢, in table T;
table_list +='T7/
condition_list +='T;.c/
joinlist +=T;.ID+' ='+15.T;_ID
else if R == add negative condition, ¢, in table T;
0 condition_list += T,,.ID + is not in
(‘select distinct’ + I5.Ty_ID +
"from’ + Is, T; +
"where’ + T;.c+’and’ + T;,.ID +
"= +Is.T;, ID+'Y
11 else if R = add present edge, e, from T; to T;

P OOO~NOUTAWN -

12 table_list += T;+'." +1;

13 join_list +=T;. ID+' =" +1s.T; ID+
"and’ 4 e.a

14 primary_key_list += T;.1D

15 else if R == add closed edge, e from T; to T}

16 condition_list += T},.ID + ’is not in

( select distinct’ + Is.7To-ID +

"from’ + Is+') +T;+' +T; +

"where’ + T;. 1D+ =" +15.T;_ID+
"and’ + e.a+’)’

17 return’create table I_R as’ +

'(select” + primary _key_list +

"from’ + table_list +

"where’ + join_list +

"and’ + condition_list + )’

Figure 8: Algorithm for generating SQL query corresponding
to sufficient table I (s)

argument can be used for the case of other refinements. ]

Note that REFINEMENT_SUF_TABLE procedure always
returns a query of the constant size, i.e. the number of tables
that need to be joint and the number of conditions that need
to be applied is constant, which means that the time needed
for executing this query doesn’t increase with the size of the
selection graph. On the other hand, the time needed for the
execution of the TRANSLATE(S) function increases consid-
erably with the size of the selection graph.

The above discussion can be extended to the look-ahead
refinements, since they are a sequence of two refinements.

4 Experimental Results

We illustrate how the proposed approach can speed up a
multi-relational data mining algorithm by considering multi-
relational decision tree learning (MRDTL) algorithm, which
constructs a decision tree for classifying a target attribute
from a target table in a given database.

This algorithm proposed in [Knobbe et al., 1999b] and
implemented in [Leiva, 2002] is an extension of the logical
decision tree induction algorithm called TILDE proposed by
[Blockeel, 1998]. Essentially, MRDTL, like the propositional
version of the decision tree algorithm [Quinlan, 1993], adds
decision nodes to the tree through a process of successive re-
finement until some termination criterion is met (e.g., correct
classification of instances in the training set). The choice of
the decision node to be added at each step is guided by a
suitable impurity measure (e.g., information gain). MRDTL
starts with the selection graph containing a single node at the
root of the tree, which represents the set of all objects of in-
terest in the relational database. This node corresponds to the
target table Ty,. The algorithm iteratively considers every pos-
sible refinement that can be made to the current pattern (se-
lection graph) S with respect to the database D and selects,
in a greedy fashion, the optimal refinement (i.e., the one that
maximizes information gain) and its complement.

Each candidate refinement is evaluated in terms of the split
of the data induced by it with respect to the target attribute,
as in the case of the propositional version of the decision tree
learning algorithm [Quinlan, 1993]. Splits based on numeri-
cal attributes are handled using a technique similar to that of
C4.5 algorithm [Quinlan, 1993] with modifications proposed
in [Fayyad and Irani, 1992; Quinlan, 1996].

The hypothesis resulting from the induction of the rela-
tional decision tree algorithm described above can be viewed
as a set of SQL queries associated with the selection graphs
that correspond to the leaves of the decision tree. Each selec-
tion graph (query) has a class label associated with it. If the
corresponding node is not a pure node, (i.e., it misclassifies
some of the training instances that match the query), the label
associated with the node can be based on the classification of
the majority of training instances that match the correspond-
ing selection graph. Alternatively, we can use probabilistic
assignment of labels based on the distribution of class labels
among the training instances that match the corresponding
selection graph. The complementary nature of the different
branches of a decision tree ensures that a given instance will
not be assigned conflicting labels. It is also worth noting that
it is not necessary to traverse the entire tree in order to classify
a new instance; all the constraints on a certain path are stored
in the selection graph associated with the corresponding leaf
node. Instances that do not match the selection graphs as-
sociated with any of the leaf nodes in the tree are assigned
unknown label and are counted as incorrectly classified when
evaluating the accuracy of the tree on test data.

We have implemented MRDTL in Java using Oracle rela-
tional database and tested it on different databases. We have
also implemented the speedup scheme for this algorithm. The
resulting algorithm is shown in Figure 9.

We conducted our experiments on the data for prediction
gene localization from KDD Cup 2001 [Cheng et al., 2002].
Our current implementation of MRDTL assumes that the tar-
get table has a primary key, therefore it was necessary to
normalize one of the initial tables given in this task. This
normalization was achieved by creating tables named GENE,
INTERACTION, and COMPOSITION as shown in Figure
1. For the gene/protein localization task, the target table is



Tree_Induction(D, S, Ig)
Input Database D, selection graph S, sufficient table I's
Output The root of the tree, T’
1 ALL := all_refinements(S)
R := optimal_refinement(s, D, ALL)
if stopping_criteria(/s)

return leaf
Tieyt := Tree_Induction(D, R(S), R(Is))
Tright := Tree_Induction(D, R(S), R(Is))

2
3
4
5 else
6
7
8

return node(Tic s¢, Tright, R)

Figure 9: MRDTL algorithm with speed up

o_r_min | o_r_max o_r_all all
WOSU 0.04 70.642 | 3838.512 | 4764.15
WSU 0.00 3.656 65.241 416.74

Table 1: Experimental results. Here o_r_min denotes the
shortest running times (in seconds) spent by the algorithm
on a single call of optimal_refinement procedure, o_r_max
denotes the longest running times (in seconds) spent by the
algorithm on a single call of optimal_refinement procedure,
o-r_all denotes the running time (in seconds) spent by the
algorithm on all calls of the optimal_refinement procedure,
all denotes the overall running time (in seconds) of the algo-
rithm, WOSU denotes the results for the run of the algorithm
without speed up scheme implemented, and WSU denotes the
results for the run of the algorithm with speed up scheme im-
plemented.

GENE and the target attribute is LOCALIZATION. The re-
sulting training set consists of 862 genes and the test set con-
sists of 381 genes. We constructed a classifier using all the
training data and test the resulting classifier on the test set.

We have recorded the running times of the algorithm with
and without speedup scheme proposed in the paper. We also
measured the amount of time spent on the function opti-
mal_refinement.

Experimental results are shown in Table 1, where o_r_min
denotes the shortest running times (in seconds) spent by the
algorithm on a single call of optimal_refinement procedure,
o-r_max denotes the longest running times (in seconds) spent
by the algorithm on a single call of optimal_refinement pro-
cedure, o_r_all denotes the running time (in seconds) spent
by the algorithm on all calls of the optimal_refinement pro-
cedure, all denotes the overall running time (in seconds) of
the algorithm, WOSU denotes the results for the run of the
algorithm without speed up scheme implemented, and WSU
denotes the results for the run of the algorithm with speed up
scheme implemented.

The overall running time spent on querying the database in
training phase was decreased by a factor of around 59. The
running time improvement by a factor of 11 was observed in
the overall running time for the MRDTL algorithm on this
database. Some calls of optimal_refinement procedure had
running time improvement up to a factor of 1000.

5 Conclusion

In this paper we present a general approach to speeding up
a class of multi-relational data mining algorithms. We have
incorporated the proposed method into MRDTL algorithm.
Preliminary results of our experiments have shown that the
proposed method yields one to two orders of magnitude re-
ductions in the running time of the algorithm. The proposed
modifications make it feasible to apply multi-relational data
mining algorithms to significantly larger relational databases.
Our work in progress is aimed at:

e Incorporation of sophisticated methods for handling
missing attribute values into MRDTL

e Incorporation of sophisticated pruning methods or com-
plexity regularization techniques into MRDTL to mini-
mize overfitting and improve generalization

e More extensive experimental evaluation of MRDTL on
real-world data sets

e Development of ontology-guided multi-relational deci-
sion tree learning algorithms to generate classifiers at
multiple levels of abstraction (based on the recently de-
veloped prepositional decision tree counterparts of such
algorithms [Zhang et al., 2002]

e Development of variants of MRDTL for classification
tasks where the classes are not disjoint, based on the
recently developed propositional decision tree counter-
parts of such algorithms [Caragea et al., in preparation]

e Development of variants of MRDTL that can learn from
heterogeneous, distributed, autonomous data sources
based on recently developed techniques for distributed
learning [Caragea et al., 2001b; 2001a] and ontology-
based data integration [Honavar et al., 2001; Honavar et
al., 2002; Reinoso-Castillo, 2002].

o Application of multi-relational data mining algorithms
to data-driven knowledge discovery problems in bioin-
formatics and computational biology.
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ABSTRACT

This paper addresses the classification of linked
entities. We introduce a relational vector-space (VS)
model (in analogy to the VS model used in information
retrieval) that abstracts the linked structure,
representing entities by vectors of weights. Given
labeled data as background knowledge/training data,
classification procedures can be defined for this model,
including a straightforward, “direct” model using
weighted adjacency vectors. Using a large set of tasks
from the domain of company affiliation identification,
we demonstrate that such classification procedures can
be effective. We then examine the method in more
detail, showing that as expected the classification
performance  correlates with  the relationa
autocorrelation of the data set. We then turn the tables
and use the relationa VS scores as a way to
analyzelvisualize the relational autocorrelation present
in acomplex linked structure. The main contribution of
the paper is to introduce the relational VS model as a
potentially useful addition to the toolkit for relational
data mining. It could provide useful constructed
features for domains with low to moderate relational
autocorrelation; it may be effective by itself for
domains with high levels of relational autocorrelation,
and it provides a useful abstraction for analyzing the
properties of linked data.

Keywords

relational data mining, vector-space models, industry
classification, homophily, relational autocorrelation,
relational -neighbor classifier

1. INTRODUCTION

The analysis of linked data differs from the traditiona
datamining scenario: the data items, instead of being
statistically independent, have relationships to each other.
Linked data are ubiquitous, and relational data mining is
receiving increasing attention with the explicit linking of
web sites, and with the need to analyze socia networks for
applications such as counterterrorism [1, 2, 3]. We
address a particular relational data mining application:
identifying the group membership of linked entities. We
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address company-industry affiliation, but the framework
and methods we describe are intended to be general.

Figure 1 shows a link diagram of companies and their
relationships, as extracted from the business news. Colors
indicate industry-sector affiliation. The diagram suggests
that relationships may play a useful role in identifying the
(unknown) affiliation of a company, because linked
companies often have the same affiliation.

Figure 1. Link diagram of firms. Only links with strength > 4
are shown (but proximity also indicates relatedness). Colors
indicate industry-sector member ship.

The key contribution of this paper is the presentation and
demonstration of a simple, but useful, method for
producing classification models from linked data. In
analogy to information retrieval [4], we represent entities
using a vector-space model. The relational vector-space
(RVS) model abstracts away much of the graph structure,
representing entities by adjacency vectors. Various
classification procedures can be defined on the RVS
model.

The main attraction of the RVS model isits simplicity.
We argue that RVS class-membership scores could be
useful constructed features for more complex (relational)
datamining approaches, such as ILP [5] that do not
naturally summarize the class membership of local
neighborhoods. We also believe that for certain tasks, the
RV'S model may be appropriate by itself.



The rest of the paper is organized as follows. We
present the RVS model formally, and use it to define
severa classification scoring functions. Next we
introduce the domain of company affiliation identification,
from which we will take a set of classification tasks. Then
we present the results of an experimental case study,
examining the effectiveness of the RVS model for
classification in this domain. Finaly, we show how the
model’ s scores can be used to analyze and visualize certain
class-related information about the original, complex

graph.

2. THE RVSMODEL

We make a direct analogy to the “vector-space model”
used for information retrieval, in which al textual and
linguistic structure is ignored and documents are
represented by vectors of weights on words. The relational
vector-space model is a similarly limited abstraction of
the graph structure, into a representation on which
straightforward classification techniques can be built.
Specifically, each dimension in the vector space
corresponds to another entity; each entity is represented
by a (weighted) adjacency vector (i.e., the magnitude aong
each dimension is some measure of the strength of the
relationship).

2.1 General Mode
Formally, we consider a set of entities E and aset Bl E

of “background knowledge” entities. Later in our company
affiliation domain, the entities will be companies and the
background knowledge will be companies for which the
classification is known. We place an (arbitrary) ordering
on B, resulting in b, i =1, .. |Bl. These define the
dimensions of the vector space, and thereby the
dimensions a ong which any entity can be described.
Definition: An entity e is described by an entity vector w
= (w1, W, ), Where w is the strength of the relationship
between entity e and background entity b. Ignoring
strengths gives a simple entity vector, w, where thew; are
binary (presence/absence of alink).

This relational vector-space representation can be used
for classification and clustering of entities, and other tasks
that rely on entity similarity. In this paper, we will
consider entity classification. In particular, consider a
discrete, finite set of classes C, such that for each G| C,
Gl E. Ifel G, eisconsideredtobeamember of classi.
In principle, the classes need not be mutually exclusive,
but we will consider them to be for this paper, so the class
can be considered to be a single-valued attribute of an
entity and (later) we can adapt previous notions of
relational autocorrelation directly. By definition, for
el B, class membership is known. We would like to
determine (estimate) class membership for at least one
entity el B.

Definition: Each class G| C is described by a class
vector ¢ = (Ci1, G2, ..), Where g is the strength of the
relationship between class C; and background ertity b;.

In order to classify an entity, we will consider how
similar the entity vector is to each class vector, using a
similarity-based scoring function. First, let us define a
generalized scoring function.

Definition: The generalized RVS score of entity e for
class i is the normalized inner product of w and ¢; (the

normalizing function g(w,c;) is discussed below):
WG,
g(w,c)

RV S scores may be used for classification and other class-
based scoring (e.g., for ranking) directly. They also could
provide generally useful constructed featuresto be used by
other methods (for example, more complex relational data
mining methods [1,2,3]).

2.2 Instantiating the RVS M odel

To define specific RVS scores we must answer three
questions, which we now will addressin turn.

1. How exactly arethe entity vectors, w, defined?

2. How exactly are the class vectors, ci, defined?

3. What normaizing function, g(w, ¢; ) is used?

Entity vectors. Recall that an entity vector is composed
of the strengths of the relationships between the entity e
and the background entities by. Of course, the definition of
strength is domain dependent, but there are some general
issuesworth highlighting. In all cases, we will consider w;
= 0 to indicate the lack of arelationship between e and by.
A simple way of defining entity vectors is to ignore
strengths, creating a vector of binary indicators. If thereis
a natural notion of strength, such as the number of links
between entities, this gives an obvious way of defining the
wi. However, in analogy to how the vector-space model is
used in text classification, a TFIDF-like weighting scheme
[4] may be provide added discrimination power.
Class vectors. Defining class vectors is somewhat more
involved. One general direct method is to give non-zero
weights to the background entities that are members of the
class. The distribution of weights places an a priori
directionality on the class vector, which ideally maximizes
discriminability. Using uniform weights defines a set of
simple, “canonical” vectorsfor each class.
Definition: The canonical class vector, ¢, for classi has
non-zero components: -

Cij= 1U QI C
Other distributions of direct weights may be natural for a
particular domain, based on background knowledge or
statistics summarized from the corpus of background
entities. For company affiliation classification,
companies in an industry (class) may be weighted by

d(ei) =



market capitaization or by a measure of margina
probability of linkage to same-class companies.

These direct methods assume that linkage to members
of the same class is sufficient for discrimination. It may
be that members of the same class are not linked to each
other, but are linked to the same ather entities (or other
classes). Short of abandoning the RVS approach for a
more complex graph-based approach, an indirect method
for defining class vectors may be beneficial.

Definition: The simple indirect class vector, sici, for
class i is the vector sum of the entity vectors for the
background entities belonging to the class:

Sic = é w

el CCB

One can define more complicated indirect class vectors.
For example, a class centroid would be dlightly more
complicated. An even more complicated indirect method
would be to redefine the b, one per class, as “super-
entities.” Then an indirect method could compare an
entity’s distribution of links to the various super-entities
to the average distributions for those classes. For this
paper, we do not consider complicated variations further.

Normalization functions. Generdly, g(w,c;) defines

the semantics of the similarity represented by the score.
For example, the familiar “cosine similarity” between the
entity vector and the class vector is d(ei) with the
following normalization function:

g(w.c;) =|w]
where I is the Euclidean (L2) norm. Whether the exact

C.
|

cosine distance, or some other normalization, is
appropriate is domain dependent, but a so depends on the
definitions of w and ¢;. For the experiments below, we
will look at several scoring functions representing
different similarities. These scoring functions are defined

by different instantiations of w, ci, and g(w, ¢;) .

2.3 Five RVSscoring functions

The RVS modd gives a convenient design space of
classification scoring functions. We concentrate on the
canonical class vector, because it is easy to define, and
creates intuitively attractive scores (that perform well in
our domain).
Definition: The class-normalized direct RVS score of
entity e for class i is the inner product of W and the
canonical class vector ¢;, normalized by the L1 norm of c.

Scnd (&) = —_—

a Ci .j

The class-normalized direct RVS score counts up the
connected entities belonging to the class, and then

normalizes by the size of the class;! so that certain classes
do not get higher scores simply because they are larger.
Definition: The entity-normalized direct RVS score of
entity e for class i is the inner product of W and the
canonical class vector c¢;, normalized by the L1 norm of
w.
. Woc
Send (e! I) = T—AI
Wi
The entity-normalized direct RVS score is attractive
intuitively: it represents the proportion of connected
entities that are members of G. This normalizes so that
certain entities do not get higher scores simply by being
more highly connected.
Definition: The weighted, entity-normalized direct
(wend) RVS score of entity e for class i is the inner
product of w and the canonical class vector c;, normalized
by the L1 norm of w.
L WoC,
Swena (€1) = 52—
Wi

Using a weighted entity vector inherently deals with noise
(spurious, lowweight links) in the data. Using the L1
norm of the weight vector gives the intuitively appealing
weighted proportion of links that are to members of the
class of interest.

All three of these methods directly relate the entity
vectors w with the respective canonical class vectorsc;. A
second group of scoring functions relaes the entity vector
w with the simpleindirect class vector sic; of aclass.
Definition: The (simple) indirect RVS score of entity e
for classi isthe cosine similarity between w and sic;,

. w XSiCi
d(e,i) =7——
[wl]sici

We define efigf weights (entity frequency inverse graph
frequency) analogously to the TFIDF (text frequency
inverse document frequency) weights used in Information
Retrievd [4].
Definition: The efigf-based indirect RVS score of entity
e for class i is the cosine between the efigf-normalized
vector w' and the analogously normalized vector sic’,
where

N 0

ef =w 1 ,igfi= IO%—; and
max (W) N g

w' =ef ?igf (sici anaogoudy)

hence, d ei) =
ef gf( ’I)

i ||W41||sicp||

! For the canonica class vector, the semantics of the cosine of the
angle between it and a weighted entity vector is dubious.



3. DOMAIN & TASKS

To demonstrate the RVS model, we report a case study
involving severa classification tasks from the domain of
company affiliation identification. ldentifying the group
membership of companies is a prerequisite for solving
various problems. Consider industry membership.
Determining which companies belong to a particular
industry is essential for intellectual property (e.g., patent)
litigation, financial analysis (e.g., balancing a portfolio,
constructing sector funds), making/improving government
economic projections, and so on.

Traditionally, industry membership has been determined
by a manua process, and there are various existing
classifications. For example, the US Government’s Office
of Management and Budget has devel oped a framework for
how to assign SIC codes (“Standard Industry
Classification” codes-hierarchical, four digit codes used
as industry identifiers for firms). Business information
companies, such as Hoover's and Yahoo, have different
industry classifications (which often do not have a high
degree of correspondence with the assigned SIC codes).
There are known problems with industry classifications.
For example, one study showed that two common SIC-
code sources for the same companies disagreed on more
than 36% of the codes at the 2-digit code level, and on
more then 80% at the 4-digit level [6].

The RVS model can take as background knowledge any
industry classification, and (attempt to) classify
companies based onit. This givesthe additional flexibility
to adjust the classification of some background
companies, and have the model adjust the rest accordingly,
or start from scratch with anew scheme.

The quality of the generdization performance is an
empirical question, which we address next for Yahoo's
classification. Thus, for the RVS model, E is the set of
companies, C comprises the Yahoo classifications
(industry sector, unless otherwise noted), and B contains
the companies for which the Yahoo classification is
(deemed to be) known. We chose Yahoo because the
granularity of the classifications (12 sectors) was
attractive for a conference-paper study and because of
ease of accessto the data.

For the RVS model we aso need a source for links
between companies. For this study we chose a generic, but
easily accessible link: two companies are linked if they
cooccur in a business news story, with the strength of the
relationship being the number of such links. Note that
cooccurrence lumps together a wide variety of
relationships, including joint ventures,
mergerg/acquisitions, product-related, market related, and
so on. Some have nothing to do with industry membership
(e.g., two companies happen to announce earnings on the
same day). We based the cooccurrences on a collection
of news stories from the period December 1999 to

September 2002, for which the news provider had assigned
a least two ticker symbols and for which the symbols
appeared in the Y ahoo classification.

4, RESULTS

To compare the various RV'S scoring methods, we take
each affiliation (the 12 Yahoo sectors) and ask how well
the companies can be separated into those belonging to the
affiliation and those not. We examine the five scoring
functions listed in Section 2.2. and two extensions
(described later). We also examined the methods using as
the affiliations 97 Y ahoo industries, with similar results
(which we also use for illustration).

4.1 ROC Analysisfor Sectors

1 =
Transpartation i = ==

Capital Goods

True Positive Rate
(=3 =3

s
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Figure 2: ROC curve for weighted, entity-normalized method
(averaged over 10 runs)
We use ROC analysis [7, 8] to assess the model’s ability
to separate class members from non-members. For a
given scoring of companies, ROC curves plot al the
possible tradeoffs between correctly classifying the
members of the class (the true positive rate, on the y-axis)
and incorrectly identifying non-members of the class
(false-positive rate, on the xaxis). The area under the
ROC curve (AUC), equivdent to the Wilcoxorn-Mann-
Whitney statistic, is the probability that a member of the
class will be scored higher than a non-member [9]. Error
is calculated as 1 — AUC, and since the AUCs often are
close to 1, relative error reductior? is reported for
comparisons.

Figure 2 shows the ROC curves for the best method, the
weighted, entity-normalized direct score  (Swend)-
Generdization performance ranges from moderate class
separability (AUC=0.68 for Capital Goods) to excellent
class separability (0.93 for Transportation). Referring
back to Figure 1, Transportation is green, and we can see

2 Relative error reduction of method2 over methodl = (AUC2 —
AUCL)/(1-AUCYI).



that green nodes are very well interlinked. (Capital Goods,
cyan, areinterlinked not nearly aswell.)

Table 1 reports the AUCs of all 5 scoring functions for
the 12 classification tasks. In most cases all the scoring
methods classify considerably better than random
(represented by the diagonal in ROC space).  Swend
consistently performs better than the aher scores (with
only a few exceptions).. Table 2 shows the relative error
reduction of Syenq OVer the other methods. Syeng has lower
error than its closest competitor, the simple Seng, 0N 10 of
12 classification tasks, but achieves only a 2.3% error
reduction on average.

area under curve

Sector S end S cnd S wend dgi d efigf
BasicMaterials 0.7318 0.6644 0.7339 0.6218 0.6494
CapitalGoods 0.6781 0.6635 0.6810 0.5274 0.5476
Conglomerates 0.7563 0.5318 0.7697 0.6236 0.6281
ConsumerCyclical 0.7379 0.6087 0.7463 0.5845 0.6073
ConsumerNonCyclical | 0.8704 0.6530 0.8753 0.7227 0.7285

Energy 0.8685 0.7701 0.8682 0.8083 0.8520
Financial 0.8002 0.6619 0.8067 0.5566 0.6238
Healthcare 0.8890 0.6918 0.8898 0.7652 0.8142
Services 0.7966 0.6035 0.8124 0.5823 0.6031
Technology 0.8378 0.6785 0.8427 0.7146 0.7294
Transportation 0.9306 0.7325 0.9307 0.8406 0.8825
Utilities 0.9103 0.7982 0.9096 0.8841 0.8924
Average 0.8173 0.6715 0.8222 0.6860 0.7132

Table 1: Areaunder curve (AUC) for all scoring methods

error reduction

Sector S end S cnd d si d efigf

BasicMaterials 0.0080 0.2072 0.2966 0.2411
CapitalGoods 0.0090 0.0520 0.3250 0.2948
Conglomerates 0.0550 0.5081 0.3881 0.3807
ConsumerCyclical 0.0322 0.3517 0.3895 0.3540
ConsumerNonCyclical 0.0382 0.6407 0.5503 0.5408
Energy -0.0028 0.4267 0.3122 0.1092
Financial 0.0327 0.4283 0.5642 0.4863
Healthcare 0.0068 0.6423 0.5305 0.4066
Services 0.0778 0.5268 0.5508 0.5274
Technology 0.0303 0.5106 0.4489 0.4186
Transportation 0.0007 0.7409 0.5653 0.4101
Utilities -0.0073 0.5520 0.2201 0.1600
Average 0.0234 0.4656 0.4285 0.3608

Table 2: Relative error reductionsfor Syeng OVer other
methods
Notice the curious shape of the ROC curves in Figure 2:
rather than having smoothly decreasing slopes (for ROC
curves the slope corresponds to the class-membership
likelihood ratio), after a certain point the slope is constant
(to (1,1)). Thisis an indication that Syenq iS giving equal
(low) scores to a large number of entities. Examining the

scores we see that, indeed, the direct method is giving
scores of zero to many entities.?

Swend=0 Means that the entity is not linked to any
(background) members of the class. This may largely be
due to our limited data sample. A larger sample would
contain (i) many more links and perhaps (ii) many more
labeled background companies. Moreover, comparing
different direct scores on these data obscures their
differences, because (as is evident in Figure 2) due to the
large number of zeros, for a given industry the AUCs
cannot be very different for different direct scorings
(which would correspond only to different slopes of the
aready-very-steep initial rise). By definition, on the cases
with no links to background class members, al d the
direct methods give zero scores.

Therefore, to assess the potential of the scores with
more data, and to compare different direct scores on those
cases where they can differ, we magnify the far-left part of
the curves by looking only at those cases with at least one
link to a background member of the class (i.e., ignoring the
zero scores). The resultant ROC curves for Syenq are
shownin Figure 3.

Transportation

[ N {
glad | I: Conglomerates

True Positive Rate

] 0.2 0.4 0.6 0.8 1
False Positive Rate

Figure 3: ROC curvefor weighted, entity-normalized
method, ignoring non-linked entities (averaged over 10 runs)
In Figure 3, most of the AUCs are 0.9 or better, and only
one (Conglomerates, AUC=0.67) is less than 0.8. This
demonstrates that Svengs Can separate the entities by class
remarkably well, in cases where it has a chance—i.e,,

% Giving scores of zero to entities not in the class is of course
desirable. The problem here is that members of the class are
receiving scores of zero. The percentage varies from sector to
sector, and can be estimated by (one minus) the TP rate at the
beginning of the final linear segment of the ROC curve. E.g., for
Transportation approximately 10% of the members of the class
receive zeros. For Capita Goods, approximately 50% receive
Zeros.



where there is at least one link to a known member of the
class.

area under curve (no zeros)

Sector S end S wend dg d efigf
BasicMaterials 0.9106 0.9286 0.6442 0.6685
CapitalGoods 0.8321 0.8574 0.5299 0.5676
Conglomerates 0.5755 0.6668 0.7079 0.7169
ConsumerCyclical 0.8205 0.8602 0.5853 0.6107
ConsumerNonCyclicall 0.9079 0.9317 0.7482 0.7578

Energy 0.9291 0.9281 0.8283 0.8522
Financial 0.8892 0.9107 0.6243 0.6646
Healthcare 0.9397 0.9405 0.7599 0.8078
Services 0.8143 0.8462 0.5712 0.5970
Technology 0.8373 0.8446 0.7051 0.7195
Transportation 0.9567 0.9624 0.8551 0.9124
Utilities 0.9397 0.9518 0.9076 0.9225
Average 0.8627 0.8857 0.7056 0.7331

Table 3: Area under curve (AUC) for all scoring methods
ignoring non-linked entities
Table 3 reportsthe AUCs of all 5 scoring functions for the
12 classification tasks for this task. In most cases all the
scoring methods classify considerably better than random
(represented by the diagona in ROC space), but again Seng
and svena perform the best. The wend score consistently
performs better than the other scores (with only a few
exceptions). Table 4 shows the relative error reduction of
the Syens Over the other methods. Even over Seng, it
achieves a 15% error reduction on average.

error reduction (no zeros)
Sector S end d si d efigf

BasicMaterials 0.2019 0.7994 0.7846
CapitalGoods 0.1506 0.6966 0.6701
Conglomerates 0.2152 -0.1406 -0.1768
ConsumerCyclical 0.2209 0.6628 0.6408
ConsumerNonCyclicall 0.2586 0.7290 0.7182

Energy -0.0152 0.5810 0.5132
Financial 0.1945 0.7624 0.7339
Healthcare 0.0133 0.7521 0.6904
Services 0.1716 0.6413 0.6183
Technology 0.0444 0.4729 0.4458
Transportation 0.1298 0.7402 0.5702
Utilities 0.1994 0.4779 0.3777
Average 0.1487 0.5979 0.5489

Table 4: Relative error reductionsfor Syeng Over other
methods ignoring non-linked entities
It is important to emphasize that we are not claiming that
these results show that Syeng iS generally preferable. This
will be domain and task dependent. For this particular
domain, Svend SEEMS to be the better score. This general
result is reinforced by examining the results on the finer-
grained industry (rather than sector) affiliations. For 34 of
the 97 industries the two methods produce identical

generalization performance For the remaining 63
industries, Sengissuperior for 11 and Syeng for 52. Figure 4
plots the AUCS of Syeng (Vertical axis) and Seng (horizontal
axis). Points above the diagona indicate that Syenq has a
higher AUC than sgng. Clearly, Syend iS the better performer
on these finer-grained classification tasks, sometimes by a
large margin.

Returning to the zero scores, the direct RVS method
does not stand a chance when there are no links to a known
member of the class. The indirect method is not so
limited—the only time it will give a non-zero score for a
classisif the entity in question is not linked to anything
that a known member is linked to. Scoring al the
companies with the indirect method indeed produces few
zeros.  Unfortunately (as shown in Table 1), the
classification performance is not nearly as strong with the
indirect methods. The indirect methods show a much
wider range of performance, from Utilities (almost as
good as with the direct score) down to Capital Goods
(apparently random).

1

0.9

0.5 0.6 0.7 0.8 0.2 1

Figure 4. AUC of Syeng VS. AUC 0Of Seng ON the 97 industries

4.2 Hybrid methods

In order to improve the direct methods' performance on
entities with no direct links to the class, it is possible to
combine the direct and indirect methods, using the latter
only when the former returns a zero.
Definition: The weighted, efigf combined score of an
entity is:

S (1) = Guggr (&) 1IN (S0 (&, K))

- éswend (e! I)

& (€1),if Syenq(611) =0
Thus, we use the weighted, entity normalized direct score
Swend, UNIESS Syend IS ZEr0, in Which case we scale the efigf -
score by the minimal, greater-than-zero Svens to fit the
d«igr’ s below the true weighted, entity normalized scores.

cs (&)

* For sparser data the two methods scorings will become more
smila—and exactly identical scorings are not necessary to
produce identical ROC curves.



Using this approach, we see a modest improvement. On
average we see 4% additional error reduction over Syend
(see Table 5). However, there are certain cases where
additional error reduction is very large (Transportation,
Energy error reduction >20%), and three cases where it
increases error (on average 9% relative increase). This
illustrates the need for a flexible framework within which
avariety of RVS methods can be defined and tested.
Another approach to address the scoring of entities with
no links to a known member of the class in question isto
investigate degree-2 links (links to entities “two hops’
away). Redefining the links in the direct RVS model
results in a score, which is analogous to Sng, the simple
entity-normalized direct RVS score, but follows links of
degree two. Consider w? to be the analogue to w, except
with two-hop links.
Definition: An entity g can be described by an simple
second-degree entity vector w?;, = (W?1, W?j,2, ...),
where:

W2 =1if wi* Wi =1forany e, exinE
Definition: The second-degree class-normalized direct
RVS score of entity e for classi is the inner product of
weand the canonical class vector c¢;, normalized by the L1
norm of c.

v“v@xci

stha (&) =—
ac

J
Again we can define acombined score:
Definition: The weighted, second degree class-
normalized combined score of an entity is:
se,i)=st ,(ei)* mkin (Spena(&K))

S\ eswend(e! I)
cslei)=a " .
ésqevl)vlf aNend(evl) = 0

area under curve rel. error red.
Sector S wend cs cs" cs cs"”
BasicMaterials 0.7339 0.7313 0.7677] -0.0098 0.1270
CapitalGoods 0.6810 0.6525 0.7187] -0.0891 0.1183
Conglomerates 0.7697 0.7702 0.7232] 0.0024 -0.2019
ConsumerCyclical 0.7463 0.7178 0.7682] -0.1126 0.0862
ConsumerNonCyclical 0.8753 0.8859 0.8726] 0.0850 -0.0215
Energy 0.8682 0.8981 0.9078 0.2267 0.3003
Financial 0.8067 0.7938 0.8129] -0.0671 0.0319
Healthcare 0.8898 0.8945 0.9136] 0.0425 0.2163
Services 0.8124 0.8150 0.8234] 0.0137 0.0586
Technology 0.8427 0.8458 0.8496] 0.0200 0.0437
Transportation 0.9307 0.9470 0.9458] 0.2347 0.2177
Utilities 0.9096 0.9185 0.9187] 0.0979 0.1011
Average 0.8222 0.8225 0.8352] 0.0370 0.0898

Table5: AUC and relative error reduction with combined
methods
As Table 5 shows this method improves further over Syena.
On average we get 9% relative error reduction with some
reductions going up to 30% (for energy) and two
additional being higher than 20% (Hedthcare and
Technology). Like with the weighted, efigf combined
score cs, however, some sectors have an error increase,

the largest being Conglomerates with 20%. (NB: by its
nature, Conglomerates is the one sector for which we
would not expect members to be linked to each other.)
This illustrates that even in a domain where simple scores
perform very well, more-complex scores can add value.

4.3 Comparing scores acr 0ss sectors

The ROC analysis above evaluates the problem: given a
sector, how well can companies be separated into those in
the sector and those not. More specifically, it evaluates
the scoring function’s ability to rank the companies by
probability of class membership. The dual question is:
given a company, how accurately can it be placed into the
“correct” sector?

The base rate for this classification problem will be the
marginal probability of the most common class: in our
data, 0.29 (Technology). The accuracy of Swenq fOr
classifying companies into the correct sector was 0.68.
Table 6 shows the accuracy for the companies in each
sector. For only one sector (Conglomerates) was the
classification accuracy worse than the base rate (0.15) and
this sector also had the smallest number of members
(recall that syenq does not normalize for the size of the
class). Classification is one (important) case where
comparing scores across sectors is necessary. We will
return to thisin the follow-up analysis below.

Sector Correct Total Accuracy
Technology 392 505 0.78
Energy 54 71 0.76
Transportation 28 38 0.74
Healthcare 131 180 0.73
Utilities 21 30 0.7¢
Financial 111 170 0.65
Services 286 444 0.64
(ConsumerNonCyclical 38 60 0.63
BasicMaterials 47 104 0.45
ConsumerCyclical 36 99 0.36
CapitalGoods 17 73 0.23
Conglomerates 3 14 0.21
Overall 1164 1788 0.65
base rate (Technology) 0.28

Table 6: Accuracy for classifying companiesin each sector

4.4 Other methods

How good are these results, with respect to other methods
of company-affiliation classification? Our god in this
paper was to demonstrate the RVS model, and not to
assess what is the best method for company affiliation
identification. Nevertheless, for completeness we address
this question briefly.

Running the relational learning program FOIL [10] on
these data failed completely, returning a single clause for
each company. We modified FOIL to search for more
general theories, and it still performed far worse than the
RV S methods. In retrospect, thisis not surprising because
FOIL (and many other ILP [5] agorithms) do not perform



numeric aggregations without having them be defined
explicitly. The RVS scores may provide useful
constructed features for ILP programs.

We created an ensemble, multi-document, full-text
classification method, using the stories from which the
links were extracted. This method performed similarly to
Swend DUt was two orders of magnitude dSower.
Interestingly, when the sector-specific word models were
examined, the names of major companies in the sector
were given high scores. So the text-based method chose
to usethese “links’ in its own vector-space model.

In the financia literature and industry, companies are
clustered into industry groupings based on correlations in
their financia time series (and singular-vaue
decompositions) [11]. Our experiments so far with these
methods have not yielded remarkable performance on our
classification tasks.

Probabilistic and dtatistically oriented relationa
learning methods, such as PRMs [12], and relational
versions of naive Bayes[13], decision trees[14], etc., hold
the most promise for competing with the RVS model.
These methods do perform aggregations over the values of
the attributes at linked nodes. In particular, properly
utilized (weighted) COUNT or MODE operations would
incorporate the fundamentals of the basic, direct RVS
scores. However, even if they performed competitively,
they far more complex learning procedures than the RVS
scoring functions.

5. Discussion and Followup

So, what does our case study illustrate about the relational
vector-space model? Firgt, it showsthat there are domains
where the interlinkage between class members is strong
enough for simple scoring methods based only on linkage
to capture much of the “signal” needed for good
classification. And for some tasks the scoring can lead to
remarkable classification accuracy. For example, even
though Transportation companies represent only 2% of the
companies, the excellent Transportation scores
(AUC>0.9) lead to a classification accuracy of 74%, when
classifying by choosing the highest sector-score (of the
12).

Intuitively, we expect the direct RVS methods to excel
when (as in Figure 1) entities are more likely to be linked
to other entities with the same class membership. This
intuitive notion is captured more formally by relational
autocorrelation [15]: the correlation between values of
the same attribute on linked entities “represents an
extremely important type of knowledge about relationa
data, one that is just beginning to be explored and
exploited for learning statistical models from relational
data” (ibid). We can use this notion to understand the RVS
model in more detail.

Adapting Jensen & Neville's [15] definition to our
context, consider a set of entities E, an attributef, and a set
of paths P that connect objectsin E.

Definition: Relational autocorrelation C' is the
correlation between all pairs  (f(x1).f(x2)) where
X, %1 E,x * xandsuchthat $p(x;, x,)T P.

Let us define degree-k relational autocorrelation as

further restricting the length of p(x,x,)to be k.

Intuitively, the direct RVS method should be appropriate
when the degree-1 relational autocorrelation in the
entities’ classvaluesishigh (“homophily”). We can use an
existing measure of relational autocorrelation to verify
this. Following Jensen & Neville we use Pearson’'s
corrected contingency coefficient to measure class-vaue
autocorrelation.

For our sector-classification problem, the degree-1
relational autocorrelation considering all classes is 0.84,
reflecting our intuition from inspecting Figure 1. Figure5
shows for each class the classification performance
(accuracy) plotted against the class vs. not-class degree-1
autocorrelations.  The rankings of performance and
autocorrelation are very similar (Pearson’s correlaion
coefficient is 0.76). This high value is due to a large part
to Conglomerates, which has the lowest autocorrelation
and the lowest accuracy. Nonetheless it suggests that the
performance of the direct RVS method indeed isrelated to
the degree-1 relational autocorrelation in the class values.

ACCuracy

1] 0.2 0.4 0.6 0.8
Contingency Coeff

Figure5: Accuracy versus degree-1 autocorrelation

More specifically, the direct RV S score itself is ameasure
of degree-2 relational autocorrelation where the path
p(x1,X2) passes through the entity to be classified. If the
degree-1 relational autocorrelation is high, one would
expect entities connected by paths of length 2 through an
entity of class C, also to have class C (thisis the condition
for the direct RVS score to be effective for
classification).



Fraction of Correct and Incorrect Sector Classificaticons
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Figure 6: Fraction of correct and incorrect Sector
Classifications (black are correct classifications, gray are
incorrect classifications)

This suggests that the RVS scores can be used for
assessments of the nature of the relational autocorrelation
in a graph, that are finer-grained than given by the
contingency coefficient. For example, for our sector-
classification problem, Figure 6 is a histogram, plotting
the distribution of companies over the maximum of Syeng
for any of the 12 classes. The black (gray) shading shows
the percentage of companies with the same (different)
class as the class with the maximum score. Interestingly,
the distribution shows that for this domain, most (>75%)
of the entities have a (weighted) mgjority of the links to
entities of asingle class. More often than not, thisclassis
correct.

Transportation and All but Transportation
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Figure 7: Sector specific Syeng SCOresfor Transportation
(gray is All but Transportation, black is Transportation)
Let us use Syend t0 view two of the particular sector
classification tasks, Transportation (high AUC &
accuracy) and Capital Goods® (low AUC & accuracy).
Figure 7 and Figure 8 show histograms of the sector-
specific syena SCOres for the members of the class (black)
and the non-members (gray). We can see clearly that
Transportation companies are primarily linked to other

® Conglomerates is similar, but has only 13 member companies (as
compared to 61 for Capital Goods).

Transportation companies, and other companies are not.
Capital Goods companies, on the other hand, show very
different connectivity—they are not primarily linked to
other Capital Goods companies. In fact, their linkage to
other Capital Goods companies is remarkably similar to
that of the rest of the companies.
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Figure 8: Sector specific Syeng ScOres for Captial Goods
(gray is All but CapitalGoods, black is CapitalGoods)
Finally, consider the comprehensive view of class
interlinkage given in Figure 9 (on the last page), which
shows the class interlinkage for all class pairs. Each
individual graph shows the averages across the members of
the class of the s.eng Scores for each of the 12 classes.
This figure gives a condensed visualization of the class-

specific interlinkage in the graph.

We argue that this visualization could lead to insights
about the classes. Pretend for the moment that we did not
already have a basic understanding of the sectors. We see
that Capital Goods has high linkage to most of the other
classes. Transportation, on the other hand is linked
primarily with itself® And Services are linked almost
uniformly to the rest of the sectors. Utilities are linked to
Energy and Transportation (and in contrast to the rest of
the sectors, not to Technology much at al). Each of these
properties makes good sense for the corresponding class.

6. LIMITATIONSAND FUTURE WORK

For this study we limited ourselves to relatively simple
RVS scoring functions. This was partidly due to our
desire to flesh out the basics of the model first before
getting fancy, but more due to the remarkabl e performance
of the basic methodsin our case-study domain.

The RVS scoring functions are “learning” procedures
only in the sense that nearest-neighbor classifiers are: they
simply apply a scoring function to a database of instances-
-- no feature selection or parameter estimation takes

5 We have not normaized here by the size of the class here, in
keeping with the rest of the paper (so Technology is weighted
heavily across most of the classes). Doing so gives a different,
and equally intriguing visudization.



place. Indeed, Swend could be considered a “Relational
Neighbor” classifier [16], that takes advantage of class
homophily. Provost et al. argue that such a simple model
should generally be used as a baseline for more
complicated approaches, because it seems to perform
remarkably well in many domains [16]. Jensen & Neville
found high relational autocorrelation for almost all
atributes they examined in linked movie data [15].
Furthermore, homophily has been observed in human
groups with respect to a wide variety of descriptive
variables, and is one of the basic premises of theories of
social structure [17]. Chakrabarti et al. take advantage of
autocorrelation in class values to classify hypertext
documents [18]. Their procedure learns a probabilistic
model based on the classes of related entities, and
therefore can capture more complex relationships than
simply homophily.

There are several ways in which the current model is
limited. We only consider a single link type. This does
not restrict the model’ s applicability, because (aswedid in
our case study) the type of links can simply be ignored.
However, it may obscure information that is important for
classification. The model as presented could be extended
to handle multiple link types simply by creating multiple
vectors (one per link type) and concatenating them.
Alternatively, different models could be produced for
different link types, and selected among or applied as an
ensemble.  Whether or not these would be effective
techniques isa subject for future study.

We aso only consider a single entity type. Thisis a
more fundamental limitation of the model, and we have not
considered carefully how to extend it. One obvious way to
apply the model to data with multiple types of entitiesisto
focus on one entity type, and consider paths between these
entities (perhaps going through other entities) to be the
links.

The direct RVS scores (as presented) abstract away
most of the graph structure, only considering adjacency.
This is the source of the model’ s elegant simplicity, but it
aso limits the types of problems on which it will be
effective. It could be extended by defining links in the
model to be paths of length greater than one. These could
be treated similarly to multiple link types, as discussed
above.

We have assumed that more data will (partialy) resolve
the issue with many zero scores (described in Section
4.1). We have little support for this assumption, but it
seems reasonable. We have procured another data set to
test with; however, we have not yet completed the data
preprocessing necessary to make the two data sets
comparable.

Finaly, we have looked at different sector and industry
classifications (SIC codes and Hoover's classification)
with qualitatively similar results, but have not studied them
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comprehensively. We would like to show that the RVS
model with newswire-extracted links can model various,
different classifications that have little similarity to each
other (the aforementioned surprisingly do not) but are
nevertheless meaningful.

7. CONCLUSIONS

The relational vector-space model is a useful abstract
representation for studying relational classification. With
simple choices for its components (entity vector, class
vector, normalization function) it represents intuitive
notions of classification by relational autocorrelation.
With more complicated choices, it can represent more
complex classification models on linked data (still
abstracting away much of the graph structure).

In our case study of company affiliation classification,
relatively simple scoring functions performed remarkably
well, illustrating the potentia utility of the RVS model.
However, the RVS scores may be most useful as feature
constructors in other, more complicated systems.
Relational learners can include these scores as (additional)
aggregation functions. Standard feature-vector learners
can use the RVS scores to take into account an important
part of relational structure.

The case study aso illustrated the advantage of the
structure that the RVS model places on the space of
scoring functions, alowing them to be explored
systematically. Although the improvement for this domain
was not dramatic, the results of combining the different
scores do suggest that combined RV S scoring models may
be advantageous in certain domains.
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Abstract

We outline some criteria by which to compare un-
supervised relational learning algorithms, and illus-
trate these criteria with reference to three examples:
SUBDUE, relational association rules (WARMR),
and Probabilistic Relational Models. For each al-
gorithm we ask, What form of input data does it
require? What form of output does it produce?
Can the output be used to make predictions about
unseen inputs? Categorizing the existing unsuper-
vised relational learning algorithms helps us to un-
derstand how each algorithm relates to the others
(no pun intended). We can identify important gaps
in coverage that could be fruitful areas for future
research.

1 What do we mean by unsupervised?

In this paper we outline some criteria by which to compare
unsupervised relational learning algorithms. We begin by
clarifying what we mean by an unsupervised learning algo-
rithm. A supervised learning algorithm distinguishes one at-
tribute of its input instances as the target and learns a model
designed to predict the value of the target attribute for pre-
viously unseen inputs. The target attribute can be discrete,
as in classification, or continuous. An unsupervised learning
algorithm does not treat any particular attribute of its input
instances as the target to be learned. There is no teacher who
gives the correct answer; there is no one correct answer. In
some cases, the model produced by an unsupervised learning
algorithm can be used for prediction tasks even though it was
not designed for such tasks. The distinction between super-
vised and unsupervised learning is a spectrum on which some
algorithms are at the extremes and others are toward the mid-
dle. SuBDUE is clearly an unsupervised learning algorithm.

*This effort is supported by DARPA and AFRL under contract
numbers F30602-00-2-0597 and F30602-01-2-0566, and by NSF
under contract number EIA9983215. The U.S. Government is au-
thorized to reproduce and distribute reprints for governmental pur-
poses notwithstanding any copyright notation hereon. The views and
conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or en-
dorsements either expressed or implied, of DARPA, AFRL, NSF, or
the U.S. Government.

It recognizes repeated substructures in a labeled graph, and
can be used for graph compression [Cook and Holder, 1994]
and for hierarchical clustering [Jonyer et al., 2001], but not
prediction. Relational Markov Networks [Taskar et al., 2002]
are designed for discriminative training: they fall at the super-
vised end of the spectrum. Probabilistic Relational Models
are more toward the middle. PRMs learn a dependency struc-
ture which can enhance a domain expert’s understanding of
the data [Getoor et al., 2001]. They can model uncertainty
in the relational structure of the domain [Getoor et al., 2002].
They can be used for classification and for clustering [Taskar
et al., 2001]. The underlying learning algorithm is the same,
but the relational data structures given as input are adapted to
the desired task.

2 Criteria of comparison

Unsupervised relational learning algorithms can be catego-
rized along several different axes:

e What form of input data does the algorithm require?
e What form of output does it produce?

e Can the output be used to make predictions about unseen
inputs?

To describe the input data configuration, we employ the
terms object, link, and attribute. (We choose link instead of
relation to avoid confusion with the terminology of relational
database management systems.) In our framework, relational
data consist of objects connected together by links. Both ob-
jects and links can have attributes. An attribute is a name-
value pair.

The input for any learning algorithm that claims to be “re-
lational” must have links as well as objects. A link can be
represented explicitly by an edge in a graph, or implicitly by
a pointer to the related object. The number of attributes al-
lowed for each object or link can be none, exactly one, or
many. The input database can consist of a single connected
component, or a set of connected components.

The output of a relational learning algorithm is a pattern
(using the term loosely) that expresses a generalization sup-
ported by the input data. The scale of the pattern might be
a single object, or a structure consisting of a group of related
objects and the links that connect them. All patterns produced
by a relational learning algorithm are descriptive because they



capture regularities of the input data; some patterns can also
be used to make predictions about unseen data.

Categorizing the existing unsupervised relational learning
algorithms helps us to understand how each algorithm relates
to the others (no pun intended). Our goals in developing this
categorization are

e to establish a common vocabulary in which to express
the similarities and differences of relational learning al-
gorithms;

e to identify interesting areas of unsupervised relational
learning that are currently underdeveloped.

3 Threeexamplealgorithms

We illustrate our multi-dimensional categorization of unsu-
pervised relational learning algorithms by comparing three
systems that differ widely in their input and output formats.

The WARMR algorithm [Dehaspe et al., 1998; Dehaspe and
Toivonen, 2001] finds relational association rules or, to use
the vocabulary of the authors, query extensions. The algo-
rithm takes as input a Prolog database and a specification (in
the WARMODE language) that limits the format of possible
query extensions. The output of WARMR is a set of query ex-
tensions, all of which refer to the object designated as the key
parameter. The query extensions are not limited to attributes
of the key object, but can include its links to other objects and
their attributes.

The SUBDUE system [Cook and Holder, 1994] iteratively
discovers repeated substructures in a graph and compresses
the graph by replacing the repeated substructure with a single
vertex. The algorithm takes as input a labeled graph and a
set of rules intended to bias the search process toward struc-
tures that are deemed more interesting. SUBDUE returns as
output the substructure selected at each iteration as the best
to compress the graph.

Probabilistic Relational Models (PRM) reinterpret
Bayesian networks in a relational setting. PRMs have been
evolving rapidly over the past few years; we focus here
on the version described in [Getoor et al., 2002]. A PRM
captures the probabilistic dependence between the attributes
of interrelated objects. It can also model uncertainty about
the link structure. Reference uncertainty means we know
how many links there are in the graph, but we don’t know
what their endpoints are. Existence uncertainty means we
don’t know how many links there are and have to consider the
possibility that any pair of objects (of the appropriate types)
might be linked. The input to the PRM learning algorithm is
a database schema (specifying objects, links, and attributes)
and an instantiation of that schema (a set of relational tables).

4 |Input criterion of comparison

The first criterion of comparison concerns the input to the
unsupervised relational learning algorithm. Our three exam-
ple algorithms have very different data representations, but
conceptually we can view their input in terms of objects and
links. For SUBDUE the mapping is straightforward: objects
correspond to vertices in the graph, and links to edges. Sus-
DUE requires exactly one attribute on each object and link in
the graph: a label.

In the Inductive Logic Programming approach of WARMR,
the input data are a set of Prolog facts, describing both objects
and links. The predicate name is the equivalent of a type
attribute. For example (from [Dehaspe and Toivonen, 2001,
p. 191]), a fact such as

customer(allen).

represents an object of type customer with identifier allen. A
fact such as

parent(allen, bill).

represents a link of type parent between the allen object and
the bill object. The WARMR data model allows both ob-
jects and links to have multiple attributes besides type, which
would be represented by additional arguments to the cus-
tomer and parent predicates.

Our use of the terms “object” and “link” does not coincide
with the terminology of [Getoor et al., 2002]. What we call
an object corresponds to the instantiation of an entity class in
the PRM. What we call a link corresponds to the instantiation
of a relationship class. The reference slots of the relationship
class tell us the endpoints of the link. Both entity classes and
relationship classes can have descriptive attributes, which we
would simply call attributes. So any object or link in the PRM
input can have multiple attributes. Could there be a link with
no attributes? No. Even if the relationship class has only ref-
erence slots and no descriptive attributes, we still say that the
link has one type attribute because in the PRM we know to
what class this link belongs. For example, the PRM for the
citation domain has a class representing the “cites” relation-
ship between one paper and another. This is equivalent in our
vocabulary to a link of type “cites” going from the citing pa-
per to the cited paper. Keeping this translation of terminology
in mind, we conclude that every object and link in the PRM’s
input has at least one attribute, its type, and possibly more.

5 Output criterion of comparison

The second criterion of comparison concerns the output
produced by the unsupervised relational learning algorithm.
Does the algorithm discover patterns at the level of individ-
ual objects, or at the level of subgraphs? (By “subgraph” we
mean a structure containing at least one link with its associ-
ated objects.) SUBDUE searches for repeated substructures
using an approximate graph match, and at each iteration re-
turns the substructure which achieves the maximum graph
compression when it is collapsed to a vertex. These are cer-
tainly patterns at the subgraph level. PRMs also discover pat-
terns at the subgraph level. The result of training a PRM is an
estimate of the joint probability distribution of attribute val-
ues (and link structure, in the case of reference or existence
uncertainty) over the entire network.

Relational association rules are in a gray area. The
WARMR algorithm requires that some predicate be designated
as the key. All query extensions must contain the key pred-
icate. For example, if customer is the key then all the rules
will be about customers. (A link predicate such as parent
can also be designated the key.) The association rules men-
tion other objects to which the customer is linked, and the



attributes of those related objects. So all the discovered pat-
terns concern the key object (or link) but can draw upon the
relational neighborhood surrounding the key.

6 Predictivecriterion of comparison

Generally the goal of an unsupervised learning algorithm is
descriptive. We hope that the discovered patterns capture the
essential regularities of the input dataset. However, for some
algorithms it is possible to make predictions about new inputs
based on the patterns observed in the training data. Relational
association rules could be applied to make predictions about
the key object (or link). As noted in Section 1, PRMs can
be used for classification [Taskar et al., 2001; Getoor et al.,
2002]. SuBDUE’s output cannot be exploited for prediction.
There is no reason to assume the substructure that provides
maximum compression in one input graph would do the same
in another graph.

7 Conclusion

We have presented one approach to categorizing unsuper-
vised relational learning algorithms, and applied it to three
examples. These same criteria of comparison would be rele-
vant for other algorithms we have not discussed, such as fre-
quent subgraph discovery [Kuramochi and Karypis, 2001],
and stochastic link and group detection [Kubica et al., 2002].
We aim to establish a common vocabulary in which we can
compare systems that have very different input/output specifi-
cations. Categorizing the current algorithms helps us identify
important gaps in unsupervised relational learning that could
be fruitful areas for future research.
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Abstract

Current relational learners handle sets either by ag-
gregating over them or by selecting specific ele-
ments, but do not combine both. This imposes
a significant, possibly undesirable bias on these
learners. We discuss this bias, as well as some ideas
on how to lift it. In the process, we introduce the
notion of relational neural networks.

1 Biasesof Reational Learners

Among the many approaches to relational model learning that
currently exist, a distinction can be made with respect to
how they handle one-to-many and many-to-many relations,
or, equivalently, how they handle sets of objects.

To illustrate this, consider a database with just a single
relation “Person” with attributes Mother, Father, and Sex.
(Mother and Father are foreign keys to Person.) and consider
the following simple concepts:

A. people who have two children
B. people who have a son (that is, at least one)
C. people who have two sons

In all three cases, we want to classify persons, based on
properties of (a set of) persons related to them. The paren-
theses around “a set of” indicate the two different kinds of
approaches that we distinguish here, a distinction also men-
tioned by Jensen and Neville (2002).

The first kind of relational methods use aggregate functions
to handle sets. The result of an aggregate function, obviously,
is a property of the set as a whole, not of individual elements
of the set. Among these methods we count, e.g., probabilistic
relational models (PRMs) (Getoor et al., 2001) , or “proposi-
tionalization” approaches that include aggregates, such as the
one by Krogel and Wrobel (2001).

A second kind of relational methods handles sets by look-
ing at properties of their elements. Typically, tests are of the
form “there exists an x in the set such that P(x) holds”, with
P a relatively complicated condition. Most inductive logic
programming (ILP) systems follow this approach.

Let us call methods of the first kind, aggregating methods;
and methods of the second kind, selective methods (in the
sense that they select an element from the set and investigate

properties of that single element). Referring to the example
concepts above, we can then state that aggregating methods
can easily express A, but not B, whereas selective methods
can easily express B, but not A. Importantly, none of the ap-
proaches mentioned can easily express concept C, because
this description contains both selection and aggregation (se-
lect all male children, and count only these).

More formally, if we express class definitions in the rela-
tional algebra and write them as o ¢, (F(o¢, (R))) with R the
result of joining the original relation with a relation it links
to, then selective methods such as ILP focus on the construc-
tion of C> and fix C; and F to denote existence (count > 0),
whereas aggregating methods focus on constructing a good
C; and F but fix C5 to be true.

For instance, PRMs, as defined by Getoor et al. (2001) can-
not learn concept C without having separate relations for sons
and daughters. Manually introducing these separate relations
of course presupposes that the user is aware of the possible
importance of these concepts. Alternatively, one could define
a large number of aggregate functions that have appropriate
selection conditions built in; in that case, a search through a
space of aggregate functions is needed.

In an ILP setting, one could of course define aggregate
functions as background knowledge. Then, e.g., the rule
p(X) :- count(Y, (child(X Y), male(Y)), 2) ex-
presses concept C. The main difficulty here is that the second
argument of the count meta-predicate is itself a query that is
the result of a search through some hypothesis space. It is not
obvious how such a search should be conducted; the many
results in ILP on how to search a first-order hypothesis space
efficiently (Nienhuys-Cheng and De Wolf, 1997) do not con-
sider the case where the resulting hypothesis will be used as
the argument of a metapredicate.

ILP-like approaches that do not include aggregate func-
tions, can still express concept C as, e.g., “the person has a
male child = and a male child y and = # y and there does not
exist a child z such that z is male and z # z and z # y”; but
in practice, the length of this rule, as well as the occurrence
of a negation (the scope of which is again a conjunction of
multiple literals) make it difficult to learn, and of course also
the comprehensibility of the result is negatively influenced.

To our knowledge no currently existing approaches can
construct theories that combine aggregate functions with
(reasonably complex) selections on the set to be aggregated.



2 Combining Aggregation with Selection

In databases, both aggregation and selection are very natural
operations, and ideally a relational learning system should
be able to combine both in the models it builds. In order
to achieve this goal, it is necessary to define a search space
of hypotheses that combine aggregations and selections, and
find a more or less efficient way to navigate through this
search space. This is currently an open problem. We here
list a number of ideas that could be investigated further. We
divide them into symbolic and subsymbolic approaches.

2.1 Symbolic Approaches

To build a concept in symbolic form, a search space has to be
traversed that consists of combinations of aggregations and
selections. This could be done in a hill-climbing way, but it
appears that in some cases the search can be made slightly
more exhaustive without increasing its computational com-
plexity much. For instance, counting the number of children
of a person takes just as much work as counting the num-
ber of sons and daughters separately, and a simple addition
of these counts yields the total number of children. More
generally, given a partition {S1,...,S,} of a set S, aggreg-
ates of S can often be computed efficiently from aggregates
of the S;, and the latter can all together be computed as effi-
ciently as computing the aggregate for S. This holds at least
for the often occurring aggregate functions count, sum, aver-
age, min, max. Thus, when we search for conditions of the
form F(o(S))8c with F an aggregate function, o some se-
lection, and § some operator (<, =,...), a certain subspace
of all possible ¢’s can be searched exhaustively at very little
additional computational cost, compared to considering only
the condition F(S)fc. This suggests a straightforward pos-
sible improvement to some of the existing approaches.

2.2 Subsymbolic Approaches

Another direction for future research that seems interesting,
is that of modelling relational databases with neural net-
works. Neural networks are usually considered propositional
learners. A number of approaches exist to extend them to the
context of first order logic, but not (to our knowledge) to that
of relational databases, which could in fact be simpler. One
approach to do that is based on the following observation.
Any data can be modelled using only two basic data struc-
tures: tuples and sets. (The relational data model is based
on just these two notions.) Propositional learning algorithms
handle tuples; to make them relational, it is sufficient to add
the capability to process sets. (This is consistent with De
Raedt (1998), who identifies multi-instance learning as the
simplest “relational” learning task; it is indeed the simplest
case where a single example is described by a set of tuples.)
The input of a standard feedforward neural network is a
tuple. A relational neural network should in addition have
the ability to handle sets, which can have an unlimited num-
ber of unordered elements. Recurrent neural networks have
this capability: by feeding the output of a layer back into the
network, they can aggregate information over an indefinite
number of previous inputs. They are typically used for tasks
such as time series prediction, where an input at time ¢ can

influence the output at time ¢ + k£ with &£ not bounded, but
they can just as well be used for processing sets.

Thus, a relational neural network would essentially consist
of “normal” and “aggregating” nodes; an aggregating node is
simply a node that is fed back into a lower layer. Such a re-
lational neural network would have the same structure as the
skeletons used in PRMs. Where the PRM skeleton contains
an aggregate function, the relational neural net contains one
or more aggregating nodes. Relational neural nets are very
similar to Ramon, Driessens and Demoen’s (2002) “neural
logic programs”, with as main difference that Ramon et al.
consider fixed combination functions for the different kinds
of nodes and handle sets using nodes with a variable number
of inputs, instead of recurrent nodes.

Relational neural networks would have as advantage over
the other approaches that they can learn an aggregate func-
tion, without that function being pre-encoded in the net-
work, and with selection possibly integrated in it. Thus,
training the relational neural network automatically consti-
tutes a search through aggregations and selections simultan-
eously. Moreover, a wider variety of aggregate functions is
considered: not just sums, counts, etc. but also more exotic
functions. On the other hand, the learnability of the relational
neural networks we propose here, is an open problem. It is
known that recurrent neural networks are harder to train than
feedforward networks. Increasing the number of layers, as we
do here, may further decrease learnability. We believe these
issues are worth further investigation.
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Abstract

We study representations and relational learning
over structured domains within a propositionaliza-
tion framework that decouples feature construction
and model construction.

We describe two complementary approaches that
address three aspects of the problem: First, we
develop and study a flexible knowledge represen-
tation for structured data, with an associated lan-
guage that provides the syntax and a well defined
equivalent semantics for expressing complex struc-
tured data succinctly. Second, we use this lan-
guage to automate the process of feature construc-
tion by expressing ‘types’ of objects in the lan-
guage, which are instantiated in the ground data, al-
lowing us to determine the level at which learning
is done. Finally, this process of re-representation
of the domain allows general purpose learning
schemes, such as feature efficient linear algorithms
and probabilistic representations, to be defined over
the resulting space, yielding efficient and expres-
sive learning of relational functions over a struc-
tured domain using propositional means.

1 Introduction

In a variety of Al problems, such as natural language under-
standing related tasks and visual inference, there is a need to
learn, represent and reason with respect to definitions over
structured and relational data. Examples include learning
to identify properties of text fragments such as functional
phrases and named entities, identifying relations such as “A
is the assassin of B” in text, learning to classify molecules for
mutagenicity from atom-bond data in drug design, learning to
identify 3D objects in their natural surrounding and learning
a policy to map goals to actions in planning domains.

In all these cases it is necessary (1) to represent and rea-
son with structured domain elements in the sense that their
internal (hierarchical) structure can be encoded, and learning
functions in these terms can be supported, and (2) it is es-
sential to represent concepts and functions relationally, in the
sense that different data instantiations may be abstracted to
yield the same representation — so that evaluation of functions
over different instantiations will produce the same output.

The challenge is to provide the expressivity necessary to
deal with large scale and highly structured domains such
as natural language and visual inference and at the same
time meet the strong tractability requirements for these tasks.
Propositional representations might be too large, could lose
much of the inherent domain structure and consequently
might not generalize well. This realization has renewed
the interest in studying relational representations both in the
knowledge representation and reasoning (KRR) community
and in the learning community. As it turns out, both are
relevant to our approach. The main effort in the knowledge
representation and reasoning community has been to identify
classes of representations that are expressive enough to allow
reasoning in complex situations yet are limited enough as to
support reasoning efficiently [Levesque and Brachman, 1985;
Selman, 1990]. It has become clear that propositional repre-
sentations are not sufficient, and effort has been devoted to
studying languages that are subsets of first order logic, such as
description logics and frame representation systems [Borgida
and Patel-Schneider, 1994], as well as probabilistic augmen-
tations of those [Koller et al., 1997].

The expressivity vs. tractability issue has been addressed
also from the learning perspective, and a similar tradeoff has
been observed and studied. While, in principle, Inductive
Logic Programming (ILP) methods provide the natural ap-
proach to these tasks in that they allow induction over re-
lational structures and unbounded data structures, theoreti-
cal and practical considerations render the use of unrestricted
ILP methods impossible. These methods have also been aug-
mented with the ability to handle uncertainty [Kersting and
Raedt, 2000] although, as expected, this makes some of the
computational issues more severe - studies in ILP suggest that
unless the rule representation is severely restricted the learn-
ing problem is intractable [Muggleton and De Raedt, 1994;
Dzeroski et al., 1992; Cohen, 1995a; 1995b].

The main way out of these computational difficulties has
been via the use of propositionalization methods that at-
tempt to learn classifiers for relational predicates via proposi-
tional algorithms, mapping complex structures to simple fea-
tures [Lavrac et al., 1991; Kramer et al., 2001; Khardon et
al., 1999]. These approaches attempt to decouple feature con-
struction and model construction (learning) by devising meth-
ods to produce propositional features from structured data.

This paper is best viewed in this context, as it describes



our work on feature extraction languages for propositional-
ized relational learning. The study of feature extraction lan-
guages in the context of learning relational representations
over structured domains needs to address at least three as-
pects of the problem. First, we develop and study a flexible
knowledge representation for structured data, with an asso-
ciated language that provides the syntax and a well defined
equivalent semantics for expressing complex structured data
succinctly. Second, we use this language to automate the pro-
cess of feature construction by expressing ‘types’ of objects
in the language, which are instantiated in the ground data.
In particular, this process can determine the level at which
learning is done (between ground literals and full relational
expressions) by choosing these types appropriately. Finally,
this process of re-representation of the domain should allow
general purpose learning schemes, such as feature efficient
linear algorithms and probabilistic representation and algo-
rithms, to be defined over the resulting space.

The paper describes two different but complementary ex-
traction frameworks and discusses their equivalence. The
first, “functional” framework, following [Cumby and Roth,
2000], defines a set of relational formulae R, a subset of FOL,
with a functional calculus composed of so-called “Relational
Generation Functions” (RGFs). These functions serve to gen-
erate elements of R representing (properties of) ground input
data elements. The formulae could then be treated as features
for a propositional learner. In this framework ground data
is codified in a graphical structure on which the RGF calcu-
lus operates, and elements in the language are defined opera-
tionally via this calculus. The second, “syntactic” framework,
expanding on [Cumby and Roth, 2002], provides a unified
language used both in expressing structured features and in
generating them. It builds on the idea of Description Logics
to give a concrete syntactic form to the graphical represen-
tation of ground data introduced in the first framework. We
provide a formal syntax and semantics for a specific feature
description language (FDL) - but this is only one member
in a family of languages, deterministic or probabilistic, that
could be used within our framework. Domain elements and
properties of them are “concepts” which are described, as in
other description logics, in terms of individuals possessing at-
tributes and roles in relation to other individuals. The equiv-
alence of descriptions in FDL to a class of concept graphs
is used to show efficient subsumption between descriptions
The importance of inference with relational representations
becomes clear in this paradigm. The description logic is an
intermediate step and the basic inference step, subsumption,
is used as a means to transform a domain element, e.g., a nat-
ural language sentence, and represent it in terms of a richer
vocabulary — descriptions in our Feature Description Logic
(FDL). This representation, in turn, may serve as an input to
any propositional learning algorithm, including probabilistic
algorithms, to yield structures in which sought after predi-
cates are represented as functions (or conditional probabili-
ties) over the relational descriptions.

We then discuss the extent to which the flexible operational
language and the better defined syntactic language are equiv-
alent and provide a mapping between the two. The FDL lan-
guage is shown to possess a semantics similar to the subset

‘R of FOL introduced earlier; and, the parameterized Feature
Generating Function is shown to duplicate the operation of
the RGF calculus.

Both frameworks differ from standard ILP approaches and
most propositionalization techniques. Features are generated
up front before any learning stage, in a data-driven way, based
on background knowledge (or pre-learned knowledge) in the
“type” of feature defined. This allows us to dictate the level of
complexity of our intermediate representation before learning
occurs, and to bypass a potentially expensive search for good
features. Thus particularly expressive features that would not
necessarily be generated during a search are allowed to influ-
ence our final learned function in a significant way.

Our techniques are aimed at complicated large-scale rela-
tional learning problems in which ground features, in addition
to quantified predicates, play an important role in any learned
classifier. This is the case in many natural language applica-
tions [Roth and Yih, 2001; Khardon et al., 1999] where lex-
ical features are an important part of the learned concept. In
this cases, the potential number of features is very large and
choosing a suitable learning approach in conjunction with the
feature extraction approach is essential.

While the learning approach is presented here as an ap-
proach to learn a definition for single predicates, we view this
in a wider context. Learning definitions may be used to enrich
vocabulary describing the input data; the feature extraction
technique can then be used incrementally to produce useful
features again and subsequently to build up new representa-
tions in terms of those in a manner similar to the one envi-
sioned in [Valiant, 1999]. Such a system might integrate eas-
ily into a programming platform, allowing researchers to con-
struct large scale learning-based architectures to solve com-
plex Al problems in areas such as natural language process-
ing. It then becomes even more crucial that the basic com-
ponents of this system are articulated in a language whose
structure and meaning are well understood.

The remainder of the paper is structured as follows: Sec. 2
surveys related work. Sec. 3 explains the machine learning
setting in which our frameworks can be used. Sec. 4 presents
our Functional Feature Extraction Framework and Sec. 5 the
Syntactic Feature Extraction Framework. The relations be-
tween the two is discussed in Sec. 6, and Sec. 7 concludes.

2 Reated Work

Our work is mostly related to the work in the ILP community
on the topic of learning relational concepts by propositional
means. Commonly known as “propositionalization” meth-
ods, these approaches reformulate data for relational prob-
lems in terms of attribute-value feature vectors. A hypothesis
is then induced over the set of these new features.

However, our language allows us to generate expressive,
relational formulae — “quantified propositions” — and place
this within any model construction approach. Specifically,
it is possible to learn probabilistic classifiers and models over
quantified propositions extracted with the our approach [Pun-
yakanok and Roth, 2001]. Thus, it can also be viewed and
compared with probabilistic approaches. Moreover, defining
the “type” of features so as to dictate the abstraction level



of our intermediate representation is conceptually similar to
modeling approaches such as relational probabilistic mod-
els [Friedman et al., 1999], where the modeler may determine
the level of abstraction and dependencies between entities, at-
tributes and relations.

The following brief survey, however, focuses on related
propositionalization approaches, specifically those that utilize
a graph-based knowledge representation. See [Kramer et al.,
2001] for a good survey of propositionalization methods.

The most similar formulation to the approach we present
is Kramer’s graph-based approach for feature construction
in biochemical domains. This approach [Kramer and Frank,
2000; Kramer and Raedt, 2001], uses structural features pro-
duced by a molecular feature mining program called MolFea
in conjunction with SVM to learn a classifier for predicting
carcinogenicity in molecules.  [Kramer and Raedt, 2001],
uses a version-space approach to represent a set of fragments
in the input data that is more general than, and more specific
than a given fragment. This is somewhat similar to our notion
of defining particular “types” of features which are instanti-
ated in the input data, however we allow the programmer to
constrain the specificity of the instantiated features in a way
designed to reduce overfitting.

Other graphical techniques include the method of [Geibel
and Wysotzki, 1996] which, like ours, utilizes properties
of proximity in a graph-based representation of the input
data to restrict the range of features produced during feature
construction, and [Cook and Holder, 1994; Gonzalez et al.,
2002], which construct features from graphical instances but
restrict the number of features produced (to “good” features),
blurring the line between feature and model construction.

3 TheLearning Framework

The propositionalization approach presented in this work
consists of a feature extraction stage — structured data ele-
ments represented as labeled graphs are converted to features
representing relational and grounded properties of it — along
with a general purpose propositional model generation (learn-
ing) stage that makes use of the extracted vocabulary.

In this framework, as in ILP, each observation in the do-
main is mapped into a collection of predicates that hold over
elements in the domain. The key difference from standard
ILP is that our representation of an observation may con-
tain quantified formulae. “Examples” of this form are then
given as input to a learning algorithm, that is supposed to
produce a classifier to predict whether a particular target
predicate holds for some particular elements. For example,
we may wish to predict that for some domain elements X
and Y, the predicate father(X,Y) holds. To accomplish
this task using standard propositional learning algorithms, we
must generate examples in the form of lists of active propo-
sitions (features) for each predicate to be learned. Proposi-
tions of this form may either be fully ground as in the predi-
cate father(john, jack), or existentially quantified as in the
predicate 3X father(john, X) A father(X, harry). In the
supervised learning setting each example will contain a label
feature, which corresponds to the true relation between X and
Y. An example of this sort can also serve as a negative exam-

ple for other possible relations between elements that do not
hold in it. Our major task then becomes to re-represent the
data in a manner conducive to producing features over which
we can learn a good model or a good discriminant function.
This re-representation is the subject of the work described in
the rest of this paper.

The feature extraction methods presented operate under the
closed-world assumption, generating only the features judged
to be active in the observation. All other features are judged
to be inactive, or false. As it may be inefficient or impossible
to list all features for a particular interpretation, this is a per-
formance boon. Thus our learning algorithm should be able
to accept examples represented as variable length vectors of
only positive features. In addition, our methods provide the
flexibility to generate a large number of features by designat-
ing a smaller set of “types” of features, so our learning algo-
rithm should be able to learn well in the presence of a large
number of irrelevant features.

In most of the applications of our approach we have used
as the learning component, the SNoW? learning system. This
is a multi-class propositional classifier suited to a high di-
mensional but sparse representation of feature data of vari-
able length that uses a network of linear functions to learn
the target concept. It has been shown to be especially useful
for large scale NLP and IE problems [Khardon et al., 1999;
Roth and Yih, 2001; Golding and Roth, 1999]. Unlike “tra-
ditional” ILP methods that typically learn concepts repre-
sented as conjunctive rules, SNoW employs a variation of
a feature-efficient learning algorithm, Winnow [Littlestone,
1988] (or other linear learning algorithms), to learn a linear
function over the feature space; consequently, these “gener-
alized rules” are more expressive than simple rules, and are
easier to learn.

4 Functional Feature Extraction Framework

This section introduces a feature extraction framework in
which elements in a restricted subset of first-order logic, gen-
erated using a set of composable functions with an associated
calculus, serve as features for learning.

4.1 TheReational Language R

The relational language R is a restricted first order language.
The alphabet consists of (i) variables, (ii) constants, (iii) pred-
icate symbols, (iv) quantifiers and (v) connectives. (ii) and
(iii) vary from alphabet to alphabet while (i), (iv) and (v) are
the same for every alphabet. Formulae in R are defined to be
restricted function-free first order language formulae in which
there is only a single predicate in the scope of each variable.

Definition 4.1 An atomic formula is defined inductively:
1. Aterm is either a variable or a constant.

2. Let p be a k-ary predicate, t¢i,...,t; terms.
p(t1, ..., ) is an atomic formula.

3. Let F' be an atomic formula, x a variable. Then (VaF')
and (3z F) are atomic formulae.

Definition 4.2 A formula is defined inductively as follows:

Then
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1. Anatomic formula is a formula.

2.1f F and G are formulag, then so are
(~F), (FAG), (FVG).

The relational language given by the alphabet consists of the
set of all formulae constructed from the symbols of the al-
phabet. We call a variable-less atomic formula a proposi-
tion and a quantified atomic formula, a quantified proposition
[Khardon et al., 1999]. The informal semantics of the quan-
tifiers and connectives is as usual.

For formulae in R, the scope of a quantifier is always the
unique predicate that occurs with it in the atomic formula. All
formulae in R are closed since all formulae are composed
from propositions or quantified propositions which are con-
nected via ~, A or Vv, thus variable occurrences are bound.

4.2 Interpretation

R is used as a language for representing knowledge with re-
spect to a domain; we now define how formulae in R receive
their truth values.

Definition 4.3 A domain D for the language R is a collec-
tion D of elements along with

(i) Anassignment for each constant in R to an element in D.

(ii) For each k-ary predicate in R, the assignment of a map-
ping from D* to {0, 1} ({true,false}).

When there is no confusion, we will call D, the set of ele-
ments in the domain, the domain. We can always think of D
as the Herbrand base, the collection of all ground atoms in R
[Lloyd, 1987]. In this case any interpretation is a subset of
the Herbrand base, so we can talk in terms of subsets of D.

Given D’ C D, a formula F' in R is given a unique truth
value, which we call the value of F' on D’. This value is de-
fined inductively using the truth values of the predicates in F,
and the semantics of the connectives. Notice that if £ has the
form Jp (Vp, resp.), for some k-ary predicate, then its truth
value is true (1) iff there exists (for all, resp.) d1,...dx € D’
such that p(dy, . . . di) has truth value true. Since for formu-
lae in R the scope of a quantifier is always the unique predi-
cate that occurs with it in the atomic formula, we have:

Proposition 4.4 Let F be a formulain R, D’ C D, and let
t,, be the time to evaluate the truth value of an atom p in F.
Then, the value of 7" on D’ can be evaluated intime > _ ;- ¢;,.

That is, F'is evaluated simply by evaluating each of its atoms
(ground or quantified) separately.

4.3 Reational Generation Functions

Definition 4.5 (features) Let D be a domain, D’ C D. We
call D’ an instance, and X = 2P an instance space. A fea-
ture? is a function y : X — {0,1}. x can be viewed as an
indicator function over X, defining the subset of those ele-
ments in X that are mapped to 1 by y.

Formulae in R are viewed as features over the instance space
2P, A formula F maps D’ C D to its truth value on D’. A
formula is active in D’ if it has truth value true on D’.

2In earlier versions of thiswork features were called “relations’.

Given an instance, we would like to know what are the
features (with corresponding formulae) that are active in it.
We would like to do that, though, without the need to write
down explicitly all possible formulae in the domain. This is
important, in particular, over infinite domains or in on-line
situations where the domain elements are not known in ad-
vance, and therefore it is simply impossible to write down all
possible formulae. An efficient way to do that is given by the
construct of relational generation functions. As will be clear
later, this notion will also allow us to significantly extend the
language of formulae by exploiting properties of the domain.

Definition 4.6 Let X be an enumerable collection of features
on X. A relational generation function (RGF) is a mapping
G : X — 2% that maps € X to a set of all elements in
X that satisfy x(z) = 1. If there is no xy € X for which
x(@) =1,G(z) = ¢.

RGFs can be thought of as a way to define “types” of formu-
lae, or to parameterize over formulae. Only when an instance
D' C D is presented, concrete formulae are generated.

4.4 Reational Calculus

The family of relational generation functions for R are RGFs
whose outputs are formulae in R. Those are defined induc-
tively, just like the definition of the language R.

The relational calculus is a calculus of symbols that allows
one to inductively compose relational generation functions.
The alphabet for this calculus consists of (i) basic RGFs,
called sensors and (ii) a set of connectives. While the con-
nectives are the same for every alphabet the sensors vary from
domain to domain. A sensor is a way to encode basic infor-
mation one can extract from an instance. It can also be used
as a uniform way to incorporate external knowledge sources
that aid in extracting information from an instance.

Definition 4.7 A sensor is a relational generation function
that maps an instance D’ into a set of atomic formulae in
R. When evaluated on an instance D’ a sensor s outputs all
atomic formulae in its range which are active.

Definition 4.8 Let C be a set of formulae. A conditioning
operation |C on an RGF r restricts r to output features for
only formulae in C.

Definition 4.9 The operation of a relational generation func-
tion (RGF) for R is defined inductively as follows:

1. When evaluated on an instance D’ the sensor s outputs
features for all active atomic formulae in its range.

2.If s and r are RGFs for R, then so are

(_‘S|F)7 (S&T)a (S\Fl |T|F2)'

i The feature output by (—s|z) corresponds to the for-
mula —F' given that I is in the range of s and is
not active on D',

ii The features in the output of (s&r) correspond to ac-
tive formulae of the form F; A F5, where F; is in the
range of s and F5 is in the range of r (evaluated on
D).

iii The features in the output of (s|p, |r|p,) correspond
to formulae of the form F;V F5, where either F; is
active in D’ or F5 is active in D’.



Notice that for negation and disjunction it is necessary to con-
dition the argument RGFs with input formulae, as for many
sensors the range of formulae which are not active in the cur-
rent instance may be infinite. For conjunction and disjunc-
tion, it is possible to focus the range of formulae to those
active for a particular subset of the current instance, based on
structural information as described in Sec. 4.5.

45 Structural Instance Space

So far we have presented R and RGFs with respect to an ab-
stract domain D. In most domains more information than just
a list of objects and assignments is available. We abstract this
using the notion of a structural domain that is defined below.
Instances in a structural domain are augmented with some
structural information and, as a result, it is possible to define
more expressive RGFs in terms of the sensors provided along
with the domain.

Structured Instances

Definition 4.10 Let D be the set of elements in the domain.
A structured instance O is a tuple (V, Ey, Es, ...Ex) where V
is a set of nodes each associated with some subset D’ C D
of elements in the domain, and E; is a set of edges on V. The
graph G; = (V, E;), is called the ith structure of instance O.

Structural Operations

We now augment the relational calculus of Sec 4.4 by adding
structural operations. These operations exploit the structural
properties of the domain as expressed in the graphs G;s in
order to define RGFs, and thereby generate non-atomic for-
mulae that may have special meaning in the domain.

Definition 4.11 Let V’ C V be a set of nodes in the struc-
tured instance O. An RGF r is focused on V' if, given an in-
stance D’ it generates features only for formulae in its range
that are active on those domain elements associated with .
The focused RGF is denoted r[V'].

Definition 4.12 Let sy,s2,...5. be RGFs for R.
collocy(s1,s2,...5) is a restricted conjunctive operator
that is evaluated on a chain of length k in the gth structure of
the given structured instance. Specifically, let O = {G,;}7* be
a structured instance and let vy, vs,...v; be a chain in G;.
The features generated by colloc;(s1, s2,...sx) are those
generated by si[v1]&sa[va]& ... &silvk], where by s;[v;]
we mean here the RGF s; focused to {v;} € V, and the
& operator is defined as in Definition 4.9. Notice that each
SUbRGF conjunctions may produce more than one feature.

Focus-Word Centered Representation
The structural information also provides an easy way to focus
the RGFs (Def 4.11). For example, defining a set of elements
for the focus set V' in s[V’] can be done using some graph
property. Specifically, we use the notion of a focus node, and
define a focus set with respect to it using a radius length. In
particular, in the colloc operation, we can restrict the chains
to start at a node v’ € V at a certain length in edges from
a focus node v or to contain it. Notice that if, for the given
instance O = (V, G), we have that v’ ¢ V, then the output is
an empty set of features.

The next section describes an alternative to the functional
extraction framework based on a syntactic construction.

5 Syntactic Feature Extraction Framework

This section presents a feature extraction framework based on
a description logic-like language. Statements in this language
are constructed to be equivalent to a restricted graphical rep-
resentation for our relational data, and they serve as input for
a parameterizable Feature Generating Function.

5.1 FeatureDescription Logic

The basic Feature Description Logic (FDL) is described be-
low by providing its formal syntax and semantics.

As in most formal description logics, FDL descriptions are
defined with respect to a set X of individuals. However, un-
like most KL-ONE-like description logics, the basic alpha-
bet for FDL descriptions includes attribute, value, and role
symbols. We differentiate attribute from role descriptions and
our basic primitive description is an attribute-value pair. We
also allow a non-functional definition of attribute descriptions
and role descriptions; thus an attribute describing an individ-
ual may take many values and a role describing an individual
could take several different fillers.

This type of language is useful since, at a basic level, state-
ments in the language abstract over sets of objects in differ-
ent domain instances that have that have the same attributes
and relationships to other objects present. These statements
therefore serve as a useful basis for features for learning al-
gorithms. At another level, by quantifying over the set of
values that attributes can take, we can describe an even more
general set of individuals. The procedure which we later in-
troduce takes statements of this type and information about
the current set of objects being considered, and rewrites the
statements to contain the values seen in the current instance.

Definition 5.1 A FDL description over the attribute alphabet
Attr = {ay,...,a,}, the value alphabet Val = vy, ..., vy,
and the role alphabet Role = {ry, ..., } is defined induc-
tively as follows:

1. For an attribute symbol «a;, a; is a description called
a sensor. For some value symbol v;, a;(v;)® is also a
description, called a ground sensor. We also define a
special identity sensor denoted x, which represents all
individuals z.

2. If D is a description and r; is a role symbol, then (r; D)*
is a role description.

3. If Dy, ..., D, are descriptions, then (AND D+, ..., D,,) is
a description. (The conjunction of several descriptions.)

We also define the size of a description | D| as the number of
conjunctive and role sub-descriptions present in D. Def. 5.1
allows the recursive construction of FDL descriptions.

We now turn to the semantics of FDL descriptions. This
discussion follows a model-theoretic framework similar to
that laid out in [Borgida and Patel-Schneider, 1994]. This
definition uses the notion of an interpretation [Lloyd, 1987],
and that of an interpretation function which can be viewed
as the function that encodes the information about domain.
For a domain element = we denote by 2! its image under the
interpretation function.

3read: a; takesvalue v,
“read: relation r; holds for current object and those in ext(D)



Definition 5.2 (FDL extension) An interpretation I consists
of a domain A, for which there exists an interpretation func-
tion I. The domain is divided into disjoint sets of individuals,
X, and values, V. The interpretation function assigns an el-
ement v/ € V to each value v. It assigns a set of binary
relations a’ over X x V to each symbol « in Attr, and a set of
binary relations »! over X x X to each symbol r in Role. The
extension of a FDL description ext(D) is defined as follows:

1. The extension of a sensor is defined as ext(a(v)) =
{x € X|(x,v!) € a’}. The extension of an existential
sensor ext(a) is {x € X|F! € Vst (x,07) € al}.

2. The extension of a role is defined as ext((r D)) = {z €
X|(z,y) € rl —y e DI},

3. The extension of a conjunctive expression ext((AND D,
D)) is defined as ext(D1) () ext(Ds2).

We can now define the subsumption of a FDL description D;
by another description D,. We say that D; subsumes D iff
the extension of D, is a subset of the extension of D;. i.e.
DI O DI for all interpretations . In our framework sub-
sumption is used to transform a domain element, represented
as a concept graph, into a feature set that can serve as an input
to a propositional learning algorithm.

To show that FDL allows efficient subsumption, we use the
notion of a concept graph that we define next.

5.2 Concept Graphs

The notion of concept graphs stems from work in the seman-
tic network and frame-based representations. In many ways
description logics were invented to provide a concrete seman-
tics for the construction of such graph-based knowledge rep-
resentations. Here they provide a tool for computing sub-
sumption between descriptions and as a convenient represen-
tation for examples presented to algorithms in our learning
framework.

FDL concept graphs are a variation on the type invented for
[Borgida and Patel-Schneider, 1994] to explain “basic CLAS-
SIC”. A FDL concept graph is a rooted labeled directed graph
G = G(N, E,vg,ln), where N is a set of nodes, ng € N is
the root of the graph, £ C (N x N x Role) a set of labeled
edges (with role symbols as labels) and [ is a function that
maps each node in NV to a set of sensor descriptions.

The semantics of FDL concept graphs is defined similarly
to that of basic CLASSIC, minus those associated with equal-
ity constraints. The extension of a node in the graph is in-
tended to be the set of individuals described by its corre-
sponding description.

Definition 5.3 (Concept Graph extension) Given a FDL
concept graph G = (N, E,ng,lx), anode n € N, and an
interpretation I in some domain A composed of elements X
and values V/, we say that an individual x € X is in the ex-
tension of n iff:

1. For each sensor a;(v) € Iy (n), al(x,v!) is true. For

%

each sensor a; € Iy (n), ! € V st al(z,v!) is true.

2. For each edge (n,m,r;) € E,Vy € X if r!(z,y) then
y is in the extension of m.

{name(Charles)} {name(Michael)}

grandfather

father father

{age(52)}

Figure 1: An example concept graph for the kinship domain.

As in earlier works on DL, an individual x is in the extension
of G, iff it is in the extension of ng. It will be clear later that
in our paradigm we care about concept graph extension only
as a clean way to define subsumption; the more basic notion
here is the description itself. Two constructs over domain A
are semantically equivalent if they have the same extensions
given an interpretation I. The significance of concept graphs
for our purposes stems from the following theorem.
Theorem 5.4 Any FDL description D is semantically equiv-
alent to an acyclic FDL concept-graph of size polynomial in
| D| that can be constructed in polynomial time.

Thm 5.4 allows now to show that FDL supports efficient
subsumption queries between descriptions and, moreover,
that it supports checking subsumption of an arbitrary concept
graph by a description.

Theorem 5.5 For FDL descriptions Dy, D5 the subsumption
of Dy by Dy (D1 D D) can be decided in polynomial time.
Additionally for a description D, and an arbitrary FDL con-
cept graph G, the subsumption of G4 by D, can be decided
in polynomial time.

Given these definitions for FDL descriptions and their cor-
responding concept graph representations, it now becomes
possible to describe a feature extraction framework where
such representations play a major role. Efficient subsumption
testing allows generation of expressive propositional features
from arbitrarily complex data represented by concept graphs.

5.3 Feature Generating Functions

Up until this point, our treatment of FDL has closely mir-
rored that of similar CLASSIC-like DL’s [Borgida and Patel-
Schneider, 1994]. However, our usage of FDL descriptions
is vastly different from the usage of descriptions in these
other DL’s. The most closely related usage may be that of
P-CLASSIC [Koller et al., 1997] descriptions, in which a
probabilistic distribution over descriptions is used to perform
probabilistic subsumption queries. Instead, in our paradigm,
descriptions are used to generate propositional formulae, in a
data-driven way via subsumption queries. We first describe
the process of generating propositional formulae using FDL
descriptions.

The essential construction of our method is a Feature Gen-
erating Function, closely related to the RGF of Sec. 4.3.

The constructions, however, differ in an important re-
spect. Here we discuss a general Feature Generating Func-
tion, whose operation is constrained by the formal syntax of
the generating descriptions themselves, having well defined
structure and meaning. This therefore extends and unifies
the “relational calculus” of Sec. 4.3 that procedurally com-
poses different types of RGFs to produce complex features.



In fact, we claim that any operation of such a calculus may be
pushed onto the syntax of an FDL, and therefore it is possible
to define descriptions in our language that produce exactly the
same features as produced there (as we explain later).

Definition 5.6 (features) Let | be some interpretation with
domain A = (X, V), and let Z be the space of all interpre-
tations. For a description D we define a feature F'p to be a
function Fp : T — {0,1}. Fp acts an indicator function
over Z, denoting the interpretations for which the extension
of the description D is not empty.

Given an interpretation I we say that a feature F' is active
in I if it evaluates to true. Generating such features efficiently
however is the topic of much debate, as such feature spaces
could be prohibitively large or in some cases infinite, making
manual generation impossible.

Our next step is to automate the construction of features of
this sort. Luckily, the semantics of FDL descriptions and their
equivalence to rooted concept graphs give rise to an efficient
method of constructing active features, via the notion of the
feature generating function (FGF). Let some interpretation I
be represented as a concept graph G, in which all elements of
I are in the extension of some node of GG. The construction
of this graph is efficient, following Thm 5.4.

Our FGF method takes G along with a set of input FDL de-
scriptions D, and outputs a set of active features over G. The
basic method computes a feature description Dg° for each
attribute as described in Def. 5.8 for G with respect to each
description D € D, and constructs a feature for each Dy.
The intuition is that each input description defines a “type” of
feature, subsuming many possible (partially) ground descrip-
tions over an interpretation. We say a description is ground if
it is a description containing only sensors of the form a;(v;).

Definition 5.7 (Feature Generating Function) Let F de-
note an enumerable set of features over the space Z of in-
terpretations and let D be a description. A feature generat-
ing function X" is a mapping X : Z x D — 2% that maps
and interpretation I to a set of all features in F such that
Fp(I)=1.

Thus, the image of I under X is a re-representation of I in
terms of the (set of Dy’s subsumed by the) description D.

Definition 5.8 The feature description of a rooted concept
graph G with respect to an input description D is the unique
ground description Dy subsuming G and subsumed by D,
containing only ground forms of the sensors in D.

In the case that D is itself already ground, computing the fea-
ture description Dy amounts to checking the subsumption of
G by D.

As usual, the importance of features stems from the fact
that they might provide some abstraction. That is, they de-
scribe some significant property of the input which may occur
also in other, different, inputs.

Theorem 5.9 Given any interpretation I represented as a
concept graph and a description D, all active features over I
with respect to D can be generated by X in polynomial time.

5The 6 here indicates the binding that occurs for each attribute.

6 Mapping the Two Formalisms

As previously stated, the two methods presented are both
means to generate propositional features from structured or
semi-structured input data. In the first case presented, a more
functional approach is taken. Sensor RGFs may produce for-
mulae inferred through some process and not explicitly pro-
vided as predicates in the domain. For example, in a vi-
sual processing problem, we might want a sensor such as the
I > 50 sensor discussed earlier. The domain may provide
predicates only of the form intensity(60),

By contrast, the second method attempts to push all of the
functionality of the RGF functions, and the logical structure
implied by using graph operations, onto the syntax of our de-
scription language. The process of constructing features is
then reduced to a single mechanical operation. In order to
produce a feature from a particular domain instance, the in-
formation contained in that feature must be explicitly repre-
sented in the graphical structure, or else implied in the syntax
of the language. For complicated learning problems involving
several stages of classification, we thus update the domain in-
stance with information gained from previous stages. In this
manner we can, for example, simulate the learning of recur-
sive concepts such as a path in a graph. If a domain instance
is given with edge arcs represented between each node, we
can first learn a classifier to predict that two nodes linked by
an edge define a path. After filling in all predicted path arcs
based on this classifier, a second classifier based on the exist-
ing path arcs and the new edge arcs can be learned, and iter-
atively applied to predict the remaining path edges between
any pair of nodes.

While the above discussion would give the impression that
the formalism of RGFs could yield more expressivity than the
FDL formalism, we claim that we can simulate most of the
features output in the first framework with the second. The
details of this mapping appear in [Cumby and Roth, 2003a].

Here we stress that, although the formalisms presented can
be mapped to one another in terms of creating features to
express the same concepts in the same situations, each has
its own unique advantages. The RGF formalism serves as
a more abstract foundation for feature extraction. It allows
us to devise extraction functions that are independent of the
underlying knowledge representation used for the data. The
conjunctive & operator and the disjunctive | operator exhibit
this independence. The FDL based approach, by encoding
particular graph properties explicitly in the syntax of the lan-
guage and by directing the feature extraction process through
syntactic operators, gives a more “implementation-level” un-
derstanding of that process. Additionally, with a cleanly es-
tablished syntax for the description language we can substi-
tute other functionality in place of explicit feature generation.
For example, the language can be used as the basis of a pa-
rameterizable family of kernels for use with kernel learners
as shown in [Cumby and Roth, 2003b].

7 Conclusion

This work presents two paradigms for efficient learning and
inference with relational data. The first framework addressed
feature extraction in a functional setting through the defini-



tion of Relational Generation Functions. This framework can
be viewed as providing a general basis for the second frame-
work, abstracting away many of the details of the feature con-
struction process. For example, we introduced the abstract
notion of a sensor RGFs, which we allowed to construct fea-
tures by inferring predicates from input instances, through ex-
ternal functions or any other means.

The second paradigm defined the notion of feature descrip-
tion logics - a relational language with clear syntax and se-
mantics that can be used, via feature generation functions,
to efficiently re-represent world observations in a way that is
suitable for general purpose learning algorithms. We have
shown that both these formalisms allow one to efficiently
learn complex relational representations, in a system in which
the basic components are articulated in a language whose
structure and meaning are well understood.

It is important to point out that a wide family of feature
description logics can be used within our framework. In fact,
other CLASSIC-like description logics, as well as their prob-
abilistic variations, could be incorporated into the framework
with the addition of a Feature Generating Function for each.
They could then participate as building blocks in the process
of learning relations and predicates. For example, features
generated in this framework need not be defined as Boolean.
They can be associated with a real number, indicating the
probability the feature holds in the interpretation, allowing a
immediate use of P-CLASSIC like languages. This approach
provides a different view on ways to extend such description
languages, orthogonal to the one suggested by existing exten-
sions, such as PRMs [Friedman et al., 1999]. Unlike those
extensions, which are more suitable to relational database-
like (probabilistic) inferences, we provide a natural solution
to learning predicates and relational structure, as seen in the
examples pointed to in [Cumby and Roth, 2003a]. Further-
more, the syntactic framework allows us to use the FDL lan-
guage for tasks other than pure feature extraction. For exam-
ple, in [Cumby and Roth, 2003b], a family of relational ker-
nel functions parameterized by descriptions in the language
is developed for use with the Kernel Perceptron algorithm.

Some future directions include the use of our formalism
to determine in a data driven way the level of abstraction of
feature ‘types’ required for a given application; the develop-
ment of nested and hierarchical FDL-based knowledge rep-
resentations; and integrating our framework into a program-
ming platform, allowing researchers to construct large scale
learning-based architectures to solve complex Al problems.
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Abstract
. . . . Unknown
Relational data is equivalent to non-relational struc-
tured data. It is this equivalence which permits
Indep vars Model Data

probabilistic models of relational data. Learning
of probabilistic models for relational data is possi-
ble because one item of structured data is generally
equivalent to many related data items. Succession
and inclusion are two relations that have been well Input Machine Output
explored in the statistical literature. A description
of the relevant statistical approaches is given. The
representation of relational data via Bayesian nets

is examined, and compared with PRMs. The pa- Experiment Nature Results
per ends with some cursory remarks on structured
objects.

1 Learning from iid samples Figure 1: Statistical Inference

Recall from[Cussens, 20Q0the well-known correspondence
between the mathematical abstractions used in statistics and
the real world. This correspondence is given diagrammatizontinue the metaphor of the machine, which will be used
cally in Figure 1. This view sees Nature as a machine whichnroughout, we assume that: each datum is generated by one
probabilistically spits out data in response to questions (intyn of the machine, the same machine is used for each da-
puts) that we give it. In some cases (e.g. clustering, density;m and previous outputs of the machine do not affect how
estimation) the independent variables do not play an imporit gperates on future runs. The iid assumption often permits
tant role—the machine does not require any input to producgccyrate estimation of parameters from data, and sometimes
an output. This probabilistic machine has many names in thgoth parameterandthe structure of the model/machine.
literature, it is Hacking’s “chance set-upHacking, 1965
and Popper’s “generating conditiong®opper, 1988

This probabilistic machine is often taken to produce output2 . .
by selecting its output from some population of possible out2 Relational learning
puts. Such a reconceptualisation is sometimes strained: “But
only excessive metaphor makes outcomes of every chanda many cases we are presented with data where the iid as-
set-up into samples from an hypothetical populatififack-  sumption is invalid. In such situations, let us say that we are
ing, 1965, p. 2k But it is pretty much hard-coded into the faced with arelational learningproblem, on the grounds that
standard Kolmogorovian formalisation of probability. Kol- the items of data will be related in some way. What is per-
mogorov’s axiomatisation defines a probabilistic model to behaps new in current Al research in this area is that this issue
a probability spacé?, F, P). Here( is the population, and is being approached ingeneralway: formalisms—often re-
outputs (actually subsets ©fin ) are chosen according to lated to first-order logic—are being created where data items
P. may be related in an arbitrary manner. However, there ex-

In standard approaches to statistical inference (or ‘learnists valuable work in the statistical literature which focuses
ing’; the terms will be used interchangeably in this paper)on particular relationships between data. In Sections 2.1 and
we assume that the observed data is composeddejpen- 2.2 we examine two specific relations: respectively, that of
dent and identically distributed (iidfems sampled fronf. succession and the “isa” relation which forms the basis of hi-
The homogeneity of such data permits estimatiolPofTo  erarchical models.



2.1 Succession units or subjects at the lowest level breaks down,
Time-series analysis is a venerable form of relational learn- ~ €ven after conditioning on covariate information.

ing with a large literature. It is often applied to financial The simplest extension from a classical regression
data where, say, the price of pork bellies today (let's call it ~ Specification is to introduce as covariates a set of in-
Xz) is not independent of its price yesterd@iil)_ So, al- _d|Cat0r variables for each of the h|gher_-|EVE| units
thoughX; and X;_; may be identically distributed they will in the data—that is, for the classes in the edu-

not be independent, hence the data is not iid. Returning to the ~ cational example ...But this will in general dra-
metaphor of the machine: we have the same machine each Mmatically increase the number of parameters in the
time, but the output of the last run forms part of the input of ~ model .. [Gelmanet al, 1995, p. 366

the next run. Here it is not good enough to produce a regression model

Given that the convenient iid assumption is lacking how(probabilistically) mapping information specific to an indi-
is learning possible? To answer this it is useful to make ajidual to scholastic achievement for that individual. We also
quick detour into the mathematical formalism. A time-serieshave (in ILP speak) background knowledge which is not spe-
is modelled as atochastic proceswhich is defined “as a cific to individuals. Each student is a member of a particular
family of random variable§ X;,i € I} defined on some class, each class is contained within a particular school and
probability spacé(?, F, P)” [Brockwell and Davis, 1991, p. each school is in a particular neighbourhood. Each of these
8]. The index sef may be discrete (as in the case of daily levels in this hierarchical setup will have attributes which will
commodity prices) or continuous. affect the student’s scholastic achievement.

In learning, our goal is to estimate the underlying proba- prefiguring a little the discussion of PRMs in Section 2.4,
bilistic model from data. Since here this model is a stochastigve can imagine a relational database system with tables for
process it looks as if each data point must be a realisatiogtudent, Class, School andNeighbourhood. Each of these
of the stochastic process, i.e. each data point is to be a joinhbles will have fields for information specific to objects of
instantiation of all thg X;, i € I}. By running this sequence- that class, so-called “descriptive attributd€etoor et al,
generating probabilistic machine many times over we could001. Following [Neville et al, 2003, we will call these
get an iid sample each element of which is a joint instantiaintrinsic attributes. There will also be fields for “foreign
tion. Unfortunately, in general, the machine is run just oncekeys” which contain the names of related objects from dif-
We will only get one such data point—since we cannot referent classes. For exampl®tudent might have fields for
peatedly rewind history and observe, say, the price of porlgttendance and age as well as a foreign key field naming the
bellies on 24th Jan 1999 many times over. class that each student is in.
~ Butlearning is still possible if we assume the joint distribu-  The salient relationship in this case is that of inclusion or
tion of the{ X;, i € I} is structured Take the simplest AR(1) membership: each student is a member of a class, etc. Note
model (AR(1) is also known as a Markov process): also that students in the same class are related to each other

Vi: X, ~aX; 1+ ¢ simply by being members of the same class. Students in the
same school or neighbourhood are also related, but presum-
ly these relationships are weaker.

The option of representing all this information in a man-
ner identical to that for individual-specific information is re-
jected. This rejected option corresponds to ‘propositionalisa-
ion’ to use ILP speak again. It will increase the number of
: ! ; arameters because it will increase the length of the covariate
the price of pork bellies on that day. These attributes (th ector considerably. The same “exploding attribute-space”

{X,}) are directly connected without any intervening individ- henomenon ten r when ILP learnin nari r
uals of which they are the attributes. Secondly, this descripp enomenon tends to occu © ®ermng sceraros are

i . tificati q iabl th tpropositionalised. An appropriate probabilistic model is a hi-
lon requires quantfication over ran‘ 'om vanay €S, WItNOUly 4 chical one to reflect the hierarchical nature of the data:
time-series analysts requiring a new ‘first-order’ probabilistic

where thee; are iid. Now the observation of eacki; be-
comes a data point and contributes towards the estimation o
«. The point is that there is mepetitivestructure. It is the
same (unknowny for all X;. There are two further things
to note here. Firstly, individuals (for example days) are no
explicitly represented; only attributes of individuals, such a

formalism. ...sensible estimation of these [the parameters
in the model] is only possible through further mod-
2.2 Hierarchy eling, in the form of a population distribution. The
Sequence data is not the only case where iid assumptions latter may itself take a simple exchangeable or iid
break down. Consider the following situation (where “an as- ~ form, but it may also be reasonable to consider a
sumption of exchangeability” is essentially an iid assumption,  further regression model at this second level to al-
and for “covariate” read “attribute”): low for the effects of covariates defined at this level.

In principle there is no limit to the number of lev-
els of variation that can be handled in this way.
Bayesian methods provide ready guidance on han-

...in studying scholastic achievement we may
have information about individual students (for ex-
ample, family background), class-level information ; S
(chgracterist)i/cs of %[]he tea)cher), and also informa- dling the estimation of unknown parameteiSel-
tion about the school (educational policy, type of manet al, 1995, p. 365
neighborhood). ... With covariates defined at mul- To make the connection between hierarchical modelling
tiple levels, the assumption of exchangeability of and Bayesian computation more concrete, we will consider



a particular example using the BUdGSpiegelhaltert al,,
1994 system.

2.3 Bayesian nets for hierarchical models

Consider the followinditters probabilistic model taken
from [Spiegelhalteet al, 1994. We consider survival rates
in two sets of pigs. Each set of pigs contains 16 litters.
“We would like to assume that the survival rates in the litters
within each set are similar, but not identicalSpiegelhalter

for (j in 1:2) {
for (i in 1:16) {
rfij] = dbin(pi,j],nfi,});
plij] = dbeta(afj],bi);

}

a[j] ©~ dgamma(1,.001);

b[j] © dgamma(1,.001);
}

et al, 1994d. In other words, we assume that there are pheF_igurE; 3: BUGS Ian_guage representation of the Bayesian net
nomena at the level of sets which affect survival rates. On@iven in Figure ZSpiegelhalteet al., 1996

could imagine, for example, that the two sets of litters come
from two different farms. This is clearly a hierarchical set-up,
but it also implies that within each set, the individual sows are
related in some way.

Suppose we want to compute the probability that a piglet,
born to some particular sow, will survive. If we have observed
survival rates for the litters of other sows in the same set,
this should effect the value of the probability we are trying to
compute. How can this be done?

Here is the approach given [Spiegelhalteet al, 1994.

Let theith (1 < 7 < 16) sow in thejth (1 < j < 2) set be
called sow;;. For each sowow;; we wish to compute;;
the probability that a piglet of hers will survive. Clearly, the
number of piglets born so fan(;) and the number of those
that have diedi(;;) for sow;; are pertinent intrinsic attributes.

“The simplest conjugate model is to assume the observed

What is interesting here is that

1. no individuals are explicity represented in the model,
only attributes of individuals;

2. consequently, relationships between individuals (such as
might be represented by a foreign key relationship) can
not be explicitly represented, so the membership rela-
tionship between a sow and her set is not represented
nor is the derived relationship between sows in a given
set;

the individual sows in sgtare related via a very abstract
quantity—the parameter vectgt;, b;)

itis essential that the mediating quantity, b;) is unin-
stantiated

3.

4.

number of deaths;; in litter 7 of group [set]; is binomial )
with sample sizer;; and true rate;;, and then assume the The BUGS documentation has many other good examples of

true rates are drawn from a beta distribution with unknownhi€rarchical models; the current example is one of the simpler
parameters.[Spiegelhalteet al, 1994 The crucial point is _ _ _
that these parametexs andb; are common for all sows in ~ Returning to our machine metaphor, we can say that since
setj. This probabilistic model is represented as the Bayesia§ach litter has its own probability;) for piglets’ surviv-

net given in Figure 2. Note the use of ‘plate’ notation in or- INg, there IS a separate mach'ne_(speufledvm for each

der to compress the representation. The square box aroufiier which ‘tosses a coin’ and decides the fate of each piglet.
n;; indicates tham,; is always assumed instantiated so noHowever, within each set these machines are related. We

distribution need be defined for it. The corresponding Buggnodel this by imagining that there is a machine-outputting
language source code is given in Figure 3. machine for each set, specified by, b;), which outputs the
p;; machines.

When concocting this probabilistic model it seems incon-
ceivable that the statistician did not have particular individ-
uals (sows, piglets) and classes (litters, sets) in mind. But
by the time we have the probabilistic model all individuals
have been eliminated. They merely have a ghostly presence
in the indices of the random variables. It would be useful if
we could find a way of formalising this elimination. To ex-
plore this question we now turn to a probabilistic formalism
where individualsare explicity represented.

litter i
.

2.4 Probabilistic relational models

The ingredients of PRMiGetooret al,, 2007 are as follows.
First considerelational schemasA relational schema spec-
ifies a set of classe¥ = X;,...,X,. With each classX;
there is associated a setd#scriptive attribute§i.e. attributes
which individuals in that class can have) amderence slots

. . . . ) these are ‘attributes’ whose values are the names of individu-
Figure 2: Bayesian net representing a hierarchical modejs in other classes related to individuals in this classinAn
[Spiegelhalteet al, 1994 stanceof a schema defines (i) a set of individuals partitioned
between the classe¥ and (ii) and values for all attributes

set |




(real ones and instantiations of reference slots) of all individton ¢ thus rendering a Bayesian net (with repetitive structure)
uals. Arelational skeletotis a partial definition of an instance containing only “descriptive attributes”. It would be even
where only the individuals and the relations are given—themore interesting to determine the advantages and disadvan-
descriptive attributes are left uninstantiated. A PRM specifiesages of such a ‘compilation’.
a conditional probability distribution over the values of each None of this is attempted here. Instead we just
descriptive attribute, so that given a relational schema, thgive one example of moving in the opposite direc-
PRM defines a distribution oveompletionsof the skeleton. tion. In Figure 4, we give a RDB presentation of
A completion of a skeleton is an instance of the schema.  the litters example. Adding the CPTs (extractable
PRMs are a relational ‘upgrade’ of Bayesian networks.from Figure 3) for P(Piglet.Lives|Piglet.Mother.Health),
Given that in Section 2.3 we have argued that at least somg(Sow.Health|Sow.Set), P(Set.A) and P(Set.B) gives us
relational learning problems can be represented using plaia PRM with a given skeleton.
old Bayesian networks, we need to examine the claimed dif-

ferences between PRMs and Bayesian networks: [ Piglet |

However, there are two primary differences be- Name  Lives Motherl Sow |
tween PRMs and Bayesian networks. First, a PRM pinky ? mary Name He?alth Se
defines the dependency model at the class level, al- perky 2 mary || Many i 1
lowing it to be used for any object in the class. In squeaky  ? susy || SUsY ; 1
a sense, the class dependency model is universally quirky ) susy anny : 2
quantified and instantiated for every element in the . . . e e
class domain. Second, the PRM explicitly uses the [ Set |
relational structure of the model, in that it allows
the probabilistic model of an attribute to depend Name f E
also on attributes of related objects. The specific 1 o o
set of related objects can vary with the skeleton 2 : i

o; the PRM specifies the dependency in a generic . ) . .
enough way that it can apply to an arbitrary struc- Figure 4: Relational database representation of the BUGS

ture. [Getooret al,, 2001 litters  scenario

The first difference is inessential from a mathematical point Comparing Figure 4 with Figures 2 and 3 the with-

of view, despite being imp_ortant for practical model_-building. individuals RDB approach of PRMs seems to me to have two
We have seen that grouping together random variables assgyajn advantages. Firstly, the world simply does contain in-
ciated with objects of the same class (graphically via the platgyjyiduals of various classes, and consequently this is how we
notation, or in the BUGS language usif@ ) achieves the  conceptualise it. On this count Figure 4 is the more perspic-
same effect. In reply one could argue that using the BUG$oys to a human modeller. Secondly, and for related reasons,
language is a move beyond ‘plain old Bayesian nets’ since iRpBs are where the real-world data jso for entirely prac-
explicitly uses the quantification alluded to f§etooretal,  tica| reasons a probabilistic model that can be bolted on to a
2001. , ) i RDB has a lot going for it. The advantage of the BUGS ap-
The second difference is more fundamental in that a PRMyroach s that by eliminating the individuals we have gained
holds off from giving enough information to construct an some simplicity, or at least compactness. On a practical point
equivalent Bayesian net—the missing information is cOnthe BUGS MCMC-based software is also quite well devel-
tained in the skeleton. The BUGS analogue is a partially gped. All these observations indicate that ‘compiling’ PRMs

specified Bayesian net, where, for example, the actual numy, structured Bayesian nets may have much to recommend it.
bers of sows and piglets are yet to be determined.

Learning in PRMs assumes the data is one single structured . .
datum: 3 Structured objects versus systems of objects

Our training data consists of a fully defined in- The slogan of this paper has been that relational data is equiv-
stance of that schema. We assume that this in-  alent to non-relational structured data. However, in the ex-
stance is given in the form of a relational database.  amples given the structured ‘data’ is a single big data-point:
[Getooret al, 2007 an entire sequence, an entire hierarchy or an entire relational

So, as with time-series, the data is a single instance draw@iatabase (or at least completion thereof). A less extreme kind
from the underlying distribution. It is only because this in- Of structured data is data composed of a number of struc-
stance is highly structured and hence composed of many réured objects. In place of a conclusion, in this final section
lated ‘instances’ that there is enough information to do pawe briefly consider the representation of structured objects
rameter estimation, or possibly even model structure learnand connections to relational data. A thorough examination

ing. of these issues and their consequences for relational learning
L . . we leave for future work.
2.5 Eliminating and introducing individuals Consider RDBs. An RDB is a system of related atomistic

It would be interesting to see whether there is an algorithmobjects where each individual object is ‘flat’. It has its own
which eliminates the individuals in a PRM with a given skele- intrinsic attributes and its foreign keys name related objects.
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1994, p. 17 [Neville et al, 2003 Jennifer Neville, Matthew Rattigan,
and David Jensen. Statistical relational learning: Four
claims and a survey. In Lise Getoor and David Jensen, ed-
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In logic programming terms RDBs are ground'Datalog Pro- itors, IJCAI-03 Workshop on Learning Statistical Models

grams. However, one could argue that a putatively atomistic - 5 Relational DataAcapulco, Mexico, August 2003.

object (sayz) with relations to other atomistic objects (say

ande) in fact has a structure such theandc are in fact ‘con-  Pollard and Sag, 1994Carl Pollard and lvan A. Sagiead-

stituents’ ofa. If so, it follows that it is more perspicuous to ~ Driven Phrase Structure Grammaldniversity of Chicago

represent, as f (b, ¢) wheref represents how andc consti- Press, Chicago, 1994.

tutea. Here, the information abouthas been packed into a [Popper, 1988 Karl R. Popper.Realism and the Aim of Sci-

first-order term so that a mere identifie) fas been replaced ence Hutchinson, London, 1983. Written in 1956.

e e s e [fouverol, 195} Celne Rouverol. Flaening and saura

the ILP literature. For example Rouveil@ouveirol, 1994 tion: Two representation changes for generalizatista-
PR ; ’ chine Learning14(2):219-232, 1994.

shows how to ‘flatten’ structure representations. i _

An extreme example of this sort of packing occurs in lex-ISpiegelhalteet al, 1994 D J Spiegelhalter, A Thomas,
icalised approaches to natural language grammar such as N G Best, and W R GilksBUGS Examples Volume 1, Ver-
Head-Driven Phrase Structure (HPSG). In a lexicalised gram- Sion 0.5, (version ii) MRC Biostatistics Unit, Cambridge,
mar nearly all grammatical information is represented at the UK, 1996.
word level on the grounds that words are information-rich,
and should be represented as such. HPSG grammars present
linguistic objects as feature-structures which are very highly
structured objects. For example, Figure 5 gives a (slightly
cut-down) HPSG lexical entry for the word “shéPollard
and Sag, 1994, p. 17

Here each node is labelled withsart and the arcs corre-
spond to features which those sorts have. Some sorts (such as
non) do not have features; they are called atoms. It is clear
how a feature-structure could be converted to an equivalent
RDB/Datalog program (in fact, this is more or less done in
[Pollard and Sag, 1994 Each arc going to a non-atom sort
represents a foreign key relation; those going to atoms rep-
resent intrinsic attributes. The interesting thing here is that
there is no clear distinction drawn between individuals and
attributes: they are all sorts. Analogously, reference slots and
descriptive attributes are all fields.

References

[Brockwell and Davis, 1991Peter J. Brockwell and
Richard A. Davis. Time Series: Theory and Methods
Springer Series in Statistics. Springer, New York, second
edition, 1991.



Ecosystem Analysis Using Probabilistic Relational Modeling

Bruce D’Ambrosio, Eric Altendorf, and Jane Jorgensen
CleverSet Inc..
Jdambrosi, eric, jorgenjl@cleverset.com

Abstract

In this paper, we present the results of initial
explorations into the application of relational model
discovery methods to building comprehensive
ecosystem models from data. Working with
collaborators at the USGS Biological Resources
Discipline and at the Environmental Protection
Agency, we are engaged in two projects that apply
relational probabilistic model discovery to building
“community-level” models of ecosystems. A
community-level ecosystem model is an integrated
model of the ecosystem as a whole. The goal of our
modeling effort is to aid domain scientists in gaining
insight into data. Our preliminary work leads us to
believe the method has tremendous promise. At the
same time, we have encountered some limitations in
existing methods. We briefly describe two projects and
make some observations, particularly with respect to
the development of synthetic, or derived, variables. We
describe specific extensions we made to solve
problems we encountered, and suggest elements of an
extended grammar for such variables.

1. Introduction

Ecosystems are composed of interacting populations of
organisms and their environments. They are notoriously
difficult to study because of their size and complexity. In
addition, many are unique. Controlled experimentation in
these ecosystems is undesirable because of the potentially
irreversible damage it may cause. However,
observational data are often abundant. The challenge in
studying ecosystems is to synthesize these data into
coherent, comprehensive, biologically meaningful
models.

While data collection traditions and techniques are
mature, data analysis methodologies are less well
developed. Generally, individual, domain-specific teams
(e.g., a team of physicists or a team of biologists) apply
traditional statistical methods to investigate pair-wise
correlations among variables in their separate datasets,
but have no methods for investigating the complex, noisy,
cross-disciplinary interactions that are crucial to
understanding the ecosystem as a whole. As a result, the
standard ecosystem-level computational scientific method
is a form of “generate and test”: the manual construction
of mechanistic models and model selection by comparing

simulation results to data or expert knowledge.
Probabilistic models of ecosystems are slowly becoming
more common, however these have been constructed using
knowledge-engineering (Kuikka et al., 1999, Marcot et al.,
2001).

Most of the data collected in studies of ecological
systems is stored in relational databases. An emerging
family of methods for relational learning [Muggleton and
De Raedt, 1994], [Van Laer and De Raedt, 2001],
[Quinlan, 1996], [Getoor et al., 1999] provide the
opportunity to learn comprehensive models directly from
these relational data sources.

In this paper, we present the results of initial
explorations into the application of model discovery
methods to build comprehensive ecosystem models from
data. Working with collaborators in the USGS Biological
Resources Discipline and the Environmental Protection
Agency, we are engaged in two projects that apply
probabilistic  relational model discovery to build
“community-level” models of ecosystems. (A community-
level ecosystem model is an integrated model of the
ecosystem as a whole.) The goal of our modeling effort is
to aid domain scientists in gaining insight into data and to
construct complex prior hypotheses about the ecosystems
studied. Our preliminary work leads us to believe the
method has tremendous promise. At the same time, we
have encountered some limitations in existing methods.
We briefly describe two projects and make some
observations, particularly with respect to the development
of “synthetic”, or derived, variables.

Probabilistic relational model discovery methods
exploit a relational data model to derive parameters that
account for variation in the explicit variables in a data
model. In a Hollywood database, for example, an actor’s
income may be related to the number of movies in which
s/he played a role. [Getoor et al., 1999] introduce the
concepts of a path (a chain of references — e.g. “actor.role”
above), and a terminal aggregator (e.g., “number” or count
above) as defining a space of synthetic variables. We have
found this framework useful, but limited in its ability to
account for all known interactions in our data. We will
describe examples motivating the introduction of two
additional features, selectors and variables, into a synthetic
variable grammar.



2. Applications

CleverSet is currently engaged in two ecological
modeling projects: community-level modeling of the
Crater Lake ecosystem (USGS) (Jorgensen et al., 2003)
and community-level modeling of West Nile virus disease
transmission (Orme-Zavaleta ef al., 2003).

Crater Lake

Data

The National Park Service is concerned about long-term
changes in the clarity of Crater Lake, a national park and
the clearest deep-water lake in the world. Although many
domain-specific surveys have been undertaken, the
analytical framework necessary to link these analyses into
one overall assessment of lake health has been lacking.
Our goal in this project has been to formulate multiple,
complex, simultancous hypotheses given all the data
obtained from the long-term studies of the lake (Larson et
al., 1993). These data have been collected using varying
time and spatial scales. For example, surface weather
condition information is available on a daily basis, but
phytoplankton densities are measured only once or twice
a month (and not at all in winter), while rocket-borne
instrumentation to gather weather data at altitude is only
rarely available.

Method

In an initial Crater Lake analysis performed for USGS,
we chose a set of temporal units to frame the analysis.
These units were time periods corresponding to observed
patterns of clarity of the lake and for which data were

secchi.mdb

available: June-July, August, September-October. We then
added a table containing these time units (this unary
relation establishes the basic time scale), and relating
hydrological seasons annually (this binary relation
establishes the basic unit of time-lag to be considered in
the analysis), and related the data tables we wished to
include in the analysis to this temporal table. A complete
schema for the analysis is shown in Figure 1.

Results

Figure 2 shows the essential elements of the discovered
model (we omit some schema elements for clarity). One
relationship we discovered is that the dominant fish species
in gill net catches was probabilistically dependent upon
Secchi descending depth (water clarity) in the current year,
mean fish weight in the current year, descending Secchi
depth the previous year and dominant fish species two
years previous. This and findings concerning age class
structure agreed with the anecdotal evidence that schools
of Kokanee smolts swimming at the edges of the lake were
preyed upon by mature Rainbow trout, where they were
caught in gill nets. This phenomenon does not occur every
year. A time lag of two years, discovered by the model, is
consistent with experts’ observations.  The relation
between this interaction and water quality was previously
unknown. Other somewhat surprising discoveries include:
(1) the centrality of water clarity (measured by the Secchi
“DesDepth” parameter); and (2) the lack of a direct
relationship between Zooplankton count and water clarity,
at least at the spatio-temporal scale studied. These finding
suggest that fish attributes may serve as a predictor of
water clarity.

secchi.mdb SampleDates: Table
Readings: Table ™ Secchi ID
Secchi ID Date
DesDepth seasonCode
(n=864) readings
(n=192)
Seasons (added table)
PreYr
Date
L YrSegment
phytoplankton.mdb phytoplankton.mdb phytoplankton .mdb secchiSampleDates
Counts Jan 1988 & 1989 to — | Dates and Depths: Table PhyCode:Table phytoDates
Present: Table 4—— Block Code ] ZooDates
Counts 1985 to 1988 except Date Division FishDates
Jan 1988: Table Depth (n=8) (n=120)
Counts 1981 to 1984:Table [ |counts
Block seasonCode
Density (n=1198)
Code
(n=17,839)
zooplankton.mdb zooplankton.mdb zooplankton.mdb
Table ’—b ZooDateTime: Table ZooSpeciesNames: Table
zooplankton.mdb DateTimelD DateTimelD « Code
ZooCounts: Table Sample Date (n=22)
Sample Depth seasonCode
Count —— | CountTable | SampleTable
Code

(n=3204)

1

fish.mdb fish.mdb

Table 4 Catchlnfo: Table
Catchid » CatchiD
Species Date
TotalLength CaptureMethot
Weight seasonCode
Sex | FishTable

Maturity
Age

Figure 1. Crater Lake Schema
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Discussion

The Crater Lake project highlighted the centrality of time
in such analyses. Time creates several challenges for
relational model discovery:

1. Time is rarely reified in relational schema. This
presents a problem in constructing paths like
“secchi.DesDepth.yrSegment.Phyto.density.”
Our solution in this case was to manually add a
“Season” table. We have since implemented
facilities for partially automating this process, by
recognizing and re-ifying data/time information
in schema’s.

2. Once time was reified, two further decisions
were necessary: we established an aggregation
unit for time and we separately established a lag
duration. Expert knowledge was used to
establish both, based on domain knowledge and
understanding of the goals of the modeling. In
future we hope to explore extensions of existing
statistical time series analysis methods to aid in
this process.

A second problem that arose in this analysis was the
frequent desire to form synthetic variables outside the
scope of the current path language. For example, there
were times when prior knowledge suggested that the
density of a particular phytoplankton species might be a
relevant parameter. Our current synthetic variable
grammar does not allow for selection of a subset of the
items retrieved by a path.

4

revPrevYr

CurrYr

Lake PRM

Finally, the goal of this project was to gain scientific
insight into data that had been collected over 25 or more
years (Secchi depth readings go back to the 1880s!). We
found that learning models over not just the variables in
the provided tables, but over their parents as well,
provided additional insight. An example fragment from
such an extended model, for the FishSpecimen table and
its immediate parents, is shown in Figure 3. This
extended model shows interactions not obvious in Figure
2, such as the multiple pathways through which Mean
Secchi depth (two years previous) interacts with current
Mean fish age.

West Nile Virus

Data

While the Crater Lake project involves building a
relational model over multiple databases of similar type,
our work with the EPA on modeling the spread of West
Nile Virus involves combining multiple databases of
differing types. One class of database contains incident
reports (e.g., reports of dead birds testing positive for
WNV, report of pools of water in which breeding
mosquito populations test positive for WNV, human case
reports, etc.). Each database contains reports of one type
of event, located in place and time. A second class of
database contains records of static features, such as the
presence of a tire disposal facility (potential mosquito
breeding site) or landscape type at a location. The
challenge was to integrate these multiple databases into
an overall model of West Nile Virus spread.
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Figure 3. FishSpecimen Unrolled Model

Method

The first step in our integration of these data sources was
the construction of an integrated data schema across these
data sources through the addition of intensional relations
linking the information in space and time. Knowing that
each database recorded location in columns labeled
latitude and longitude, and time as day/month/year,
enabled us to construct a common spatio-temporal frame
of reference. The simple recognition of point location in
space and time, however, is not enough to integrate these
data sources. Rarely do two events occur at precisely the
same place or time. Rather, we imposed a scale across
both the spatial and temporal dimensions. The parameters
of this scale (five miles for space, and one month for
time) were drawn from scientific knowledge about the
life cycle of the vector of interest, the mosquito, and the
typical flight distance for the competent bird host. Again,
this was done by hand in our preliminary studies to date.

Results

Figure 4 shows a preliminary model of the spread of
West Nile Virus in Maryland in 2001. Shown is a model
over the synthetic variables constructed starting from the
table of positive bird records.

The results support previous hypotheses that tire
disposal site license density is correlated with incidence
of West Nile Virus in birds. Tire disposal facilities may
affect disease spread directly, by serving as breeding
areas for mosquitoes, or may be a proxy for population
density, which may in turn affect sampling and/or disease
prevalence (e.g., though human movement through the
region). The results also suggest that disease prevalence
in mosquito pools may be a predictor of disease
appearance in birds. The number of human and horse
cases in 2001 was too small to support any significant
findings related to these cases. However, even with these
sparse data, the model produced is consistent with current
knowledge regarding the manner in which the disease is
transmitted and forms a framework in which future
findings may be evaluated. The fact that horse cases do
not contribute significant information to the model
provides preliminary evidence that monitoring this
incompetent host may be unnecessary in tracking the
spread of this disease.
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Figure 4. West Nile Virus Model Fragment

Since the mechanistic model of disease spread is not
completely known, the temporal and spatial models
included in the model may not be the only, or even the
most useful scales at which to view interactions. Finer
spatial resolutions, for example, might provide evidence
about the species of birds and mosquitoes involved in
transmission. Landscape level data, for example,
landcover type, might also improve the descriptive and
predictive capabilities of the model. ~As mentioned in
our discussion of the Crater Lake study, our current
manual methods do not permit easy exploration of
possible scales.

Discussion

Our work on West Nile Virus propagation reinforces the
need for selectors in synthetic variables. Unlike Crater
Lake, however, where the selectors where over the values
of primitive attributes, in the analysis of West Nile Virus,
we needed to form equality selectors over entities (e.g.,
positive mosquitoes in adjacent geocells in the same
month). We extended our synthetic variable grammar to
include a single selector phrase. A selector is a Boolean
operator mapped over the elements of the base path
defining a synthetic variable. Elements for which the
selector returns true and included in the result, and
elements for which it returns false are omitted. The
selector consists of a Boolean operator and two paths.
The first path is applied to the table entry at the head of
the base path for the synthetic variable, and the second

path is applied to each table entry retrieved by the base
path. For example, consider:

PosBirds.GeoCell.PosMosq ==(PosBird.month,
PosMosq.month).Count()

The base path (“PosBirds.GeoCell.PosMosq”) yields a set
of positive mosquito entries in the same spatial region as
a bird entry. The selector (“==(PosBird.month,
PosMosq.month)”) then filters out all entries not in the
same month as the positive bird record. Finally, the
“Count()” aggregator returns a scalar, the cardinality of
the resulting set'.

3. Conclusions and Future Work

Relational probabilistic modeling provides a natural
framework for investigating ecological data. The large
amount of observational, noisy data, often collected by
multiple investigators over varying time-scales, provides
a rich field for probabilistic model discovery, and
relational approaches raise the level of modeling to one
with which domain scientists can readily interact.
Existing synthetic variable construction methods
naturally generate many variables either previously

" In more recent work, supported by NSF SBIR DMI-
0231961, we have developed a more comprehensive
synthetic variable language grammar and automated
generation capability, patent-pending.



known to scientists or immediately recognized by them as
scientifically relevant. At the same time, attempts to apply
relational probabilistic model discovery techniques to
ecological data have revealed limitations in our current
synthetic variable construction methods. We are currently
exploring work in data base path expressions, for
example that of Van den Bussche [Van den Bussche et
al., 93] and Frohn [Frohn et al., 94], as generalizations
capable of expressing a more comprehensive set of
synthetic variables. Key concepts include the selector and
the introduction of variables (to allow subsequent
reference to earlier elements in a path). We are also
exploring mixed-initiative search procedures over these
much larger path grammars.
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Abstract

This paper presents an overview of the research on
learning statistical models from relational data be-
ing carried out at the University of Washington.
Our work falls into five main directions: learning
models of social networks; learning models of se-
quential relational processes; scaling up statistical
relational learning to massive data sources; learn-
ing for knowledge integration; and learning pro-
grams in procedural languages. We describe some
of the common themes and research issues arising
from this work.

1 Introduction

The machine learning group at the University of Washington
is pursuing applications in viral marketing, Web search, adap-
tive Web navigation, assisted cognition, planning, knowledge
integration, and programming by demonstration. In each of
these areas, we began with methods that were either statistical
but not relational or vice-versa, but the need for statistical re-
lational learning (SRL) rapidly became apparent. As a result,
our current focus is both on fundamental issues in SRL that
cut across these applications, and on propagating advances in
the fundamental issues to the applications. What follows is an
overview of these research directions, showing how the need
for SRL arose in each application, what fundamental issues
we uncovered, what progress we have made, and the wealth
of problems that remain for future work.

2 Social Networks

Statistical models of customer behavior are widely used in
direct marketing. Typically, these models predict how likely
the customer is to buy a product based on properties of
the customer and/or the product. We have extended these
models by also taking into account the network of influ-
ence among customers [Domingos and Richardson, 2001;
Richardson and Domingos, 2002b]. This takes “word of

ICurrent affiliation: Google, Inc.
“Current affiliation: University of Illinois at Urbana-Champaign.
3Current affiliation: IBM T. J. Watson Research Center.

mouth” effects into account—the fact that a customer’s de-
cision to buy is affected by what her/his friends and acquain-
tances say about the product. This makes it possible to design
optimal viral marketing strategies, which choose which cus-
tomers to market to based not only on their likelihood of buy-
ing, but also on their likelihood of influencing others to buy,
and so on recursively. We mine these models from online
sources like collaborative filtering systems and knowledge-
sharing sites. We have found experimentally that they can
lead to much higher profits than traditional direct marketing.

We have also worked on extending Google’s PageRank al-
gorithm for Web search with information about the content of
pages [Richardson and Domingos, 2002a]. Instead of a uni-
versal PageRank measure, we introduce a query-dependent
PageRank, and show how to efficiently pre-compute the nec-
essary information at crawl time. Although superficially very
different from the viral marketing problem, this problem is
in fact isomorphic to it, with the words on Web pages corre-
sponding to customer attributes, and the links between pages
corresponding to social relations among customers. (See also
[Chakrabarti et al., 1998].)

Notice that, if we view each customer or Web page as a
sample, as is usually done, these models imply that samples
are no longer independent. Dependence between samples is
perhaps the single most fundamental issue that arises in SRL.
Even if a domain contains multiple classes of objects, each
with different attributes, if the objects are all independent the
joint distribution of their attributes decomposes cleanly into
a product of distributions for the individual objects. This is
the usual non-relational case, with the sole difference that the
probabilities for all objects are not all of the same form. It is
particularly remarkable that the space of models that assume
sample independence is a minuscule fraction of the space of
all possible models. In a sense, once the sample independence
assumption is made, all further assumptions made by learning
algorithms (e.g., choice of representation) are second-order
perturbations.

Early studies of the issue of sample dependence in SRL
include [Jensen and Neville, 2002b; 2002al, but the area is
still very much in its infancy. We are currently developing
general methods for this problem, based on assuming inter-
sample dependences that are arbitrary but limited in number
(the same type of assumption that Bayesian networks make
for inter-variable dependences within a sample).



3 Relational Stochastic Processes

Large Web sites are hard to navigate—finding the information
the user is looking for often takes too long, and the user gives
up and/or wastes time. A possible way to ameliorate this is
to automatically adapt the Web site to the user, by predicting
what s/he is looking for [Perkowitz and Etzioni, 1997]. For
example, we can add to the current page shortcuts to the five
pages the user is most likely to want to see. We initially did
this using a simple Markov model with pages as states and
links as transitions, but found that, although successful, this
approach had significant limitations [Anderson ef al., 2001].
Predictions can only be made for pages that the user has vis-
ited before (and reliable predictions only for pages that the
user has visited multiple times). On large Web sites, this is
a vanishingly small fraction of all the pages available. Fur-
ther, as Web sites change over time, it is not possible to make
predictions for new pages when they appear. Finally, gener-
alization across Web sites is not possible: even if the adaptive
Web navigation system knows the user often goes from the
“Books” page to the “Science Fiction” page at Amazon.com,
it cannot infer that s/he is likely to do the same at BarnesAnd-
Noble.com.

To overcome these problems, we introduced relational
Markov models (RMMs) [Anderson et al., 2002]. RMMs
model each page as a tuple in a relation, rather than an atomic
state. Different pages can belong to different relations (e.g.,
pages about books will have different properties from pages
about consumer electronics products). The variables in each
relation can have hierarchically structured domains (e.g., a
hierarchy of categories and subcategories of products). We
consider all the abstractions of a page that can be obtained
by climbing these hierarchies, and compute transition prob-
abilities for the most informative abstractions. These prob-
abilities are then combined into a “ground-level” prediction
using shrinkage [McCallum et al., 1998]. Useful predictions
can thus be made for previously unvisited pages, by shrink-
ing to abstractions of them that have been visited before (e.g.,
“Science Fiction Books”).

RMMs are an example of a statistical relational model
for a sequential domain. (See also [Friedman et al., 1998;
Kersting et al., 2003].) However, they are still a restricted rep-
resentation, in the same way that hidden Markov models are a
restricted form of dynamic Bayesian network (DBNs) [Smyth
et al., 1997]. We are currently working on a natural general-
ization: dynamic probabilistic relational models (DPRMs),
which extend PRMs [Friedman et al., 1999] to sequential do-
mains in the same way that DBNs extend Bayesian networks.
Most processes in the world involve multiple objects and re-
lations and evolution over time, and DPRMs should therefore
be widely applicable. For example, in the viral marketing do-
main, we can model the spread of a product from customer
to customer over time, and optimize our marketing actions at
each time step, instead of our initial “one-shot” approach.

A key issue in DPRMs, as in DBNG, is efficient inference.
The vastness of relational spaces, where the value of a re-
lational variable can be any object in a given class, makes
it particularly thorny. We have extended the particle filter-
ing inference method [Doucet et al., 2001] to the relational

domain by Rao-Blackwellising [Murphy and Russell, 2001]
relational variables conditioned on propositional ones. Initial
results show that this approach is extremely effective [Sang-
hai et al., 2003]. We are currently working on relaxing the
assumptions it requires.

DPRMs are well suited to the problem of probabilistic plan
recognition — that is, the task of inferring a person’s cogni-
tive state in terms of plans and intentions. The Assisted Cog-
nition Project [Kautz ef al., 2003] is using DPRMs to track
the behavior of a person suffering from cognitive limitations
(such as mild dementia) as they go about their day-to-day ac-
tivities, in order to provide pro-active help in cases of con-
fusion and cognitive errors. Part of this work involves de-
veloping techniques for efficiently encoding hierarchical plan
networks.

4 Relational Markov Decision Processes

Factored Markov decision processes (MDPs) have proven ex-
tremely successful for solving planning tasks in the presence
of uncertainty, but they share the same representational weak-
ness which we discussed in the context of Markov models
and DBNs earlier. It is natural, therefore, to extend DPRMs
to create relational MDPs (RMDPs). Here, state variables are
relational fluents instantiated over a set of domain objects, ac-
tions are likewise parameterized, and a reward function spec-
ifies how much utility is derived from each action and its out-
come. The task is to create a control strategy (called a policy)
which will maximize the agent’s expected discounted reward.

While it is theoretically possible to expand an RMDP into a
traditional (ground) MDP, the resulting MDP is often so large
that existing value and policy iteration algorithms are inca-
pable of finding a policy. Previous researchers have proposed
symbolic methods for decision-theoretic regression [Boutilier
et al., 2001], but these techniques are impractical. Instead,
we propose generating first-order policies for RMDPs in a
three step process [Mausam and Weld, 2003]. First, we cre-
ate a number of ground MDPs, by instantiating the RMDP
with a small set of representative objects. Second, we solve
these traditional MDPs with value or policy iteration. Third,
we use first-order regression to generate the high-level pol-
icy. Our approach is similar to that of Yoon ef al. [Yoon et
al., 20021, but we consider a much more expressive policy
representation.

5 Scaling Up

The “killer apps” of SRL are likely to be in domains where
the sources of data are vast and varied. In small domains,
propositionalizing the problem at some cost in human labor is
often feasible. However, given that the space and time cost of
a join are worst-case exponential in the number of relations
being joined, in large domains this will generally not be an
option. Many relational learners work by propositionalizing
parts of the data on the fly (e.g., by adding attributes of related
objects to the attributes of the objects of interest), and apply-
ing a propositional learner to the result [Dzeroski, 1996]. Do-
ing this efficiently is a key but difficult problem, particularly
when the relations involved do not all fit in main memory, and



must be read from disk. We are currently addressing this us-
ing subsampling techniques in two ways [Hulten ez al., 2003].
The first is to minimize the number of tuples that need to be
read and joined, while ensuring that the sufficient statistics
(and consequently the model) obtained from them is essen-
tially the same that would be obtained from the full database.
The second is to minimize the number of tuples that are used
in computing an aggregate (e.g., sum, average, count), again
ensuring that the result is not significantly different from
what we would obtain using all the relevant tuples. This is
based on our previous work in applying subsampling tech-
niques to propositional learners [Domingos and Hulten, 2000;
Hulten and Domingos, 2002]. Beyond this, we envisage that
intelligent control of which tuples a learner looks at, and
which join paths it pursues, will be key to scalable SRL.
Heuristics for this are thus an important area of research.

6 Knowledge Integration

In traditional learning, data must first be gathered, cleaned,
integrated and massaged into a single table. This process typ-
ically consumes the majority of the resources of a machine
learning project. A key part of the promise of SRL is its po-
tential to reduce or bypass parts of it: a statistical relational
learner could in principle gather its own data across multi-
ple sources, including different databases, the Web, etc., as
needed for learning. However, to fulfill this potential, SRL
must be able to bridge the differences in vocabulary that dis-
parate data sources inevitably exhibit: different ontologies,
different names for the same attributes, different representa-
tions of the same object, etc. Fortunately, SRL techniques
can themselves be applied to help solve this “Babel problem.”
Given some manually created mappings between information
sources, we can learn generalizations of them that allow us
to map new sources automatically. We have done this suc-
cessfully for relational and XML data [Doan et al., 2001;
2003b] and for Semantic Web ontologies [Doan et al., 2002]
for the case of one-to-one mappings, and are currently ex-
tending our approach to many-to-one mappings [Doan et al.,
2003al. This approach is based on using a variety of learn-
ers to extract different kinds of mapping knowledge, com-
bining their outputs with a meta-learner, and combining the
result with different types of constraint, domain knowledge,
and user feedback to produce the final mapping.

More generally, SRL lends itself particularly well to
knowledge-intensive learning, because it allows input knowl-
edge to be expressed in a rich relational language, and is po-
tentially tolerant of noise in this input. We have designed an
architecture for incorporating knowledge from a large num-
ber of sources into a learner, which uses SRL techniques to
handle inconsistency among sources and high variability in
source quality [Richardson and Domingos, 2003al. Specifi-
cally, we use a Bayesian logic program representation [Kerst-
ing, 20001, with knowledge-based model construction to ex-
tract the Bayesian network required to answer a given query
[Ngo and Haddawy, 1997]. Horn clauses with the same con-
sequent are combined using a noisy OR, logistic regression
or logarithmic pool. The coefficient of a clause in this com-
bination is effectively the system’s estimate of the quality of

the clause, and is estimated from query answers and evidence
using the EM algorithm [Koller and Pfeffer, 1997]. We have
successfully applied this approach in a printer troubleshoot-
ing domain. We are also exploring the use of social network
models to form estimates of the quality of knowledge con-
tributed by different users, bootstraping each user’s assess-
ment of the quality of a few others to the entire network of
contributors [Richardson et al., 2003].

In general, many different types of knowledge can poten-
tially be integrated into SRL, and we are exploring this spec-
trum. One such type of knowledge is statements about the de-
pendencies among variables of interest (i.e., about the struc-
ture of the Bayesian network representing the joint distribu-
tion of these variables). We have developed a method for
combining statements from a variety of noisy, inconsistent
sources into a single probability distribution over the network
structure [Richardson and Domingos, 2003b]. This distri-
bution can then be used as the structure prior in a standard
Bayesian network learner. The method is based on postulat-
ing a simple generative model for expert statements given the
true network, and inverting this using Bayes’ theorem to ob-
tain a distribution over possible networks. Our experiments
show that even a small number of noisy sources can be suf-
ficient to obtain high-quality estimates of the structure, and
high-performing models as a result. We are currently extend-
ing this approach to allow Horn rules as an additional form
of noisy, partial knowledge about an underlying probability
distribution. Based on our experience in the printer trou-
bleshooting domain, we expect this to be more flexible and
effective than the more traditional form of knowledge-based
model construction.

7 Learning Procedures

We believe that the goal of SRL should be to learn statistical
models of any type of structured information, not just (for ex-
ample) relational databases or Horn knowledge bases. This
includes statistical models of procedures performed by hu-
mans, and of programs in procedural languages (e.g., Java,
Python, C/C++). We have been pursuing applications in pro-
gramming by demonstration (PBD), where the learner in-
fers a general procedure from examples of its execution by
a user (e.g., changing bibilography from one format into an-
other). We initially approached this in a non-statistical set-
ting, defining version spaces over procedures, and defining
a version space algebra to build up complex version spaces
from “atomic™ ones via operations like union and join [Lau
et al., 2003b]. We applied this in the SMARTedit system,
which learns text-editing procedures by demonstration. Our
experience with this system led us to extend the version space
algebra with probability distributions over version spaces, to
allow incorporating knowledge from the PBD application de-
signer on which (sub)procedures are more and less likely, and
to be more flexible and noise-resistant in recognizing proce-
dures. This can be crucial in arriving at a “best guess” as to
what the user’s intentions are in any given interaction. More
recently, we have begun to extend this framework to learning
programs with a full range of programming constructs [Lau
et al., 2003al.



8 Conclusion

This paper presented an overview of recent research on statis-
tical relational learning at the University of Washington. Our
work spans applications, fundamental issues, and the inter-
play between them. Applications we are working on include
Web search, Web personalization, viral marketing, assisted
cognition, planning, information integration, and program-
ming by demonstration. Fundamental issues we have begun
to make progress on include: learning in the presence of inter-
dependencies among samples; modeling stochastic dynam-
ics in relational domains; scaling up; learning across sources
with different representations; and extending SRL beyond
Horn clauses and relational databases.
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Abstract

Anonymous fraudulent behavior can generate
substantial financial burden and inconvenience.
Moreover, the recent threat of terrorist infiltra-
tion to both business and government has
yielded heightened interest in anonymous iden-
tity matching (AIM). Most applications of AIM
require sophisticated methods robust to issues
such as deliberate variation in identity attributes,
missing data, and multi-source data corpora. We
consider relational social network behavior,
eliminating the reliance on personal identifiable
data for identity matching. In particular, we
consider problems that can be characterized by
personal communication networks. We evaluate
a proposed implementation of a social network
vector-space relational model for AIM on Cite-
Seer, a research publication citation database.

1 Introduction

AIM has garnered attention by government agencies in the
wake of perceived increased domestic asymmetric threat.
However, civilians are concerned about the potential exploi-
tation of data collected by government agencies, web en-
abled click stream technologies, credit card companies, and
health care providers. The ongoing debate surrounding the
tension between security and privacy has motivated data
mining research in data privacy.

At the forefront of data mining privacy research are meth-
ods that solely rely on perturbed datasets while maintaining
predictive performance of various modeling techniques
(Agrawal and Srikant 2000; Clifton 2000; Agrawal and Ag-
garwal 2001) (Atallah, Bertino et al. 1999). More relevant
to the AIM discussion are database inference techniques
which utilize multi-source data, (Moskowitz 1999; L.
Sweeney 2002) to identify individuals who otherwise could
not be categorically linked using isolated data sources.

In general, privacy research considers three distinct cate-
gories: 1) basic storage and retrieval, i.e., who can access
sensitive data; 2) pattern discovery, i.e., the misuse of sensi-
tive data for pattern discovery; and 3) combination of group

patterns, i.e., who can make inferences about individual
identity from aggregated data sources (Piatetsky-Shapiro
1995). Despite efforts to encrypt sensitive information, this
research indicates that relationship networks may be a subtle
indicator of identity.

In this paper, we consider a straightforward method, a
social network (Wasserman and Faust 1994; Scott 2000)
vector-space model, for AIM in networks of interpersonal
relationships. Social network analysis is an appropriate
basis for relational learning because: (1) it quantifies
relationships; (2) it is well defined; (3) it can be used as a
complement to other methods; and (4) it can be used for
visualization to enable further understanding of underly-
ing phenomena.

An actor is the social entity of interest in a social net-
work. Actors are discrete individuals, or collective social
units. In our context, actors may be individuals, compa-
nies, industries or nations; we first consider one-mode
networks where the actors are considered the same type.
A relational tie establishes a linkage between a pair of
actors. Examples of relational ties include online com-
munication, business transactions, belonging to the same
professional club, or a physical/virtual connection. Each
actor pair relationship is given a weight to indicate the
strength. Each actor may have multiple relationships to
multiple actors. A vector of weights then represents each
actor.

This paper considers research in progress on AIM. We
demonstrate the usefulness of the social network vector-
space relational model on the application of author iden-
tification. The paper is organized as follows. First, we
present the social network vector-space model in section
2. In section 3 we apply the vector-space model to the
task of author identification and present preliminary re-
sults on the CiteSeer database. Finally, we conclude by
offering a discussion of results and future research direc-
tions in section 4 and 5 respectively.

2 Method

For AIM, we would like to classify new relational exam-
ples given a set of labeled relational training examples.
We consider social network graphs of relationships by



reducing the social network relational graphs to feature
vectors of entities. Each new entity in turn represents a
candidate example for identification. Weighted term vec-
tors represent all individual entities.

Definition: An entity e; can be described by an entity
vector,

e; = (Wi, Wia,...,Wj) [1]

where wj is the weight assigned to the entity ey in entity
relationship e;.

The feature vectors of entities are weighted to give em-
phasis to stronger entity pair relationships. The weight is
determined by the aggregation of all relationships be-
tween two entities.

Furthermore, one can specify to what distance in the
graph, related entities are considered. At distance one,
entities simply represent the weighted adjacency matrix
of the relationship graph. At greater distances, however,
the entity is composed of embedded entities. To consider
entities that embed distant entities, each entity is recur-
sively joined with each of its related entities.

Definition: Under addition, entity E is defined by the
weighted union of all nodes (entities), and edges
(weights) in e; and e, where o and [3 are scalars,

E=0e ®Pe [2]

The scalars are utilized to indicate relative significance to
the resultant entity. For example, one may want to decay
the impact of joined edges in the relationship vector as
the distance from the node in the graph increases.

The weight of an edge in E is therefore defined by [3].

w(E) = aw(e; ) ® Pw(e) [3]

Definition: An entity that takes into consideration rela-
tional links of distance greater than one may therefore be
defined as the recursive sum of each entity with its fea-
ture vector entities ey.

E=@&e¢, [4]

During the AIM process, new entities are compared to
labeled entity vectors. Candidate match sets of entity
vectors closest to the query considered similar are ranked
and returned. For this exposition, we measure similarity
by the cosine distance between the corresponding vector
pairs [5]. However, any vector based similarity measure
may be considered. The distance measures may be used in

standard hierarchical clustering techniques such as dendro-
grams (Duda, Hart et al. 2001).
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3 Experiment

Many refereed journals maintain that anonymity in pub-
lication submission is an ethical prerequisite of para-
mount importance. Nonetheless, we find that reference
lists alone identify authors remarkably well. This ex-
periment considers the question of whether the author of
a new paper can be identified utilizing solely the citation
graph of the paper. We apply the social network vector-
space relational model to the CiteSeer database
(Lawrence 1999), a scientific literature digital library.
We identify authors of papers published in the year 2000
by considering only their citation graph.

Prior 2000 <2000 2000 Au-

Pubs Pubs Pubs thors
10 13,174 93,831 8,615
20 9,405 68,597 3,334
30 6,797 50,294 1,659
40 4,678 35,223 855
50 3,462 26,010 510
60 2,636 19,158 315
70 1,932 13,827 191
80 1,540 10,461 128
90 1,201 8,118 91
100 852 5,777 59

Table 1: CiteSeer Data: Distribution of papers au-
thored and authors with at least n prior publications.

First, background knowledge is constructed using prior
publication knowledge. For each document published
prior to 2000 an edge is created linking each author to
each cited author. A weighted vector of cited authors
defines an author. Next, weighted adjacency vectors are
created for each document in 2000. An edge is created
between the document and each cited author. A weighted
vector of cited authors defines each document. The
weights are defined as the total sum of out going links for
each author-author, document-author pair.

For this experiment, we are interested in exact author
matches as opposed to finding similar authors. Therefore,
we limit the dataset to include only papers authored by
writers with publication history. The number of prior
publications in the background knowledge database de-
termines publication history. We present results for dif-
ferent levels of publication history [Tablel] to
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Figure 1: Author Match Success: Observed propor-
tions of author matches versus the set size of ranked
candidate matches. Each line represents results for
documents whose authors had greater than n publi-
cations prior to the year 2000, (a) documents com-
pared to entire CiteSeer database and documents
compared to data set segmented by publication his-
tory (b) without and (c) with a filter for strength >1
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Figure 2: Author Match Success. Observed propor-
tions of author matches for top ranked candidate ver-
sus prior publication record of at least one author.

understand further attributes that may influence identity
matches in large relational networks.

We present results on three experiments motivated by
subscription fraud in relational networks (Cortes, Pregi-
bon et al. 2002). We use author identification in the Cite-
Seer database as a proxy problem to subscription fraud
detection.

First, subscription fraud cases generate financial burden
to organizations when left undetected. Therefore, the
most prudent of methods generate risk scores for all sub-
scribers. Each potential subscriber is compared to the
knowledge base of all known subscription fraud offend-
ers before services are rendered. As such, we consider
matching documents in 2000 to the entire historical data-
base.

We find that authors with more than 10 prior publica-
tions can be identified with 17% accuracy (recall that this
is from a total of 8615 authors); 28% of the time the true
author is in the top-10 candidate matches. Authors with
more than 90 prior publications can be identified with
58% accuracy; 80% of the time the true author is among
the top-10 candidates [Figure 1a].

Second, subscription fraud often considers “guilt by asso-
ciation”. In this case, new subscribers are compared only to
a subset of fraudulent entities in the knowledge base popula-
tion that are related in some way. We model this problem
by considering sub samples of the knowledge base corre-
sponding to publication history.

We find that authors with more than 10 prior publica-
tions can be identified with 78% accuracy; 41% of the
time the true author is in the top-10 candidate matches.
Authors with more than 90 prior publications can be
identified with 87% accuracy; 71% of the time the true
author is among the top-10 candidates [Figure 1b]. .

Finally, a naive method to remove uninformative edges is
to limit the citation graph by considering only relationships
with relatively high strength greater than n [Figure lc].
The % Correct Matches significantly increased by refining



our search. For authors with more than 10 prior publica-
tions, we compared 13,174 documents to 93,831 documents
with 8,615 authors [Table 1] and yielded 45.6 % matches to
the top ranked candidate [Figure 2]. In practice, filters are
used to reduce the time and space complexity of identity
retrieval techniques.

In summary, we first show that our simple method works
for author matches under different conditions for both the
knowledge base and test set. In an attempt to further refine
our search and reduce noise in the knowledge base, we fol-
lowed with an experiment utilizing smaller samples of the
knowledge base segmented by publication history. This
task refinement resulted in a significant increase in author
identification from 28% to 41% in task accuracy with more
than 10 prior publications. Finally, we attempt to reduce
noise in the test set by filtering less informative nodes which
in turn yield accuracy of 45 % on authors with greater than
10 publications in the past. It is important to note that re-
sults are shown for different candidate set sizes because in
practice, human operators often have the ability to work
multiple cases.

4 Discussion

In this paper, we introduce the concept of social network
vector space model for anonymous identity matching. We
concentrate on the method and show preliminary results on
a real world citation database.

Our results indicate that considering the network struc-
ture of author’s reference list does remarkably well at identi-
fying authors, and combining the social network vector-
space model with (for example) linguistic analysis may per-
form even better (Khmelev 2000).

If we can further understand relationships between re-
search community/author network identification and fraud
detection, we may inform subscription fraud identification
techniques with our method where test labels are abundantly
available.

5 Future Research

There are many interesting challenges, to behavioral AIM.
First, personal communication networks are dynamic and
require data structures (Cortes, Pregibon et al. 2002) that
capture network evolution through time. Furthermore, the
strength of a relationship may not always be determined by
absolute frequency. A less “frequent” relationship may be a
stronger indication of identity. In general, communication
networks are large but sparse. Techniques are needed to
preserve graph structure while reducing dimensionality.
AIM techniques must consider that communication net-
works are inherently noisy, fraudulent individuals for exam-
ple may either attempt to hide their identity or steal that of
someone else. Finally, evaluation methods are needed to
assess unlabelled anonymous entities matches

The research synopsis considers research in progress.
In the future, we will consider multi-attribute entity rela-
tionships in our model. We will consider complement-

ing the AIM ranking with available identifiable actor
information. In addition, we plan to add linguistic analy-
sis attributes to our relationship vector in the future for
author identification. We want to further develop a data
structure that will incorporate the dynamic nature of
communication links.

We will compare and contrast AIM results of other vec-
tor space models such as naive Bayes, information re-
trieval TF-IDF, and support vector machines. Further-
more, we will demonstrate the efficacy of the proposed
method to other communication network domains such as
web logs, email logs, long distance calling records and
prepaid calling card records. Finally, we plan to investi-
gate appropriate evaluation methodologies where test
labels are non-existent.
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Abstract

There is a large and growing mismatch between the
size of the relational data sets available for min-
ing and the amount of data our relational learning
systems can process. In particular, most relational
learning systems can operate on data sets contain-
ing thousands to tens of thousands of objects, while
many real-world data sets grow at a rate of millions
of objects a day. In this paper we explore the chal-
lenges that prevent relational learning systems from
operating on massive data sets, and develop a learn-
ing system that overcomes some of them. Our sys-
tem uses sampling, is efficient with disk accesses,
and is able to learn from an order of magnitude
more relational data than existing algorithms. We
evaluate our system by using it to mine a collection
of massive Web crawls, each containing millions of

pages.

1 Introduction

Many researchers have found that the relations between the
objects in a data set carry as much information about the do-
main as the properties of the objects themselves. This has
lead to a great deal of interest in developing algorithms capa-
ble of explicitly learning from the relational structure in such
data sets. Unfortunately, there is a wide and growing mis-
match between the size of relational data sets available for
mining and the size of relational data sets that our state of the
art algorithms can process in a reasonable amount of time. In
particular, most systems for learning complex models from
relational data have been evaluated on data sets containing
thousands to tens of thousands of objects, while many orga-
nizations today have data sets that grow at a rate of millions
of objects a day. Thus we are not able to take full advantage
of the available data.

There are several main challenges that must be met to al-
low our systems to run on modern data sets. Algorithmic
complexity is one. A rule of thumb is that any learning al-
gorithm with a complexity worse than O(nlogn) (where n
is the number of training samples) is unlikely to run on very
large data sets in reasonable time. Unfortunately, the global
nature of relational data (where each object is potentially re-
lated to every other object) often means the complexity of re-

lational learning algorithms is considerably worse than this.
Additionally, in some situations for example when learning
from high speed, open ended data streams even O(n) algo-
rithms may not be sufficiently scalable. To address this, the
most scalable propositional learning algorithms (for example
BOAT [Gehrke et al., 1999] and VFDT [Domingos and Hul-
ten, 2000]) use sampling to decouple their runtimes from the
size of training data. The scalability of these algorithms de-
pends not on the amount of data available, but rather on the
complexity of the concept being modeled. Unfortunately, it
is difficult to sample relational data (see Jensen [1998] for
a detailed discussion) and these propositional sampling tech-
niques will need to be modified to work with relational data.
Another scaling challenge is that many learning algorithms
make essentially random access to training data. This is rea-
sonable when data fits in RAM, but is prohibitive when it
must be repeatedly swapped from disk, as is the case with
large data sets. To address this, researchers have developed
algorithms that carefully order their accesses to data on disk
[Shafer ef al., 1996], that learn from summary structures in-
stead of from data directly [Moore and Lee, 19971, or that
work with a single scan over data. Unfortunately, it is not
directly clear how these can be applied in relational settings.
Another class of scaling challenges comes from the nature of
the processes that generate large data sets. These processes
exist over long periods of time and continuously generate
data, and the distribution of this data often changes drasti-
cally as time goes by.

In previous work [Hulten and Domingos, 2002] we devel-
oped a framework capable of semi-automatically scaling up a
wide class of propositional learning algorithms to address all
of these challenges simultaneously. In the remainder of this
paper we begin to extend our propositional scaling framework
to the challenge of learning from massive relational data sets.
In particular, we describe a system, called VFREL, which can
learn from relational data sets containing millions of objects
and relations. VFREL works by using sampling to help it
very quickly identify the relations that are important to the
learning task. It is then able to focus its attention on these
important relations, while saving time (and data accesses) by
ignoring ones that are not important. We evaluate our sys-
tem by using it to build models for predicting the evolution of
the Web, and mine a data set containing over a million Web
pages, with millions of links among them.



In the next section we describe the form of the relational
data our system works with. Following that we briefly review
some of the methods currently used for relational learning and
discuss the challenges to scaling them for very large data sets.
The following section describes VFREL in detail. We then
discuss our application and the experiments we conducted,
and conclude.

2 Relational Data

We will now describe the form of the relational data that we
mine. This formulation is similar to those given by Friedman
et al. [1999] and by Jensen and Neville [2002¢]. Data arrives
as a set of object sources, each of which contains a set of ob-
jects. Object sources are typed, and thus each is restricted
to contain objects conforming to a single class. It may be
helpful to think of an object source as a table in a relational
database, where each row in the table corresponds to an ob-
ject. In the following discussion we will use X to refer to an
object and C'(X) to refer to its class. Each class has a set of
intrinsic attributes, and a set of relations. From these, a set
of relational attributes is derived. We will describe each of
these in turn.

Intrinsic attributes are properties of the objects in the do-
main. For example a Product object’s attributes might include
its price, description, weight, stock status, etc. Each attribute
is either numeric or categorical. We denote the set of intrinsic
attributes for C(X) as A(C(X)) and X’s intrinsic attribute
named ¢ as X.a.

Objects can be related to other objects. These relations are
typed, and each relation has a source class and a destination
class. Following a relation from an instance of the source
class yields a (possibly empty) set of instances of the destina-
tion class. One critical feature of a relation is the cardinality
of the set of objects that is reached by following it. If a rela-
tion always returns a single object it is called a one-relation;
if the number of objects returned varies from object to object
it is called a many-relation. Our notation for a relation r on
class C'(X) is C(X) — r. We denote the set of relations for
C(X)as REL(C(X)). We will use X = r to denote the set
of objects reached by following relation r from object X, and
we will use C(X) = r to denote the target class of the rela-
tion. The series of relations that are followed to get from one
object to another is called a relational path. Also note that ev-
ery relation has an inverse relation. For example, the inverse
to the Product — producedBy relation is the Manufacturer —
produces relation.

An object’s relational attributes are logical attributes that
contain information about the objects it is related to. For ex-
ample, one of a Product object’s relational attributes is the
total number of products produced by its manufacturer. Re-
lational attributes are defined recursively, and the relational
attributes of an object consist of the intrinsic attributes and
relational attributes of the objects it is related to, and so on. It
is common to limit the depth of recursion in some manner.

Each object must have a fixed number of relational at-
tributes for any given depth to facilitate the use of exist-
ing tools on relational data. Unfortunately each object with
many-relations (or that is related to an object with many-

relations) has a variable number of related objects for any
given depth. In order to reconcile this difference, we aggre-
gate the values of a set of instances into a fixed number of
attributes using a set of aggregation functions. The attributes
for any particular instance are a subset of the attributes that
are possible at a class level (if a many-relation on an instance
is empty, some of the class level attributes have no value for
the instance). Thus, more formally, let R(C, d) be the set of
relational attributes for C' up to a depth of d. Let the set of all
attributes (intrinsic and relational) for the class to depth d be
ATT(C,d) = A(C) U R(C,d).

R(C,d)= | U

r€EREL(C)a€ATT(C=7r,d—1)

AGG(a) (1)

When 7 is a one-relation AGG is the identity function. When
r is a many-relation AGG applies a set of aggregation func-
tions to a and results in one attribute per aggregation func-
tion. The aggregations used depend on the type of a; in
our experiments we use min, max, mean, and standard de-
viation if @ is numeric and mode if a is categorical. We also
include one additional relational attribute per many-relation,
which is the count of the number of objects that satisfy the
relation. Each relational attribute uses an intrinsic attribute
from a single class, and passes it through the set of aggrega-
tion functions for each many-relation between C(X ) and the
class with the intrinsic attribute. For example, the relational
attributes of Manufacturer might include the average price of
products it produces, the maximum price of a product it pro-
duces, the count of the number of products it produces, the
most common color of a product it produces, the maximum
of the average sale price of products it produces, etc.

The definition of R above is at the class level, but we are
interested in the values for these attributes at an instance level.
This is simply a matter of starting from the instance, follow-
ing relations and calculating aggregations as specified in the
preceding definition. We describe this procedure in more de-
tail (including pseudo-code) in Section 4.1.

3 Relational Learning

One of the possible goals for relational learning is to build
models to predict the value of some farget attribute (or at-
tributes) of a target class (or classes) from the other attributes
of the objects of the target class and the objects they are re-
lated to. (Note that the target attribute can be intrinsic or re-
lational.) A training data set—with the values of the target
attributes filled in—is presented to the learner, and the learner
must produce a model that accurately predicts the values of
the target attributes on some other data set, where they are
unknown. This is the type of relational learning we will fo-
cus on in the remainder of this paper. Other possible goals
for relational learning systems include building probabilistic
models over link existence and object existence (see Getoor
et al. [2001]).

Perhaps the simplest method for performing relational
learning is to flatten the data into a propositional data set,
and pass it to an existing propositional learning system. Flat-
tening proceeds as follows: a target depth d is selected, and a



propositional training example is constructed for each object
in the target source by calculating the values of the attributes
in the set ATT(C(X),d). The advantage of this method is
its simplicity, but it has several disadvantages. One is that it is
very slow: calculating the value for each attribute potentially
requires loading a large portion of data set from disk, and,
even for modest values of d, there can easily be thousands
or tens of thousands of attributes for each object. This prob-
lem grows worse than linearly with the size of the relational
data set, because larger data sets have more objects that need
their attributes calculated, and each of these objects is related
to more objects in the larger data set; the exact cost depends
on the density of the relational structure in the data. Another
disadvantage of this method is that it produces propositional
learning problems with very large attribute spaces. Large at-
tribute spaces lead many learning algorithms to overfit the
training data. Further, this often means that the size of the
flattened data set is much larger than the relational one, which
leads to additional scaling challenges.

One method used to address these problems is to avoid flat-
tening the entire database, and instead perform a search over
the space of possible relational attributes. This is the method
used by PRMs [Friedman et al., 1999]. PRMs work by first
selecting a small subset of the possible attributes using some
form of feature selection. Sufficient statistics are gathered for
the selected attributes and passed to a propositional learner
(PRMs use a Bayesian Network learning algorithm, modified
to learn coherent joint distributions in the presence relational
data). When the learner produces a model, a new set of at-
tributes is selected by performing another round of feature se-
lection, taking into account the information contained in the
partially learned model. The system gathers any new suffi-
cient statistics it needs, and the propositional learner is called
to refine its existing model with the new set of attributes.
These steps are repeated until resources are exhausted or until
the quality of the resulting model asymptotes.

These approaches improve on flattening, but they still do
not scale to very large data sets. One reason is that they must
flatten each attribute they are considering for every object in
the target source before they can do any feature selection.
This is wasteful because the feature selection task is often rel-
atively easy, and decisions could be made much sooner with
high confidence. Additionally, the greedy search procedures
they use may miss interesting features that could be easily
found with more systematic search. In the next section we
will present our system, which addresses these problems.

4 Scaling Up Relational Learning

Our system, which we call VFREL, has three main compo-
nents. The first is a query planner designed to provide ef-
ficient access to training data on disk as needed by the rest
of our system. The second is a filter-based feature selection
algorithm that is accelerated with sampling. The third is a
propositional learning algorithm. At a high level, VFREL
works by using sampling to select a promising subset of the
possible relational attributes, saving time by flattening those
while ignoring the others, and then calling a propositional
learner on the flattened values. In particular, it begins by

scanning a sample of the target objects and flattening all at-
tributes up to a large depth. This is very slow, but VFREL
only does it for a small sample of the target objects. It then
pauses and uses statistical tests to identify attributes that are
poor enough that, with high confidence, they would not be
selected by the feature selection algorithm if it could see their
values for all of the target objects. As soon as it identifies
any such clear losers, VFREL saves time by eliminating them
from further consideration. VFREL repeats this procedure,
generating fewer and fewer attribute values (requiring fewer
disk accesses and less processor time) on more and more of
the data set. After computing attribute values for all of the
target objects, VFREL performs a final round of feature se-
lection, constructs a propositional data set from the final set
of selected attributes, and passes it to a propositional learn-
ing algorithm. We will now describe the components of our
system in more detail, starting with our data access module.

4.1 Efficient Data Access: Traversal Tree

VFREL needs to calculate the values of some relational at-
tributes for each target object. In order to do this, every re-
lated object that is relevant to one of these attributes needs to
be loaded from disk and processed. VFREL can determine
which relations it needs to follow to gather this set of objects
from the information it has at class level. It builds a tree of
these required relational paths. It then traverses the tree, fol-
lowing each relation at most once, loading data into RAM
only as it is needed, and computing the required attribute val-
ues. Traversal Trees work with binary relations. If the do-
main contains N-ary relations, they are encoded into binary
relations in the usual way.

Nodes in the traversal tree correspond to classes, and edges
correspond to relations. During its run, VFREL maintains a
tree that contains exactly the relations that must be followed
to calculate the values of the relational attributes of the target
object that have not been determined to be clear losers. And
so, at each node in the tree, VFREL maintains a list of the at-
tributes whose values need to be calculated from the instances
of that class that are encountered at that point in a traver-
sal. In VFREL’s first iteration the traversal tree is simply an
unrolled version of the class graph, and can be constructed
in time proportional to the size of ATT(TargetClass,d)
as follows. The root node represents the class of the tar-
get object. A child is added to this node for each class in
REL(TargetClass), and so on recursively until the tree is
depth d. Let T be a node, T, be the class represented by the
node, e be an edge, and e, be the relation represented by the
edge. Next, we build a list on each node (let T, be the list
on node T') that represents the attribute values that must be
calculated at that point in the traversal as follows. We com-
pute the set ATT (T'argetClass,d). Each of these attributes
is based on one of the attributes of one class (see Equation 1)
and is added to the associated node’s list. Following cycles in
the relational structure can lead to some obviously redundant
attributes. Many such attributes are removed at this point by
removing length one cycles that involve a one-relation and its
inverse.

When VFREL needs to calculate the value of the relational
attributes for a particular target object it uses the traversal tree



Table 1: Pseudo-code for calculating attribute values with a
traversal tree.

Procedure Traverse(T, O)
T is a traversal tree
O is an instance of class T,
Let R = {} be the results of the traversal
Record in R the values for attributes in T}, from O
For e € Children(T)
Let T¢" be the node reached via e
Let Objs be X = e,
If Objs is empty, every attribute in 7" and all of
its children is missing, note this in R
If e, is a one relation, let O" be the object in Objs
R = R U Traverse(T°", O")
Else e, is a many relation, let T'mp = {}
For O°" € Objs
Tmp = Tmp U Traverse(T", O°h)
Perform needed aggregations, note values in R
Return R

to determine which objects to load from disk and when. Ta-
ble 1 contains pseudo-code for the procedure.

As the run progresses, and attributes are eliminated by fea-
ture selection, VFREL will remove the eliminated attributes
from the attribute lists on the traversal tree’s nodes. Notice
that a leaf with an empty attribute list corresponds to an ob-
ject where every attribute has been determined to be a loser.
Such objects do not need to be loaded from disk and so the
leaf is pruned from the tree (internal nodes may have empty
lists as they can still contribute through the objects that they
are related to).

This traversal strategy allows VFREL to follow each edge
in the traversal tree only once (instead of once per attribute,
as might be done if following an edge required just a pointer
dereference instead of a disk access).! It also allows VFREL
to be very efficient with its RAM usage. In particular, at any
point in the traversal it requires that one object be in RAM
per edge in the path from the root to the current traversal
tree node. It also requires RAM to store the partially com-
puted attribute values. (The maximum space required for this
is on the order of the number of relational attributes of the
target class, since relational attribute values are computed in
an online manner as objects are loaded from disk.) For each
many-relation VFREL also maintains a list of hash keys for
the objects it will need to load to finish following the relation.

4.2 Feature Selection with Sampling

Our system uses filter-based feature selection [Kononenko,
1994], [Kohavi and John, 1997] to explore the space of re-

"Notice that the description here may require an object be loaded
from disk more than once per traversal if it is reached via several dif-
ferent relational paths. The full VFREL system uses several forms
of caching to reduce this redundancy, but they are not reported on or
evaluated in this paper.

lational attributes. The goal is to identify the relational at-
tributes that are most relevant to the learning task and acceler-
ate our system by only calculating the values of these relevant
attributes, while ignoring the rest. VFREL uses sampling to
accelerate this process, and is able to eliminate attributes (and
thus paths from the traversal tree) with less than one scan over
the data set. This allows it to be more efficient than standard
PRM learning.

Filter-based feature selection works as follows. The utility
of each feature is estimated on training data with a scoring
function (commonly information gain). The best N features
are selected, and the rest are discarded. Traditionally, calcu-
lating the information gain of an attribute requires knowing
the value of the attribute for every training example. In our
context, this means that the entire data set needs to be flat-
tened before feature selection can take place, which results
in no speed gain. If we are willing to accept a small chance
of making an error, we can use sampling to do much better.
VFREL uses techniques developed by Hulten and Domingos
[2002] and others to do just that. Standard statistical results
can be used to obtain a high confidence bound on the differ-
ence between the gain observed for a feature on a sample of
data and the true gain of the feature. For example, the Ho-
effding bound [Hoeffding, 1963] says the following. Let x be
arandom variable with range R. Let £ be the mean of n i.i.d.
(independent and identically distributed) observations of x.
Then, with probability 1 — §, the Hoeffding bound guarantees
that z > & — e where

= [ R%In(1/6) @)
2n

We apply this bound to our setting as follows. Let
G(A;,n) be the information gain observed for attribute A
on a sample of n examples and similarly for G(A42,n). Re-
call that the range of the information gain function is the log
base two of the number of values of the target attribute. Let
A = G(A1,n) — G(As3,2). We bound A with the Hoeffding
bound and thus, if A — e > 0, we know with confidence 1 — §
that A; truly has a higher information gain than A5, and thus
that the feature selection algorithm would select A; over As
if the gains were computed from the entire training set, in-
stead of from the sample. Thus, when trying to find the top N
features in the training set, and after the values of relational
attributes have been generated for the first n target objects, we
can state the following. Let Ay be the attribute with the N
best gain on the sample. Then, with confidence 1 — §*, any
attribute with a gain less than G(Ax, n) — € is not one of the
best N attributes. §* is different from the ¢ in the Hoeffding
bound because many comparisons are involved in the feature
selection, and thus the bound needs to be applied many times
to assure a global level of confidence. We use a Bonferroni
correction and set ¢ by dividing 6*, the desired global confi-
dence, by the number of bounds that need to hold during the
algorithm’s entire run.

Sampling from relational data may violate the i.i.d. re-
quirement of the Hoeffding bound. Taking this into account,
using non-i.i.d. extensions of Hoeffding-style bounds, is an
important direction for future research (see also Jensen and
Neville [2002a] [2002b]).



Table 2: Pseudo-code for the VFREL algorithm.

Let F = ATT(TargetClass,d)
Let T' = Initial Traversal tree for F’
Let D = Initial step size
Let C' = Database cursor for the target object source
While C' is not finished
Calculate values for F' on next D objects from C'
Compute information gain for attributes in F’
Order F' by information gain
Let Gy be gain of the N best attribute
Remove from F every attribute with gain < Gy — €
Update T' by dropping the removed attributes
Call the StepSize function to find next D

Return the result of the propositional learner on the
best N attributes

4.3 The VFREL Algorithm

We will now describe VFREL, our algorithm for mining mas-
sive relational data sets, in detail. The inputs are a relational
data set, a target class and target attribute of that class, a depth
cutoff d, a global confidence target 6*, a target number of fea-
tures N, a function that specifies how many samples to take
before performing a round of feature selection (StepSize be-
low), and a propositional learning algorithm. Table 2 contains
pseudo-code for VFREL.

VFREL iterates over the target objects and starts gener-
ating values for all of the attributes that are at most depth
d away. It periodically pauses to perform a round of fea-
ture selection, informed by the data that has been generated
up to that point. The information gain for each of the at-
tributes being considered is computed, and they are sorted
by their information gain. The N'* best attribute is deter-
mined, and its information gain is noted. From the Hoeffd-
ing bound, we know with high probability that any attribute
with a score less than Gy — € will not be selected as one
of the final N attributes, and does not need to be considered
further. In order to assure a global confidence of 6* that the
correct attributes are selected, each local € is determined with
6 = 6*/(JATT(TargetClass,d)| *i), where i is an estimate
of the total number of iterations of VFREL’s main loop that
will be performed?. When VFREL finishes with all the target
objects, it performs one final round of feature selection, keep-
ing only the top N features. Finally, a propositional data set is
created from the attribute values that were calculated during
the feature selection and the propositional learning algorithm
is called to produce a model.

Notice that this algorithm assumes that objects are re-
trieved from the target object source in random order, which
is usually possible. In our application, for example, we iter-

?If the estimate is exceeded we report the global confidence that
was actually achieved, or the algorithm can be run again with a better
estimate if needed. Our experiments required just 13 iterations of the
main loop.

ate over the keys of a DBM style hash table, which returns
keys in essentially random order. Other settings may require
a scan over the data set to randomize it.

Early iterations of VFREL take relatively long, as they gen-
erate values for many attributes, and thus require many ob-
jects be loaded from disk. As the algorithm proceeds, how-
ever, it is able to eliminate attributes that are clearly not go-
ing to be selected, stop following the relations associated
with them, focus its attention on the promising attributes,
and thus generate attribute values for later object much more
quickly. VFREL will be most effective when there are many
unpromising attributes that can be eliminated quickly, and
when the promising attributes are all found along the same
set of relational paths. In the next section we describe an
application we developed to evaluate the performance of our
algorithm, and to determine if it can successfully learn from
massive relational data sets.

S Predicting the Evolution of the Web

The World Wide Web has received much study in recent
years. Researchers have studied ways to classify Web pages
into categories (e.g., Slattery and Craven [2001]), search
for high quality pages (e.g., Kleinberg [1998], Page et al.
[1998]), model the way Web pages acquire links over time
(e.g., Barabasi and Albert [2000], etc.) One commonality
among much of this work is that analyzing the content of Web
pages in isolation seldom produces the best results—the links
between pages often contain critical information that must be
taken into account. Unfortunately, as we have seen, state of
the art systems for building complex relational models are in
incapable of scaling to data sets the size of the Web.

In this section we describe an application of VFREL to
mining a massive Web data set. The goal is to build a model
that accurately predicts if a Web page’s popularity will rise or
fall in the future. Such models would be useful, for example,
to help improve search engine results for new pages, and to
help designers create pages that people will reference. We es-
timate the popularity change in a Web page by counting the
number of pages that point to it in one crawl, and trying to
predict if the page will be linked to by five or more additional
pages, five or more fewer pages, or within five of the same
number of pages in a future crawl. We take into account 47
intrinsic attributes of nearly two million Web pages. We also
make use of relational information that includes seven object
sources and millions of relations.

Our application begins with a crawl of approximately 1.7
million Web pages from .edu domains that was gathered in
early June of 2001. The crawl contains pages from 31k
unique Web hosts and uses 23 GB of disk space. It was gath-
ered starting from a small set of seed Web pages (Google’s
top 20 results for the query ‘university’) and performing a
breadth-first crawl until no more files would fit on the disk?.
The crawl ran on a cluster of five 1 Ghz Linux machines, and
took approximately 3 days to finish. We gathered a second
crawl, using the same procedure and set of seed pages, in

3The version of Linux we used for these studies limited the num-
ber of files in a partition to 1.7 million. We plan on removing this
limitation in a future study.



November of 2002. There were 563k pages that appeared in
both crawls.

We put each of the pages that appeared in both crawls into
a database (an object database which we implemented on top
of GDBM). We used seven object sources to represent the
domain, and their properties are as follows:

WebPage There are 563,083 Web page objects in our data
set. Each has 47 attributes, including binary attributes
to indicate the presence of the top 10 words according
to information gain on the training set; the number of
images; characterizations of alt text usage, script usage,
color usage, etc.* and the PageRank [Page et al., 1998]
of the page within the subset of the Web covered by the
first crawl.

WebPageLink There are 2,154,420 Web page link objects,
one for each link between the pages in our data set. Each
of these objects has a one-relation for its source and a
one-relation for its destination.

Domain There are 21,069 domain objects in our data set.
Each has a single categorical attribute, the Carnegie
Classification (a publicly available classification of uni-
versities by their types) of the school it belongs to.

WebPageDomainLink There are 563,083 links from Web
pages to their domain, one for each Web page. Each link
has one numeric attribute, the depth of the page in the
domain. Each also has a one-relation for the page and a
one-relation for the domain.

Site We identified 412 sites in our crawl. A site is distinct
from a domain by being managed by a small group of
people and being about a well defined topic. We used
a set of handcrafted regular expressions that examined
URLSs and identified sites including home pages, course
pages, group pages, and project pages. The very low
number of sites identified by our heuristics is problem-
atic, and in future work we hope to improve this. Each
site has an attribute that specifies its type.

WebPageSiteLink There were 1411 links between Web
pages and sites. Each contains a one-relation to the page
and a one-relation to the site.

SiteDomainLink There were 412 links from sites to their
domains. Each has a single attribute, the depth of the
site in the domain. Each also has a one-relation for the
site and a one-relation for the domain.

Note that conceptually this domain could be modeled with-
out the Link objects. We modeled it this way for several rea-
sons: it is the best way to encode the many-many relation
between WebPage objects in our database; it is conceptually
simpler to have all links modeled the same ways; it is cleaner
and more extensible as we add additional features to the links
(which we plan to do in future work); and it does not hurt
efficiency compared to the other method.

We built index structures so that any relation could be fol-
lowed by accessing the index on disk, and then loading the

“Many of these attributes were gathered with the WebSAT
toolkit: http://zing.ncsl.nist.gov/WebTools/

related objects from the GDBM on-disk hash table that con-
tains them. The resulting database and associated index struc-
tures took on order of a day to construct on a 1Ghz PIII, and
occupy approximately 900MB of disk space. Reading all the
objects from disk in random order takes about 450 seconds.
Notice that many of the attributes in our domain are numeric.
We turn these attributes into categorical ones as needed by
dividing the attribute into ten approximately equal-frequency
regions. Each WebPage object has a target attribute, whose
value is ‘Gain5’ if the number of links to the page in the new
crawl is at least 5 greater than in the original crawl, ‘Lose5’
if the number of links to the page in the new crawl is at least
5 less than in the original crawl, and ‘Same’ otherwise. We
evaluated the learning algorithms in this domain by removing
the target attribute from a randomly selected 30% of the Web-
Page objects, using the learning algorithms to build models
on the data set, and using the models to fill in these missing
labels.

For these experiments we set VFREL’s parameters as fol-
lows: maximum depth, d = 5; global confidence, §* = 5%;
N, number of features to select = 100; and StepSize began
at 1,000 and was doubled in every iteration where feature
selection did not shrink the size of the traversal tree. We
used the C4.5 decision tree learner [Quinlan, 1993] as the
propositional learner. We selected this learner over a scal-
able propositional learner for two reasons: the N-attribute
flattened training examples for the 563k Web page objects
fit in RAM, and we wanted to make the contribution of our
relational feature selection algorithm easier to evaluate. In
future work we plan on combining VFREL with the scal-
able VFDT decision tree induction algorithm [Domingos and
Hulten, 2000]. We ran our system in parallel on a cluster of
five 1Ghz Pentium III workstations running Linux with RAM
sizes ranging from 256MB to 512MB.

We compared our system to simply flattening the database
and passing the flattened data to C4.5. With our comput-
ing resources we were able to flatten depths up to 2, and the
flattened data sets are FlatO (no relational attributes), Flatl,
and Flat2 below. We also compared to one of the leading
models of Web evolution, the preferential attachment model
[Barabdsi er al., 2000]. The preferential attachment model
proposes that links are constantly being added to the Web,
and that the probability that any particular page is the target
of the next link is proportional to the number of links that it
already has. We could not estimate the parameters needed to
apply this model directly in our setting. Instead, we used the
insight it is based on and built a decision tree on a single re-
lational attribute: the number of pages that point to the target
page (non-discretized).

We ran VFREL and Flat0-2 with all of their attributes (-
full below) and also after performing additional feature se-
lection to select the best 20 attributes in each setting. Table 3
contains the results of our experiments. Using 20 attributes
yielded the best results for every system. VFREL with its
20 best attributes achieved the highest accuracy of any of the
algorithms we considered. Note that while the differences in
error rate are small on a percentage basis, they were measured
on 169k test objects and represent real differences in perfor-
mance. Also notice that increasing the depth of attributes



Table 3: Results of the comparison between VFREL, flatten-
ing depth O - 2, the preferential attachment model, and pre-
dicting the most common class, MCC, which was Same. We
show VFREL and FlatO - 2 with their full feature set and after
doing additional feature selection.

Algorithm Test Set Error | # Nodes | # Attribs
MCC 10.2% 0 0
PrefAtt 8.2% 5 1
FlatO 10.9% 18,372 20
Flatl 8.5% 11,663 20
Flat2 8.2% 9,741 20
VFREL 8.1% 7,465 20
FlatO-full 11.2% 10,197 47
Flat1-full 8.8% 15,117 50
Flat2-full 8.3% 10,308 330
VFREL-full 8.6% 14,289 100

considered results in smaller, more accurate models in our
experiments. This suggests that these deeper attributes actu-
ally do contain valuable information for our task, and that it
may be beneficial to explore further than depth 5 — we plan
on doing this in future work. The runtimes for generating the
flattened data sets were (in CPU + system hours): Flat0, .27;
Flatl, .30; Flat2, 12.9. We estimate from generating the first
10k examples that Flat4 would have taken 54 days, and we
estimate from generating the first 1,000 examples that Flat5
would have taken 261 days. Our system was able to gener-
ate values for the best 100 features up to depth 5 in 20 days
of CPU time (4 days of wall time because it ran in parallel).
VFREL is thus an order of magnitude faster than directly flat-
tening the data, and produces the most accurate model of any
of the systems we evaluated.

At the beginning of its run, VFREL was forced to fol-
low 56 relational paths from each Web page to gather
the objects needed to calculate the 3,536 attributes in
ATT(WebPage,5) (after the obviously redundant ones
were removed). By the end of the run it was following just
14 paths for each Web page. Every selected relational path
begins by following the ‘linked from’ relation from the target
object (that is, all selected relational attributes are properties
of pages that point to the target page). After that, the ‘links
to’, ‘linked from’, and ‘domain’ relations were used. None
of the Site related attributes or relations were used to calcu-
late the 100 best attribute values. We believe this will change
when we improve our site identification heuristics.

The top 20 attributes included attributes formed using ev-
ery aggregation we allowed except for mode. Eleven of them
were aggregations of the PageRank of pages that pointed to
the target, or were linked (in either direction) to pages that
pointed to the target. Other selected features included aggre-
gations of counts of Web pages, of depths of pages in their
domain, of the number of words in link anchors, and of the
size of related pages in bytes. The best attribute was the pref-
erential attachment one, the count of the number of pages that
point to the target. By examining the decision tree produced
by C4.5 we determined that the information in the PageRank
attributes was mostly captured by the preferential attachment

attribute. We found the attributes that contributed to our sys-
tem’s improvement over the preferential attachment model
were properties of other pages pointed to by the pages that
pointed to the target, like the variance of the domain depths
of the other pages pointed to by pages pointing to the target,
and the popularity (as measured by the number of inlinks)
of the other pages they point to. These features are a depth
of 5 from the target class, and it is unlikely that they would
have been found by other relational learning systems. We
believe that properties of the pages pointing to the target are
important for this prediction task because people find the tar-
get page (a prerequisite to linking to the page) through these
links.

Generating attribute values for the median hundred Web
pages out of the first thousand (before any feature selection)
took 3,488 seconds and required that nearly 5 million object
be loaded from disk. In the last iteration of VFREL’s main
loop, when it was exploring just 14 relational paths, the me-
dian 100 objects took just 153 seconds and 420k object loads
— an improvement of an order of magnitude by either metric.
There was a great deal of variance in the time it took to gener-
ate attributes for 100 objects. In fact, some single Web pages,
even on the final iteration with only 14 relational paths, re-
quired thousands of seconds and millions of object loads. We
examined some of these Web pages and found them to be ex-
tremely highly connected (tens of thousands of in links), on
very large domains (with many tens of thousands of pages),
or both. In future work we plan on exploring the use of on-
line aggregations [Hellerstein et al., 1997] to reduce the time
needed to generate attribute values for these highly connected
objects.

6 Related Work

Learning from relational data has been extensively studied by
the inductive logic programming (ILP) community [Lavrac
and Dzeroski, 1994]. In general, ILP learns models from a
richer class than our work (for example, learning recursive
concepts), but is also generally believed to be very inefficient
for large databases. Blockeel er al. [1999] developed a scal-
able ILP system named TILDE that effectively flattens rela-
tional data into what they call interpretations and then uses a
version of FOIL [Quinlan, 1990], modified to make efficient
access to data from disk, on these interpretations. TILDE was
evaluated on a synthetic data set with 100,000 training exam-
ples. VFREL scales to much larger data sets by using sam-
pling to focus on relevant attributes and relations. Slattery
and Craven [2001] extensively studied the use of relational
learning for hyper-text documents. They developed a hybrid
algorithm that combines Naive Bayes, FOIL, and many in-
sights into the nature of the Web, and applied it to several
Web mining tasks. Their focus, however, was not on scaling,
and the largest data set they considered contained on the order
of thousands of Web pages, while ours contains millions.

7 Future Work

Directions for future work on VFREL include: more closely
integrating it with a scalable propositional learning algorithm



(for example VFDT); modifying learners to exploit informa-
tion from the data generation process (for example, when a re-
lation is missing, many related attributes simultaneously have
missing values); extending it to the case where the contents
of object sources change over time; modifying it to iterate be-
tween feature selection and learning phases; and applying it
to other domains.

Future directions for our Web application include: per-
forming a similar study with a larger Web crawl; performing
a similar study on a more volatile portion of the Web (perhaps
.com); adding more intrinsic attributes to the objects (words
on links, more text, etc.); building models to predict which
links will appear over time; and building models from the
stream of pages that a crawler finds as it finds them.

8 Summary

In this paper we explored some of the issues that prevent rela-
tional learning algorithms from scaling to very large data sets.
We developed a system, VFREL, which uses efficient data ac-
cess and sampling to efficiently explore the space of relational
attributes. We used VFREL to mine data sets containing mil-
lions of objects and links, and found it to build models that
were more accurate than those produced by any of the sys-
tems we evaluated, discover novel relational attributes, and
work an order of magnitude faster than the alternative ap-
proaches.
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1 Position Statement

There is a diversity oprobabilistic-logical modelgfPLM).
No clear understanding of the relative advantages and limi
tations of different formalisms and their language concept
has yet emerged. To overcome this, we proposeawn-

3 Downgrading

Downgrading consists of two steps.

L(Step 1) Choose a generally applicable (learning) PLM.

The PLM should cover the basic language concepts proposed

grade highly expressive PLMs. This method has several adin the different scientific subareas:
vantages: one can profit from existing research on PLMs and o Relations among random variables or states to model

inherit unique semantics, and inference and learning algo-
rithms. Moreover, there is a clear relationship between the
new PLM and its more expressive counterpart. No single ex-
isting approach is devalued.

2 Motivation

In recent years, there has been an increasing interest in
probabilistic-logical models (PLMs). PLMs integrate prob-
ability theory with some first order logic. Traditionally, a
probabilistic formalism like Bayesian networks or hidden
Markov models is selected angpgradedby incorporating
some logic such as entity-relationship (ER) models or Pro-
log. Real-world data applications have shown the potential of
PLMs e.g. in query optimizatiofGetooret al., 2004, com-
putational biology[Segalet al, 2001; Kerstinget al., 2003
and web minindAndersoret al., 2004.

Despite these successes, the field of (learning) PLMs is
quite complex and confusing. PLMbave been developed
in several related, but different, subareas of artificial intelli-
gence (reasoning under uncertainty, inductive logic program-
ming, machine learning, and knowledge discovery and data
mining)” as stated by Lise Getoor and David Jensen in SRL-
2003’s CFP. Each subarea focuses on its own language con-
cepts. Consider Table 1 which lists a subset of proposed for-
malisms'. The language concepts vary from acyclic to cyclic
models, from logically structured dependencies among ran-

fo

uncertainty. This subsumes interesting concepts such as
referential and existential uncertainty.

Functors allow to consistently encode temporal cor-
relations (dynamic Bayesian networks), complex long
distance correlations (stochastic grammansiyned by
structureentities as they are common in semi-structured
data (e.g. XML), and general data structures (lists, trees,
etc). Functors incorporate flexible memory capabilities.

e Finite, discrete andcontinuous random variablesto-

gether provide compact models which are applicable in
a broad field of applications such as classification, clus-
tering, and regression.

Often, e.g. in computational biology, one is interested
not only to simulate but to gain insight into, and under-
stand the underlying processes. Therefore, PLMs should
beinterpretable.

Learning the PLM should facilitate to define and to spec-
ify both deterministic and probabilistibackground
knowledge This not only makes it possible to specify
the huge amount of expert knowledge often available but
also to break complex questions into subtasks still taking
care of dependencies among the subtasks.

Itis likely that the very general PLM is prohibitively powerful
r a problem at hand. Therefore,

dom variables to states, from finite to continuous random(Step 2) downgrade it to strike the right balance between ex-

variables, and from functor-free languages to Prolog. They
each have their respective merits. However, tipgrading
mentality together with concentrating on particular languag
concepts makes a general understanding of PLMs and leal
ing PLMs difficult — if not impossible.

*This is a position statement for the 1JC2003 Workshop on
Learning Statistical Models from Relational Data

pressivity and learnability.

Compared to upgrading, downgrading has the following
readvantages. First, the downgraded PLM inherits unique
|gémantics, and inference and learning algorithms. Second,
downgrading does not focus on a particular PLM. Instead it
systematically investigates the impact of language concepts.
A general understanding of PLMs and learning PLMs is

Avi Pfeffers's interesting PhD thesis provides some more referlikely to emerge.

ences[Pfeffer, 2000.



PLM Probabilistic Formalism  Logic
Probabilistic Horn Abduction (PHA)Poole, 1998 Bayesian Networks Prolog
PRISM[Sato, 1995 Stochastic Grammars Prolog
Stochastic Logic Programs (SLAsJuggleton, 1996; Cussens, 2400 Stochastic Grammars Prolog
Probabilistic Logic Programs (PLPEYgo and Haddawy, 1997 Bayesian Networks Prolog
Bayesian Logic Programs (BLPEersting and De Raedt, 20p1 Bayesian Netwoks Prolog
Relational Baysian networks (RBNk)aeger, 1997 Bayesian Networks Relational
Probabilistic Relational Models (PRMHE¥riedmaret al,, 1999 Bayesian Networks ER Models
Relational Markov Models (RMMsg)Andersoret al., 2004 Markov Models Relational
Logical Hidden Markov Models (LOHMMs)Kerstinget al, 2007 Hidden Markov Models Iterative Clauses

Table 1: A collection of probabilistic-logical models together with their underlying probabilistic and logical formalism.

Initial attempts of downgrading have been done. Re{Getooret al, 2001 L. Getoor, B. Taskar, and D. Koller. Selec-

stricting SLPs to iterative clauses leads in principle to
LOHMMS [Kersting et al, 2003. [Sato and Kameya,
2001 propose an EM algorithm for parameter estimation of

tivity estimation using probabilistic models. Proceedings of
the ACM SIGMOD International Conference on Management of
Data (SIGMOD 2001).2001.

PRISMs showing that the algorithm exhibits the same com{Jaeger, 1997 M. Jaeger. Relational Bayesian networks. Piro-

plexity for hidden Markov models and stochastic context free ceedings of the Thirteenth Conference on Uncertainty in Artificial
grammars as the specialized counterparts. Intelligence (UAI) pages 266—273. Morgan Kaufmann, 1997.

[Jensen and Neville, 2002D. Jensen and J. Neville. Schemas and
models. InProceedings of the Multi-Relational Data Min-

4 Related Work
ing Workshop, 8th ACM SIGKDD International Conference on

Downgrading is related to work comparing the expressivity Knowledge Discovery and Data Mining002.
of different PLMs[Kersting and De Raedt, 2001; Jensen a”d[Kersting and De Raedt, 20DXK. Kersting and L. De Raedt. To-

Neville, 2002. Furthermore, downgrading is akin to contem-
porary considerations in theductive logic programmingnd
the Baysian networksommunities. E.g. Kevin Murphy mo-
tivates the development of his Matl&aysian Network Tool-

wards Combining Inductive Logic Programming with Bayesian
Networks. InProceedings of the 11th International Conference
on Inductive Logic Programming/olume 2157 ofLNAI, pages

118-131. Springer, 2001.

boxas fO”QW.S:” was fed up with readi_ng papers where all [Kerstinget al, 2004 K. Kersting, T. Raiko, and L. De Raedt. Log-
people do is figure out how to do exact inference and/or learn-  ijcal Hidden Markov Models (Extended Abstract) Rroceedings

ing in a model which is just a trivial special case of a general
Bayes net, e.g., input-output HMMs, coupled-HMMs, auto-

of the First European Workshop on Probabilistic Graphical Mod-
els (PGM-02) Spain, November 2002.

regressive HMMs. My hope is that, by releasing general pur{kerstinget al, 2003 K. Kersting, T. Raiko, S. Kramer, and L. De

pose software, the field can move on to more interesting ques- raedt.

tions”, See http:/www.ai.mit.edurmurphyk/Software/BNT/bnt. htm .
For similar reasons, we initiated a repository for (learning)
PLMs Athttp://www.informatik.uni-freiburg.de/kersting/plmr/
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Abstract rules or transitions) may contain variables and as such make
. . . . : abstractionof many specificgroundedrules or transitions.
MOt'\t’alted by the m_tetre?jt in relat|onalll remforcet- This allows one to compactly represent complex domains.
{nenf earlr)mg, WIT (Ijnl ro ucﬁvla l?ovg répresenta-  gecondly, because of this abstraction, the number of parame-
lon orrrli?Dll\s/er,Pca (':\h to.gltca tar K)/IV EC'SSn pro- ters (such as rewards and probabilities) in the model is signif-
grams ( s), thatintegrates Markov Decision oo iy reduced. This in turn allows - in principle - to speed

Processes with Logic Programs. Using LOMDPS =, o n 4 simplify the learning because one can learn atthe
one can compactly and declaratively represent stractlevel rather than at thgroundlevel.

complex relational Markov decision processes. o ) . :

Within this framework we then develop a theory Many fascinating machine .Iearnmg techmqu.es have.been

of reinforcement learning in which abstraction (of developed under the name reinforcement learning (RL) in the

states and actions) plays a major role. The frame- context of MDPs over the last few decades,[@‘qtton and

work presented should provide a basis for further ~ Barto, 1998. Recently, there has also been an increased at-

developments in relational reinforcement learning. tention for dealing with _relatlonal representations and objects
in reinforcement learning, see elpzeroskiet al, 2001;

) Finneyet al, 2004 Many of these works have taken a practi-
1 Introduction cal perspective and have developed systems and experiments

In the past few years, there has been a lot of work on exthat Operate_ in relational Worlds. At the heart of these SyS-
tending probabilistic and stochastic frameworks with abil-tems there is often a function approximator (often a logical
ities to handle objects, see e.ppndersonet al, 2002; decision tree) that is able to assign values to sets of states
Dzeroskiet al, 2001; Friedmat al, 1999; Kersting and De and to sets of state—action pairs. So far, however, a theory
Raedt, 2001; Kerstingt al, 2003; Muggleton, 1996 From  that explains why this approach works seems to be lacking.
an inductive logic programming or relational learning point The second and most important contribution of this paper is
of view, these approaches are upgrades of propositional re@ first step into the direction of such a theory. The theory is
resentations towards the use of relational or computationd?ased on a notion of abstract states and abstract policies rep-
logic representations. Various successes in this direction haygsented by logical expressions. An abstract state represents a
been reported_ |ndee[ﬁriedmamt al, 1999 and[Kersting set of concrete states and an abstract pOllcy is then a function
and De Raedt, 200upgrade Bayesian networkdiuggle- ~ from abstract states to actions. All ground states represented
ton, 1996 upgrades stochastic context free grammphs; DY the same abstract state are essentially assigned the same
dersonret al, 2009 and[Kerstinget al, 2003 upgrade (hid- ~ action. This is akin to what happens with (relational) rein-
den) Markov models. forcement learning using (logical) decision tréBzeroskiet

The first contribution of this paper is the introduction of al., 2001, where each leaf of the decision tree represents an
a novel representation formalism, callegical Markov de- ~ abstract state and where states classified in the same leaf ob-
cision programiLOMDPs), that combine®larkov decision tain the Same.value or a.C.tlon. Within the LOMDP framework
processesvith computational logic. The result is a flexible abstract policies can easily be represented. The abstract value
and expressive framework for defining MDPs that are abldunction (assigning values to abstract states or state action
to handle structured objects as well as relations and fund?airs) is defined as the average values of the states or state
tors. For MDPs, such a framework grounded in computa&ction pairs they represent. We will show that these abstract
tional logic, was still missing. OnlyBoutilier et al, 200]  Value functions cannot in general be learned using traditional
report on combining MDPs with Reiter’s situation calculus. MDP methods. This in turn provides some new insights into
However, as we argue in Sectignit is more complex and relational reinforcement learning approaches.
model-free reinforcement learning techniques have yet not We proceed as follows. After introducing some mathemati-
been addressed within this framework. LOMDPs share - witlcal preliminaries in Sectiop, we present the LOMDP frame-
the other upgrades of propositional representations - two adwvork in Section3. Section4 defines abstract policies and
vantages. First, logical expressions (in the form of clausesshows how to compute the value of an abstract policy. This



results in the LQ learning algorithm presented in Section our optimality criterion, i.e., future rewards are discounted by
The algorithm is experimentally evaluated in SectionBe- 0 < )\ < 1. The value of a policyr can be shown to be
fore concluding, we discuss related work. Vi(z) =32, o er P [r + A - Vz(2")]. The value ofr at

o ) any initial statez can be computed by solving this system of
2 Preliminaries linear equations. A policyr is optimal if V.(z) > Vi (2)

As logic programs and Markov decision processes will bg©F @ll z € S and policiest’. A (stationary) nondeterministic
used throughout this paper as the underlying mathematic&C!iCY 7 maps a state to a distribution over actions. The value
concepts, we now briefly introduce their key concepts. of 7 is then the expectation according to this distribution.

2.1 Logic 3 Logical Markov Decision Programs

A first-order alphabeﬁ) is a set of relation SymbOIE with The |Ogica| Componentof a MDP Corresponds to &-
arity m > 0, and a set of functor symbofswith arityn > 0. pite state automatoriThis is essentially a propositional rep-

If n = Othent is called a constant, i = O thenpis calleda  resentation because the state and action symbols are flat, i.e.
proposition. Amatomr (t4, ..., t,) is arelation symbat fol-  not structured. The key idea underlyifagical Markov deci-

lowed by a bracketed-tuple of termst; . A termis avariable  sjon programgLOMDPS) is to replace these flat symbols by
Vv or a functor symbol immediately followed by a bracketed gpstract symbols.

n-tuple of termst;, i.e., £(t4,...,ty) . A conjunction is a _ . . . .
set of atoms. A conjunctiod is said to be&f-subsumed by a Def|n|t|o_n 1. An abstract state is a conjunctidh of Ioglpal .
conjunctionB, denoted byA <, B, if there exists a substitu- a0MS, i-€., a logical query. In case of an empty conjuction,
tion § such thatBf C A. A term, atom or claus& is called e Writed.

groundwhen it contains no variables. Tineost general uni-  Abstract states represent sets of states. More formally, we
fier (MGU) for atomsa andb is denoted bymgu(a,bd). The  have that a stat& is a (finite) conjunction of ground facts
Herbrand basef ¥, denoted a&by, is the set of all ground over the alphabek, i.e. a logical interpretation, a subset
atoms constructed with the predicate and functor symbols inf the Herbrand base. In the blocks world, one possible

the alphabek. state Z is on(a,b), on(b,fl),bl(a),bl(b),cl(a),cl(fl)
. whereon(a, b) denotes that objeetis onb, c1(a) states that
2.2 Notation a is clear,bl(a) denotes thak is a block, andf1 refers to

Atoms are written in lower case, set of of atoms in upper the floor. An abstract staté is e.g.on(X,Y), b1(Y), b1(X).
caseA, and sets of sets of atoms in bold, upper cAseTo It represents all states (over the given aIph;&E))ethat have
highlight thata (resp.A and A) may not be ground (i.e. it two blocks on one another. Formally, speaking, we have that

may contain variables), we will write (resp.A andA). an abstract staté represents all state for which there
exists a substitutiod such thatZé C Z. Let S(Z) denote

2.3 Markov Decision Processes this set of states. The substitution in the previous example is

A Markov decision process (MDP) is a tupldl = {X/a,Y/b}. By now we are able to define abstract transitions.

(S,A,T,)) . To avoid ambiguities, we will sometimes in- Definition 2. An abstract transitiorl’ is an expression of
dex the elements bjvI. Here, S is a set of system states, \no formm "2 B whereP(T) := p € [0,1], R(T) :=
i.e. propositions. The agent has available a finite set of ac: o [0, 1], a is an abstract action, anébody(T) := B and
tions A(z) C A for each state € S which cause stochas- head(T7) .— T are abstract states. '

tic state transitions. For eachz’ € S anda € A(2) ' R
there is a transitio” in T which is an expression of the We assuméd’ to be range-restricted, i.@ars(H) C vars(B),
form 2 <Z% . The transition denotes that with probability anc:;}”ar.s(?) < t‘.’arS(B)' Soéhattﬁn abstratct ttrzt:msmlon_Fﬁlles
P(z,a,z’) := p actiona causes a transition to statewhen on the information encoded In the current state only. The Se-

executed in state. We have for each € S anda € A(z) ~ Mantics of an abstract transitibare:

that) g P(z,a,2') = 1. For a transition the agent gains If the agent is in a state, such thafB <, Z, then
an expected next rewaid(z, a, 2’) := r. In case that the re- it will go to the stateZ’ := [Z \ B6] U HO with
ward functionR is probabilistic (mean value depends on the probability p when performing actiond receiving
current state and action only) the MDP is calteshdetermin- an expected next reward of

istic, otherwisedeterministic In this paper, we only consider pq jjjystration purposes, consider the following abstract

MDPs with stationary transition probabilities and stationary,ransition. which moves blockfrom Y to the floor with prob-
bounded rewards. ability 0.9:

A (stationary) deterministic policyr : S — A is a set
of expressions of the form < 2 for eachz € S where
a € A(s). It denotes a particular course of actions to be
adopted by an agent, with(z) := a being the action to We implicitly assume that an abstract action has some precon-
be executed whenever the agent finds itself in statd/e  gitions
assume an infinite horizon and also that the agent accumu- 2pjease note that we employ functor-free examples throughout
lates the rewards associated with the states it enters. To conhe paper for the sake of simplicity. Abstract stafesactionsA,
pare policies, we use the expected total discounted reward asd transitiondl' can include functors. All proofs remain valid.

0.9:—1:mv_£1(X)
T

on(X, 1), c1(X)cl(Y) on(X,Y), cl(X)



Applied to stateExp mv_£1 (A mv_£1 (A)

) mv (A, C)

on(a,b), on(b, 1), on(c, £1), /—\\ stacks
A c A

c1(a), cl(c),bl(a), b1(b), bl(c) 2 S

the abstract transition tells us that when we exenutél(a)

the successor state will be 7 T, Lloor
on(a, fl),on(b,f1),on(c, 1), @ ®)
cl(a), cl(b),cl(c), bl(a),bl(b), bl(c) Figure 1: The two underlying patterns of the blocks world.

with probability0.9 gaining a reward of-1. One can see that Figure (a) shows the situation that there are at least two stacks
this implements a kind of first-order variant of probabilistic of height> 0. Figure (b) shows the situation that there is only
STRIPS operator, cfHanks and McDermott, 1994 one stack left. The serrated cuts indicate th@tesp.C) can

As LOMDPs typically consist of a sé' of multiple ab-  be on top of some other block or on the floor.
stract transitions there are two constraints to be imposed in
order to obtain meaningful LOMDPSs. First, Btbe the set of
all bodies of abstract state transitions in the LOMDP (modulo

variable renaming). FdB € B, let A(B) denote the set of Before giving the semantics of LOMDPs, let us also illus-
all abstract actions such thati <=2 B is in the LOMDP. trate LOMDPs on thetackexample from the blocks world:

We require 1 absorb  «200@sOtb  opcorb.
VB € B,Va € A(B P(T)=1.0. (1 2. on(A,fl),cl(A), o
®)>. bod;fTT“)ﬁ;B, () @) on(C,D),c1(C), «2XTEmA L (A,B), c1(A),
. . e cl(B on(C, D), c1(C).
This condition guarantees that all abstract successor stateg. on(A, C) cl(gx)) (¢.D), €1(C)
are specified when executing an abstract action in an ab- on(C7D)7c1(C)’ 0.9:—1mv(4,C) on(A, B), c1(A)
stract state and that their probabilities sumltaSecondly, e Cl(B)’ on(C’D)’ Cl(c)’
we need a way to cope with contradicting transitions and re- 1.0:20:sto0p S
. Lo 1i—l:a : absorb «———  on(A,B),cl(4),
wards. Indeed, consider the two transitishs——— 4 and b1(B)

g L722 ¢ and stateZ = {d, £}. The problem with these . e
transitions is that the first transition says that if we executdf the transition probabilities do not sum o0 for an ab-
a in Z we will go with probability1 to stateZz’ = {e,f}  stract action then there is an additional abstract transition for

whereas the second assigns a probability tf stateZ” = staying in the current abstract state. In order to understand
{4, g}. There are essentially two ways to deal with this situ-the LOMDP stack one has to understand the abstract states
ation. On the one hand, one might want to combine the twdéhat govern the underlying patterns of the blocks world, cf.
transitions and assign a probability @f to both Z’ and Z” Figure 1. Two abstract states (the artificidlsorb state ex-

for Z. On the other hand, one might want to have only onecluded) together with the order in which they are presented
of rule of fire. In this paper, we take the second approaci¢over all possible state action patterns because we can take
because this allows us to consider the transitions more indédvantage of symmetry in the blocks world. Transitloan-
pendently of one another. This in turn will simplify learning codes the absorbing state. Transitiarand3 cover the cases
and yields locally interpretable models. We assume a total o Which there are (at least) two stacks. Finally, transition
der= over all action-body pairs ifi' and do a forward search encodes the situation that there is only one stack, i.e. our
among the pairs stopping with the first matching body such agoal statestack Here,on(A,B), c1(A),b1(B) are only used

in Prolog’. From now on, we assuniB to be ordered w.r.t. 10 describe the preconditions o (A, B): the floor cannot be

<. We will give an example after the next definition. moved. When performing actionv(a, b) in stateExp (see
By now we are able to formally define logical Markov de- above) only abstract transitionsis firing. Similar, we can
cision programs. easily encode thenstackgoal.

Note that we have not specified the number of blocks. The
LOMDP represents all possible blocks worlds using agly
abstract transitions, i.6.2 probability and reward parame-
ters, whereas the number of parameters of a propositional
system explodes: fat blocks there ar&3 states, foi7 blocks
37.663 states, and fot0 blocks58.941.091 states, resulting

3We chose a total order for the sake of simplicity. A partial orderiN @ even higher number of transitions.
< among the pairs s.t. the set of pairs is well-founded, i.e., every de- )
scending chain of elements w.r.is finite, actually suffices. Then, ~ The semantics of LOMDPs are as follows.
thg conflict resolqtion strategy is to .sglect only those apstrgct tranTheorem 1. Every LOMDPM = (3, A, T, \) specifies a
sitions whose action-body pair is minimal. An e_xample is given in yicorate MDPM (M) = (S, 4, T, \).
[Kerstinget al., 2003 where a kind of subsumption (or generality)
relation amongB is employed. All theorems can be adapted accord-Proof sketch: Let hby, C hby be the set of all ground
ingly. atoms built over abstractates predicates, and labs, C

Definition 3. A logical Markov decision process (LOMDP)
is atupleM = (X, A, T, \) whereX is a logical alphabet,
A, is a set of abstract actiondT is a finite set of abstract
state transitions based on actions/M and0 < A < lisa
discount factor, such thgt.) holds.



hby, be the set of all ground atoms built over abstractreward taken over all states [i]. Therefore, the expected
action names. Now, construdvI(IM) from MM as fol- discounted reward, if abstract poliayis used and the system
lows. The countable state st consists of all finite sub- isin abstract stat&, is defined to be
sets ofhbs,. The set of actionA(Z) for stateZ € S is

N

. k . _

B <y Z} . We have thatA(Z)| < o holds. The probability ~ V«(L) = lim B | Ex {Z A revilZe =2 }
P(Z,a,Z") of a transition inT from Z to another state’ k=1
after performing an actioa is the probability value associ-
: : - . duced byr. The inner expectatiof,. is conditioned on the
in . If there is no abstract transition connectidgand 2, Do e =
the probability is zero. The bounded rewards are constructeﬁyStem being in statéf € 5 at timet, denoted byz, = Z.
he outer expectatiofir,) runs over all elements ¢L]. The

)

given by A(Z) ={a8|H L2 B e T minimal (W.rt.<),
ated to the unique abstract transition matchifigi, and 2/ wherer; denotes the value at timeof the reward received
normalized by the number of transitions of the fafft <~ Z w.r.t. M(IM) when following the ground level policy in-

in a similar way but are not normalized. O L
From Theorem 1 anfPuterman, 1994, Theorem 6.Ritfol- series in (2) converges absolutely for the same reasons as for
i MDPs. Thus, the limit and the expectations are interchange-
lows that: able in (2):
Corollary 1. For every LOMDP, there exists an optimal pol-
icy (for the ground states). oo
k
Finally, LOMDPs generalize finite MDPs. Va(L) = By | Ex {Z ANl Ze = Z} 3)
Proposition 1. Everyfinite MDP is a propositional LOMDP =t
in which all relation symbols have arity. The abstract) function is defined analogously. Now, an ab-
L. stract policyr is discount optimal at abstraction levél for
4 Abstract Policies fixed A wheneverVy (IL) > V(L) for all . € IL and ab-

Theorem 1 states that every LOMOM specifies a discrete Stract policiesr” at abstraction level. Note, that optimality
MDP M (IM). Furthermore, Corollary 1 guarantees that theredt abstraction level does not imply optimality at the level
exists an optimal policyr for MDP M(IM). Of course, this  Of ground states. This is because an abstract policy specifies
policy is extensional or propositional in the sense that it specthe expected behaviour of a set of ground states. The problem
ifies for each ground state separately which action to executdS Now to compute the value functiar.

Specifying such policies for LOMDPs with large state spaces LetIM = (X, A, T, \) be a LOMDP, and letr be an ab-

is cumbersome and learning them will require much effort.stract policy at abstraction lev@l = {L,,...,L,,}. Con-
Therefore, we introducabstract policiesr which intention-  sider the finite MDPL = ({l1, ..., }, AL, T1, A) wich is
ally specify the action to take for an abstract state (or sets ofonstructed as follows.

states). Construction: Both IL andIB (the set of bodies iffT) in-
Definition 4. An abstract policyr overY is a finite set of ~duce partitiong[ILy], ..., [L,,]} (resp.{[B1], ..., [B,]}) of
decision rules of the form. «— IL wherea is an abstract Smw) because both are ordered. The statorresponds to
action andL is an abstract state [IL;]. Furthermore, all ground states belongingltg] N [By]

have the same set of possible transitions. In other words,

The meaning of a decision rute<— L is that . ;
¢ - [L;] N [Bg] forms an equivalence class. Now, there is a tran-

if the agent_ls in a state’ _such thatl. <4 Z then sitionT" € Ty, from statel; to [; when doing actior with
the agent will perform actiond, denoted byr(Z). probability
Usually, 7 consists of multiple decision rules. We apply the
same conflict resolution technique as for abstract transitionsp(lha’ 1) = Z u([B)|[L3]) - p - (L] | S (H))
i.e. we use a total ordex among the decision rules. Let ' [y '
L = {Ly,...,L,,} be the set of bodies in (ordered w.r.t. He——BeT

<). We call IL the abstraction levelof 7. We assume that
IL covers all possible states of the LOMDP. This togethe
with the total order guarantees tfiatforms a partition of the

Here, (X [Y') is a probability function. The valug(X|Y’)
for X, Y C Smqawm) is the probability that a randomly se-

states. The equivalence clasg®s), . .., [I.,,,] induced byl lected ground state iif is an element oK . BecauseVI(M)
are inductively defined bylL,| = S(IL;), and fori > 2 induces a unique probability distribution over all ground

1 _ il : - _ statesy is uniquely specified. This follows from Theorem 1.
[L;] = S(L;) \ U;=; [L;]. BecauséL generally does not co Clearly,

incide withIB the following proposition holds.

Proposition 2. Any abstract policyr specifies anondeter- Z P(l;,a,l;)=1.
ministic policy = at the level of ground states. 1

Let M be a LOMDP and leM(IM) be the induced MDP.

We define the expected rewardlbfe IL to be the expected The intuition behind P(l;,a,l;) is that it specifies
P(L;, a,1L;) for the corresponding abstract states. The prob-

“We assume that is applicable irL. abilistic rewardR(l;, a, ;) depends only ofy andA, and can



be chosen s.t. its mean value equals 9: Take actioru, observer and successor staf#
10: LetlL € IL (resp.I’ € IL) be the unique
R(li,a) = > P(li,a,l;) - R(li,a,1;) . O abstract state matchirig (resp.Z’)
l; 110y = (1 + visits, (L, a))

~

As the underlying MDRM(IM) is not known, the problem 122 QM a)n = (1 - an) - Qn-1(L,2)

specified byl appears to a learner to have a non-Markovian, +ay, - (r+ X - maxa Qn-1(IL',a"))

nature. Consider the following LOMDRI Set := Z'andn :=n +1
14: Until Z is terminal
) 1.0:0.0:a
1. 9 ——— pa
2. ) Lo%E o Here,visits,, (IL, a) is the total number of times the abstract

Lo00a state — abstract action pAair has been visited up to and in-
’ cluding then-th iteration.Q(LL, a),, is the approximation of

and the abstraction levéll = {p, q,0}. The induced MDA.  Q(L,a) after n iterations. To select an actiom we first

will assign the same probabilities and rewards to the transiprobabilistically select an abstract actianin a statel. so

tions froml, to I; and fromis to /;. Consequently, the values that the probabilityP(a|LL) of selectiona is proportional to

for [, andl; are the same il as the next state is the same @(]L, A)n, €.9.

namelyl;, butIM assigns different values to both. =

The example shows that a learner followifighas im- T@n(L,a)
perfect and incomplete perception of the statesvbflM). P(all) = W (4)
This is interesting becaude corresponds to leafs of a first J

prder Eiecisiqn tree used in relational reinforcement learmgyith 7 > 0. This is common irQ) learning. Then, we select
ing _[Dz_erosk|et al, 2001. Unf_ortunately, complete observ- uniformly among all possible ground action given #yand
ability is necessary for learning methods based on MDPsg geta.

Thus in general, we must use techniques for solypiagially

observableMDPs, see e.g[KaerIing_et al, 1994. In the _ Let us now argue that LQ learning converges with re-
present paper, we follow the most naive approach to deal witQpect 101, Each selection of a ground staf selects a
partially observability, namely ignoring it. That is, we treat unique statd; in L. Likewise, when we have observefi
the induced MDFL as if it would be the correct underlying ihis uniquely specifies a state. The rewards are stochas-
MDP. tic, but they depend oy anda only. Therefore, the con-

. vergence theorem for Q-learning for finite (nondetermin-
5 LQ-Learning istic) MDPs applies tdL, cf. [Watkins and Dayan, 1992;
In principle, any known algorithm for computing an optimal Jaakkoleet al, 1994. Moreover, it might be the case that LQ

policy for I can be used. There are only two complications./€&rning can do even better. The equalify(L;) = Vx(li)
First, the probability function: is not given. This problem S€€ms to hold if for each legal trace bfwe can find a le-
can however be solved using stochastic iterative dynamig@! trace withinM(IM). Due to the abstraction, LQ learning

programming, i.e. model-free approaches. Second, we gehould generalize well even in unseen ground states.
not want to construckL. Instead, we directly want to ude. )
Below, we sketch LQ learning, which learns thefunction 6 EXxperiments

of L using this idea combined with traditionél learning. We implemented LO learnina using the Prolod svstem
Similar, other methods such as MC, SARSA and aCtor-CritiCSiCStusg.Q.O. our ta(gk was t% Iearr? an abstra?:t golicy

methods can be adapted. for the stack LOMDP (see above). This task was moti-
vated by the experiments in relational reinforcement learning

3 p

Logical Q Learning (RRL) [DZeroskiet al., 2001 and by the fact that the blocks
1:LetIL be an abstraction level world is the prototypical toy domain requiring relational rep-
2:Initialize @o(lL, a) arbitrarily for eachL € L resentations. One of the key differences with the experiments
3:'n=1 reported by[DZeroskiet al., 2001 is that we exclusively use
4:Repeat(for each episode) the standard predicates, c1, andbl. [DZeroskiet al, 2001

5 Initialize ground state? € Sy also_needed to make use of several background knowledge
6: Repeat(for each step in episode) predicates such asbove, height of stacks as well as sev-

7: Choose action in Z based or@ . cf (4) eral dlr_ectlves. to the inductive logic programming funcfu(.)n

8 Leta be the abstract action cornres’pondingzto approximator in order to be able to learn adequate policies.

Another difference to our approach is that RRL induces the
5A nondeterministic MDP can be converted into a determin-T€l€vant abstract states automatically using a regression tree

istic one. Maximizing the expected future reward depends only€arner.
on the expected reward in each state, and not on the prob- The discount factor wa$.9, and the temperaturé' to

ability distribution over rewards. In our cas&(l;,a,l;) = select an action was increased by04 each epoch start-
Z}H pra p([B]|[L;:]) - p - w([L;]|S(H)) - r would do. ing with 1.0. Therefore, the agent favors exploration during



early states of learning, then gradually shifts towards a strat- Rerunning the experiments with a simpler abstract Q func-
egy of exploration. We randomly generati@iblocks world  tion, omitting the first four abstract values, yields threstack-
states for4 blocks, 20 for 6 blocks, 30 for 8 blocks, and stackpolicy, too, but the learning epochs were faster pro-
50 for 10 blocks using the procedure described[®faney ceeded due to the higher abstraction.

and Thébaux, 200[L Note that for10 blocks a propositional

MDP would have to represemi8.941.091 states of which 7 Related Work

3.628.800 states are goal states. Then, we ran LQ learning o
these starting states in order6, 8 and10 blocks. The initial

Q function was

QNithin reinforcement learning (RL), there is currently a
significant interest in using rich representation languages.
[Finneyet al, 2003 investigated propositionalization meth-
ods in relational domains. They experimentally studied the

on(4,B),on(C,D), on(E, £1), _ intermediate language dkictic representation€DRs). DRs
@ ({ c1(A),c1(C), c1(E),b1(B), b1(D) }’mVﬂ(A)) 00 avoid enumerating the domain by using variables such as
on(A,B), on(C, D), on(E, £1), the-block-on-the-floor Although DRs have led to impres-
Q ({ c1(), ¢1(C), c1(E), b1(B), b1(D) },mv(kc)) = 0.0 sive result§McCallum, 1995; Whitehead and Ballard, 1991
’ ’ ' ' [Finney et al, 2003’s results show that DR may also de-
0 on(A,B),on(C,D), on(E, £1), av(A,E) | = 0.0 grade learning performance within relational domains. Ac-
cl(A), c1(C), cl(E),bl(B),b1(D) [’ ’ " cording to[Fin[ney et al, 2004, Rﬁelational reinforcement
learning(RRL) [DZeroskiet al., 2001 is one way to effective
Q ({ Cl‘g%ﬁ?g&‘;nﬁig’g?g’ fbll)h)) } ,mv(E, A)) = 0.0 learning in domains with objects. RRL is a combination of RL
’ ’ ’ ’ and inductive logic programming (ILHAMuggleton and De
@ ({on(A,B),on(C,D), c1(A),c1(C)}, mv_£1(4)) = 0.0 Raedt, 199} The key idea is that th@ function is approxi-
Q ({on(A,B),on(C,D), c1(A), c1(C)},mv(4,C)) = 0.0 mated usingla relelltional regression tree Iiarn;ar.l A(;thoughI the
_ experimental results are interesting, RRL has failed to explain
@ ({on(4,B), on(E, £1), c1(A), c1(E)},mv£1(4)) = 0.0 — in theoretical terms — why RRL works. Some new insights
Q ({on(A,B), on(E, £1), c1(A), c1(E)}, mv(A, E)) = 0.0 on this have been obtained.
Q ({on(A,B),on(E,£1),c1(A),c1(E)},mv(E,A)) = 0.0 From a more general point of view, our approach is closely

Q ({on(A,B), c1(A)}, stop) = 0.0 related todecision theoretic regressiofDTR) [Boutilier et
Q ({c1(4), c1(B)},mv(A, B)) = 0.0 al., 200d. Here, state spaces are char_act_erlzed _b_y a num-
’ ’ ’ ' ber of random variables and the domain is specified using
where we omitted thebsorb state in front. The whole ex- logical representations of actions that capture the regularities
periment was repeategtimes (including sampling the start- in the effects of actions. Because ‘existing DTR algorithms
ing states). In alb runs, the learned policy (which is optimal are all designed to work witppropositionalrepresentations

at the given abstraction level) was: of MDPs’, [Boutilier et al,, 2001 proposedirst order DTR
which is a probabilistic extension of Reitesguation calcu-
£1(a on(A,B),on(C,D), on(E, £1), lus. The language is certainly more expressive than that of
mv._ —

B
) él( ,c1(C), c1(E). LOMDPs. However, it is also much more complex. Further-
more,[Boutilier et al, 2001 assume that the model is given
mv£1(A) «—  on(AB),on(C,D),cl(A), c1(C). whereas in the present paper traditional model-free learning
mv(E,A) — on(A,B),on(E,£1),c1(4),c1(E). methods have been apply.
mv(A,B) «  cl(A),cl(B). The idea of solving large MDP by a reduction to an equiv-
L . __alent, smaller MDP is also discussed e.g[Dearden and
_ The leamned policy is interesting for many reasons. Firstg, iijier, 1997; Givanet al, 2003; Ravindran and Barto
it uniquely specifies a deterministic policy for ground states500g. However there, onl); finite MDPs and no relational
Secondr, itis well k”OWF‘ in the planning communianey or first order representations have been investigated. Further-
and Thebaux, 2001 It is calledunstack-staclstrategy be- o6 “there has been great interest in abstraction on other

fevels than state spaces. Abstraction over tiwttonet al,,

is at worst twice the optimal. Thirdnstack-staclperfectly  5tions and time. This research is orthogonal and could be
generalizes to all other blocks worlds, no matter how manyapplied to LOMDPs in the future

blocks there are. Finally, it cannot be learned in a proposi-

tional setting because here the optimal policy would encodgvith up t0 10 blocks using RL related techniques. However,

the optimal number of moves. he i | . o
RRL has learned another policy (“move a block to the high-itngo'rrgg?gtuecﬁgifg?ﬁ;ﬂ?nm;mam dependent and does not
S

est stack”) than LQ learning. However, as argued above, thi
policy can only be described using additional backgroun .
predicates, which are not needed in our approach. We belie Conclusions

that RRL would have difficulties in learning the unstack-stackWe have presented a representation framework that integrates
policy using only the predicates, c1 andbl. Markov decision processes with logic programs. This frame-

Finally, [Baum, 1999 reports on solving blocks worlds



work allows one to compactly and declaratively represent
complex (relational) Markov decision processes. Using func-
tors they might even be infinite. Furthermore, we have intro- ference on Uncertainty in Atrtificial Intelligence (UAI-Q2)
duced abstract policies for LOMDPs and studied their prop- 2002.

erties. We have shown that their value functions cannot gen- . :

erally be learned using MDP techniques. However, the egFr;i%m:ritfgflf';g?_gea’;lﬁir']:r'e?g)zr;)‘ilil‘s'ti(?fé?;irézl 'fnoglgé'ls
periments with a simple upgrade of Q-learming have shown InT. f)ean editorProceng:ngs of the Sixteenth Interna-'
that even naive strategies to handle partially observability can tional Joint Conferences on Artificial Intelligence (IJCAI-

sometimes work. The authors hope that this framework will
be useful as a starting point for further theoretical develop- ag)afrﬁgﬁﬁ 1300-1309, Stockholm, Sweden, 1999. Morgan

ments in relational reinforcement learning.

very well: Deictic representation in reinforcement learn-
ing. In Proceedings of the Eighteenth International Con-

[Givanet al, 2003 R. Givan, T. Dean, and M. Greig. Equiv-
alence notions and model minimization in Markov deci-
sion processedtrtificial Intelligence 2003. (in press).
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Abstract

Information extraction (IE) is the problem of con-
structing a knowledge base from a corpus of text
documents. In this paper, we argue that first-
order probabilistic models (FOPMs) are a promis-
ing framework for IE, for two main reasons. First,
FOPMs allow us to reason explicitly about en-
tites that are mentioned in multiple documents, and
compute the probability that two strings refer to
the same entity — thus addressing the problem of
coreference or record linkage in a principled way.
Second, FOPMs allow us to resolve ambiguities in
a text passage using information from the whole
corpus, rather than disambiguating based on local
cues alone and then trying to merge the results into
a coherent knowledge base. This paper presents a
comprehensive FOPM for a bibliographic database,
and explains how the desired inference patterns
emerge from the model.

1 Introduction

1.1 Information extraction

Information extraction (IE) is the problem of constructing a
knowledge base from a corpus of text documents. Some IE
systems extract information from ordinary English prose: for
instance, the Message Understanding Conferences [DARPA,
1998] have evaluated systems that extract information about
changes of corporate management, airplane crashes, and
rocket launches from Wall Street Journal articles. Other sys-
tems extract information that is presented in highly formatted
headers, lists, and tables rather than in complete sentences.
For instance, Citeseer [Lawrence et al., 1999a] and Cora [Mc-
Callum et al., 2000b] build databases of academic publica-
tions; FlipDog [Cohen et al., 2000a] builds a database of
job openings from companies’ employment web pages; and
Froogle [Google Inc., 2003] builds a database of product of-
fers from online stores.

Natural language prose is notoriously ambiguous, and even
highly formatted documents (such as web pages listing job
openings) can be hard to interpret automatically. An even
harder task is combining information from multiple docu-
ments into a single coherent knowledge base. In this paper,

Brian Milch
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University of California
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milch@cs.berkeley.edu

Stuart Russell
Computer Science Div.
University of California

Berkeley, CA 94720-1776
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we argue that first-order probabilistic models (FOPMs) are a
promising framework for IE. Because FOPMs allow us to ex-
plicitly represent uncertainty about how many objects are in
the world and what relations hold between them, we can use
a single probabilistic model for everything from parsing or
segmenting the text, to inferring object attributes, to inferring
relations between objects.

1.2 Advantages of a comprehensive model

One advantage of using such a comprehensive probabilistic
model is that we can reason explicitly about identity uncer-
tainty — for instance, whether two citations refer to the same
publication. This problem has been treated extensively in nat-
ural language processing under the name coreference reso-
lution, but methods for resolving coreference across docu-
ments remain mostly heuristic. In the bibliography domain,
resolving identity uncertainty is important both to avoid hav-
ing duplicate entries for publications and authors in our final
database, and so we can assemble more complete descriptions
of publications and authors from multiple citations.

A further advantage of having a comprehensive probabilis-
tic model is that we can use cross-document information to
disambiguate text. For example, suppose we see a citation
that begins, “Wauchope, K. Eucalyptus: Integrating Natural
Language Input with a Graphical User Interface”. Is “Euca-
lyptus” part of the title, or is it the author’s middle name?
If we see other similar citations where the formatting clearly
indicates that “Eucalyptus” is part of the title, then the most
likely explanation is that all these citations refer to a single
publication with “Eucalyptus” in the title, rather than there
being two publications, one with “Eucalyptus” in the title and
one without. Conversely, if we see another paper by “K. E.
Wauchope”, it is more likely that “Eucalyptus” is a middle
name. As discussed in Section 3.2, a FOPM for the bibliogra-
phy domain allows this kind of cross-citation disambiguation.
Such disambiguation would not be possible if we just chose
the most likely segmentation for each citation based on local
cues, and passed these results to another layer of the system
for merging into a coherent database. That is, processes that
are normally bottom-up and opaque to the higher levels of the
systems should instead be cognitively penetrable, to borrow a
phrase from [Pylyshyn, 1984].



1.3 Knowledge base functionality

Once we have created a knowledge base, what would we like
to do with it? One application is allowing a user to browse
the data and follow hyperlinks between entities: for instance,
from a paper, to one of its authors, to other papers by that au-
thor. We would also like to support queries about an entity’s
attributes, such as an author’s full name or the page numbers
of a journal paper. Finally, we would like to support struc-
tured search queries, like “Find all papers by Mike Jordan in
UAI ’97”. One possible answer to such a query is “the sys-
tem has not seen any citations to such a paper”. However,
we would like our system to distinguish between the case
where it has simply not seen any evidence for the existence of
such a paper, and the case where it is very sure no such paper
exists—perhaps because it has parsed Mike Jordan’s publica-
tions page (or the UAI 97 conference program) and seen no
such paper. Thus, our knowledge base will need to do more
than just store lists of known entities and their attributes.

1.4 Paper overview

Pasula et al. [Pasula et al., 2003] have already applied a
FOPM to the bibliography domain. However, that paper dis-
cusses a simple model where the only entities are publications
and authors, and results are reported only for resolving coref-
erence among citations. The purpose of this paper is to bring
the general IE problem to the attention of the FOPM commu-
nity, and to show how a FOPM can serve as a comprehensive
model for an IE task. We use the bibliography domain as our
example, but we believe the advantages of a FOPM for coref-
erence resolution and joint disambiguation will be even more
important in more complex domains.

We do not assume any particular representation language
for the FOPM in this paper. Instead, we focus on the proper-
ties of the model itself, particulary how it supports the kinds
of reasoning discussed above. Our notation is based on that
used in relational probability models (RPMs) [Pfeffer, 2000],
but we are not concerned about whether all the complexities
of the model can be expressed by an RPM. Later in the pa-
per, we briefly discuss features that would be desirable in a
first-order probabilistic language for specifying IE models.

2 Modée for the Bibliography Domain

In this section, we describe our probabilistic model of the ci-
tation domain. The model, which is an expanded version of
the one presented in [Pasula et al., 2003], includes several
classes of objects — authors, publications, collections, cita-
tion groups, and citations — and its possible worlds consist of
the objects and their attributes and relations.

We do not discuss inference or learning in this section, and
indeed, exact inference in the model is probably intractable.
However, rather than building many approximating assump-
tions into the model itself, we choose to make the model as
rich as possible and perform any approximations during infer-
ence. The parameters will be learnt either using Monte-Carlo
EM [Tanner and Wei, 1990] or using supervised methods.

2.1 Classesand attributes

Our model has the following generative structure. First, the
set of Author objects, and the set of Collection objects are

generated independently. Next, the set of Publication objects
is generated conditional on the Authors and Collections. Af-
ter this, CitationGroup objects are generated conditional on
the Authors and Collections, and finally, Citation objects are
generated from the CitationGroups. We now describe each
of these parts in more detail.

Authors

The number of authors who write papers in this field is cho-
sen from a slowly decreasing log-normal prior. Each Author
object has an attribute name, which is chosen from a mixture
of a letter bigram distribution with a distribution that chooses
from a set of commonly occurring names. There is also a
multinomial attribute area, which specifies the field this au-
thor usually writes papers in (to be more realistic, we could
also have multiple such attributes).

Publications

Each publication has attributes area and type which are cho-
sen according to multinomial distributions. Example types
include books, conference papers, and journal papers (al-
ternatively, we could have subclasses of publication corre-
sponding to each type, in which case there would be ‘class
uncertainty’). Publications also have a compound attribute
authorList, generated as follows: first, the length of the list
is chosen. Next, for each position i in the list, a reference
attribute authorList[i] is chosen (by reference attribute, we
mean an attribute whose value is another object). Most of the
time, this attribute is chosen uniformly from the set of au-
thors whose area attribute equals this publication’s area, but
there is also some probability of choosing uniformly from all
the authors. The attribute title is generated from an n-gram
model, conditioned on area (this captures the fact that each
area has its own commonly used technical terms).

If the publication is of a type that is usually part of a larger
collection, such as a conference paper, the collection ref-
erence attribute is set, again depending on area, and date
and publisher are set to equal collection.date and collec-
tion.publisher, respectively. If not, date is generated from
a prior distribution, and publisher is chosen uniformly from
the set of publishers. A publication may also have other at-
tributes, such as a number for a technical report, which are
chosen using appropriate prior distributions.

Publishers

This class has name and city attributes. Instances for the
commonly used publishers are included as evidence, and
there is a prior that allows for previously unseen publishers.

Collections

A Collection is a journal issue, a book of conference pro-
ceedings, or a book that is a collection of articles. It has string
attributes name and date, a multinomial attribute type, and
a reference attribute publisher.

Citation Groups

Citations often occur in groups. Examples include a
reference list at the end of a paper, a bibliography
on a particular topic, the publications section of a re-
searcher’s homepage, or the table of contents of con-
ference proceedings. The CitationGroup class captures



some of the structure present in these groups. To begin
with, there is is an attribute type, which takes values in
{refList, bibliography, tableOfContents, homePage, other}.
Next, there is a multinomial attribute style, depending on
type, that selects from a dictionary of common bibliography
styles (there will also be an “other’ style, to model styles that
are not in the dictionary).

The CitationGroup class also contains a compound vari-
able publicationList, which is a list of Publication objects.
If type € {reflist, other}, this is generated by picking the list
length and then sampling independently from a uniform dis-
tribution over the publications. If type = bibliography, then
the CitationGroup has an area attribute and we sample only
from publications with the same area value.

If type = homePage (the case of tableOfContents is
analogous), then there is a reference attribute author and a
Boolean attribute exhaustive. If exhaustive, then publica-
tionList is the set of Publication objects p such that p.author
= author. If not, we need a model for selecting a subset of
this set (we assume that there is no repetition within such
lists). A simple way to do this is to independently include
each member with some probability 6, but more complicated
distributions are possible, for example to list only publica-
tions before a certain date.

Finally, this class contains a compound variable citation-
List, of the same length as publicationList. The elements of
this list are Citation objects, and each element depends on
the corresponding element in publicationList, in a manner
specified in the next section.

Citations

A citation is generated conditional on the cited publication,
which is the value of the citation’s pub attribute. In any Ci-
tationList object ¢, we require that ¢.citationList[:].pub =
¢.publicationList[i]. A Citation object also has several ‘as
cited” attributes that correspond to how the true attributes of
the publication are ‘corrupted’ while creating this citation.
As an example, the conditional distribution of titleAsCited
given pub.title includes probabilities of misspelling based on
edit distance, of abbreviating common technical terms (e.g.
“HMM?™), and of dropping words like “the”. Once again, we
have an elementwise dependency between two lists, this time
between authorsAsCited and pub.authorList.

There is also an attribute parse that specifies how the var-
ious parts are ordered to produce the citation text. It depends
on the style attribute of the containing citation list, as well
as on pub.type and, if necessary, pub.collection.type (since,
for example, journal articles are usually cited differently from
conference papers). We use a PCFG for this, but other models
such as HMMs are possible.

Finally, there is an attribute text, which will usually be ob-
served. This attribute has a deterministic distribution, which
involves filling in the structure found in parse with the text
of the asCited attributes.

2.2 Examples

We have specified a rich probabilistic model of the citation
domain, but this richness comes at a computational cost. We
now argue that this cost is justified, by giving some examples

where the model leads to plausible conclusions that would be
difficult to reach using simpler methods. Of course, empirical
tests would be needed to make the argument conclusive.

In Figure 1, the journal name could potentially refer to ei-
ther Journal of Artificial Intelligence Research, or Artificial
Intelligence Journal. Suppose the model has previously come
across the table of contents for AIJ 1996, which is known to
be an exhaustive list. None of the citations in that list resem-
bles this one, and so the model would yield a low probability
for the hypothesis that one of those papers produced this cita-
tion. If the model has not seen an exhaustive list for JAIR, it is
free to hypothesize the existence of a paper from JAIR 1996
whose title is very similar to this one, and would conclude
that the paper was published in JAIR.*

In Figure 2, the model would assign high probability to the
event of the citations referring to the same publication, as they
have the same title and year of publication. As a result, infor-
mation from both citations will be combined when inferring
the attributes of the underlying publication — the first cita-
tion contains the correct conference name, while the second
one contains the author’s full name, which could be useful if
there are other Hegers in the knowledge base.

3 Propertiesof the M odel

3.1 Handling identity uncertainty

One desirable property of our model is that it allows us to rea-
son explicitly about whether two citations refer to the same
publication, or whether two papers are written by the same
author. For example, although the two citations in Figure 2
look different, we are quite sure they refer to the same pub-
lication. In this section, we explain how our model can yield
the same conclusion.

A simple scenario

To build intuition, we begin with a very simple scenario, iso-
morphic to the “balls in an urn” example in [Russell, 2001].
Suppose a library contains n books b4, . .., b,,. For now, the
only attribute of a book that we will consider is its title: for
any b;, let P(b;.title = x) = Px(x). We create a citation
list by repeatedly selecting a book uniformly at random from
the library, writing down its title (with some probability of
making an error), and returning the book to the shelf. For any
citation ¢, let P(c.text = y | c.pub.title = x) = Py (y|z).
Thus, Py models the process by which titles are corrupted as
we write them down.

Now suppose we are looking at a citation list with two ci-
tations ¢; and ¢y, whose text strings are y; and y». We have
two hypotheses about whether the citations refer to the same
book:

H c1.pub = co.pub
Hs c1.pub £ co.pub

We can evaluate the posterior probability that the citations
co-refer by comparing the joint probabilities of the two hy-

A third possibility, that this is a previously unseen journal,
would be deemed unlikely thanks to the Occam’s razor effect dis-
cussed in the next section.



Hel zerman, R A., and Harper, M P. 1996. MJSE CSP: An extension to the constraint
sati sfaction problem Journal of Artificial Intelligence

Figure 1: Disambiguating a journal name
Heger, M (1994). Consideration of risk in reinforcenent |earning. In Proceedings
of the El eventh International Conference on Machi ne Learni ng, pages 105-111, San
Franci sco, CA. Morgan Kauf mann.

[ Heger, 1994] Heger, Matthias 1994. Consideration of risk in reinforcenment |earn-
ing. In Proceedings of the Machi ne Learning Conference. To appear.

Figure 2: Combining information from multiple citations

potheses with the evidence: H; does. The penalty is especially strong because a reason-
B B B able prior over publication titles has high entropy: the proba-
p1 = P(Hy citext = yy, co.text = y) bility of a typical title might be 10~7. Then if we are selecting

p2 = P(Ha,citext = y1, co.text = ya) from a library of 100,000 books, the posterior probability of
H, is about 100 times that of H,. The posterior probabilities
only become equal when the library size is about 107. Thus,
Occam’s razor — a preference for hypotheses that explain

Since we choose books uniformly from the n books in the
library, the prior probability of H; is 1/n.

1 the observed data using few hidden objects — arises natu-

= EP(Cl'teXt =y, cotext = yo | Hy) rally from our model. This effect has been analyzed in the

n—1 literature on Bayesian model selection since the work of Jef-

p2 = - P(cy.text = y1, ca.text =y | Ha) freys [Jeffreys, 1939]; see [MacKay, 1992] for a more recent
overview of the topic.

To compute P(c;.text = yi,ca.text = y2 | Hy), we must On the other hand, Occam’s razor does not always domi-

sum over all possible values z for c;.pub.title. To compute  nate the computation. Suppose that instead of choosing books
P(cy.text = yi, ca.text = ya | Ha), we must sum over both  from a library and writing down their titles, we are choosing

c1.pub.title and co.pub.title. The results are as follows: people from a phone book and writing down their first names.
1 The distribution over first names has much lower entropy than

Po= - Z Px (x) Py (y1]|z) Py (y2|) (1)  the distribution over book titles: for instance, the 1990 cen-

" sus indicated that between 1% and 2% of people in the U.S.

n—1 < ) were named Mary. So if we select from a phone book with
P = ZPX (z1)Py (y1]21) 100,000 entries and get two people named Mary, then p; is
n 1 about 107 and p, is about 10~%: the probability that the two
occurrences of Mary are two different people is about 0.999.

<Z Px (z2) Py (?/2|$2)> (2)  string corruptions
2 Now let us return to the case where the citation text may be
Occam’s razor an imperfect copy of the book’s title. For instance, suppose
So which is greater, p1 or p»? Of course, the answer de- Y1 = “Doctor Zhivago” and y, = “Doctoan@go". For
pends on our probability models for book titles and string ~ COnCreteness, assume Px(y1) = Px(y2) = 10°; writing
corruptions, as well as on n. We can gain some insight Zhivago” as “Zivago™ or vice versa has probability 107

by considering the case where no string corruption occurs; ~ nd writing the titles correctly has probability close to 1.
Py (y1lz1) = 1if y; = = and 0 otherwise. Obviously, un- Also, to make the computations simple, assume all other

der this model, H; has probability zero when y; # y2. S0 strings are either extremely unlikely titles, or extremely un-
SUPPOSe y; = ;/2 = y. Then all the terms in the summations likely to be transcribed as “Doctor Zhivago” or “Doctor Zi-

where z # y are zero, and we have: vago”. Then when we substitute into Equations (1) and (2),
' most of the terms in the summations are near zero, and we

1 ; il :
= ;Px (v) can approxnlnate the probabilities as follows:
n—1 9 o~ = ((Px(y)-1-107°) + (Px(y2) - 107% - 1))
p2 = Px(y) n
" ~ @107
These equations make sense: if H; is true, then there is at - E( ' )
least one book with title y, but if Ho is true, there are at least o on—1
two books with title y, so the title probability is squared. p2 = (Px (y1) - )(Px (y2) - 1)
The fact that the title probability is squared in po penalizes n—1

Q

—— (10714

H,, for constraining the values of more hidden variables than "

#



Thus, H; has greater posterior probability than H if there
are fewer than about 20,000 books in the library. The Oc-
cam’s razor effect appears here too: Ho must “pay the cost”
of generating each observed title independently, whereas H;
only “pays” for one title generation and one copying error.

Of course, if y; and y- are quite different strings, such as
“Doctor Zhivago” and “Doctor Dolittle”, then the specific set
of copying errors necessary to transform one to the other will
be less likely than the generation of the title itself, and Ho
will have greater posterior probability.

Unknown numbers of publications

So far, we have assumed the number of books in the library is
a known value n. It does not complicate things much to make
the number of books a random variable N, with a prior dis-
tribution Py (n). Then, to evaluate hypotheses about corefer-
ence, we must sum over the possible values of N. Equations
(1) and (2) become:

ZPN(n) (%) ZPX(CU)PY(ZJ1|ZC)PY(3/2|$)

;PN(n) (n; 1) <Z Px($1)Py(y1|I1)>

Z1

<Z Px (zz)Py(y2|$2)>

z2

p1

D2

We can also obtain a posterior distribution over IV given the
observed citations. This involves summing over all possible
mappings from citations to publications, as well as summing
over publication titles. Formally, let x = x,...,zN range
over assignments of titles to all the publications. Suppose we
have seen K citations. Lety = y1,...,yx be the observed
titles of the citations and let w = wy, . . ., wx range over map-
pings from citations to publications. Then P(N = n|y) is
proportional to:

Py(m)Y (f[l Px(%)) > <%>K (]if[1 Py(yz-larwi)>

X w

This is analogous to the equation given for balls in an urn
in [Russell, 2001]. Intuitively, if we observe the same titles
over and over, we will believe there are few books in the li-
brary; if we very seldom see the same title twice, we will
believe the library is large.

Identity uncertainty in complex models

This section has discussed identity uncertainty in a simpli-
fied scenario: writing down the titles of books from a library.
Working with the complete bibliography model described in
Section 2 introduces two complications. First, the probabil-
ity models for publication attributes and citation strings are
more complex. If ¢ is a citation, then c.text depends not only
on c.pub.title, but also on c.pub.author[1].name, c.pub.date,
c.pub.collection.name, and so on. So to compute the proba-
bility that two particular citations co-refer, we need to sum
over the possible values of many complex and simple at-
tributes (in practice, we must approximate these sums). Fur-
thermore, two citations of the same publication may differ

from each other not because of errors, but simply because
they use different formatting and abbreviations.

The second complication is that we are dealing with iden-
tity uncertainty for all classes simultaneously: publications,
authors, publishers, etc. We may be uncertain not just about
whether ¢;.pub.author[1] = co.pub.author[3], but also about
whether ¢,.pub even has a third author, and whether ¢;.pub =
c1.pub. We can make sense of all this uncertainty if we think
in terms of distributions over logical interpretations (possible
worlds). However, these multiple layers of identity uncer-
tainty pose challenges for both representation languages and
inference algorithms.

3.2 Cross-citation disambiguation

Another useful property of our model is that it can resolve
ambiguities in a citation by using information from other ci-
tations. For example, consider the citations in Figure 3. The
first citation is ambiguous: it could be that the author’s name
is K. Eucalyptus Wauchope, or “Eucalyptus” could be part of
the paper’s title. Of course, a human reader who knew of Ken-
neth Wauchope and his Eucalyptus system — perhaps from
seeing other citations of this paper — would have no trouble
seeing that “Eucalyptus” is part of the title. In this section, we
show how our model can also disambiguate the first citation
using other citations, such as the second one in Figure 3.

Ambiguity given a single citation
To begin with, suppose we observe only the first citation ¢y,
whose text is iy1. There are two likely hypotheses:

c1.authorsAsCited[1] = “Wauchope, K.”
c1 .titleAsCited = “Eucalyptus: Integrating...”

¢1.authorsAsCited[1] = “Wauchope, K. Eucalyptus”
c1.titleAsCited = “Integrating...”

Ay =
Ay =

We can compare the joint probabilities:

q1 = P(A1, c1.text = y1) = P(A1) P(cr-text = y1| A1)
q2 = P(Az, c1.text = y1) = P(A2) P(c1 -text = y1|As)

Suppose our our title model and our author name model as-
sign about the same probability to an unusual word like “Eu-
calyptus”. Then P(A;) =~ P(As). And if the author-title
separator is about equally likely to be a period or a colon, then
P(cy.text = y1|A1) = P(cy.text = y1|As). S0 ¢1 =~ ¢o.

Using a second citation

Thus, looking at ¢; alone, a reasonable model assigns equal
posterior probabilities to the two hypotheses. But suppose
we also observe co (the second citation in Figure 3), whose
text is y2. An ideal model would specify that an institution
is unlikely to issue multiple tech reports with the same num-
ber: so unless the first publication was issued by some other
“NRL” rather than the Naval Research Laboratory, the two
citations must co-refer. However, in the model described in
Section 2, tech report numbers are chosen independently for
each publication. So we must rely on Occam’s razor to give
high probability to the hypothesis that ¢;.pub = ¢5.pub. As
shown in Section 3.1, our model prefers this hypothesis be-
cause it requires the tech report number (and most of the title)
to be generated only once rather than twice.
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Figure 3: A pair of citations where the second helps to disambiguate the first.

So most of the posterior probability mass is on worlds
where ¢; and ¢, corefer. In y9, the date is a clear delimiter
between the author list and the title, so with probability close
to one:

¢o.authorsAsCited[1] = “Kenneth Wauchope” 3)
co.titleAsCited = “Eucalyptus: Integrating...”

This is consistent with A;: if the publication attributes
are c;.pub.authorList[1].name = “Kenneth Wauchope” and
c1.pub.title = “Eucalyptus: Integrating...”, then the ¢; at-
tributes in A; and the ¢, attributes in (3) have high proba-
bility. Note that this explanation only requires the word “Eu-
calyptus” to be generated once, as part of the title. On the
other hand, if A is true, then “Eucalyptus” occurs in the au-
thor name in ¢; and the title in co. This is not impossible: it
could be that “Eucalyptus” was inserted accidentally in one of
the citations; or perhaps both the true title and the true author
name include the word “Eucalyptus”, but it was accidentally
deleted from the title in ¢;. But these explanations are orders
of magnitude less likely than the explanation consistent with
Ay, 50 A has greater posterior probability.

Thus, when local cues are insufficient for parsing a citation,
our model gives a probability “bonus” to parses that are con-
sistent with the parses of other co-referring citations. Parsing
is done as part of the overall inference process, incorporating
such top-down information. Note that this approach does not
require lists of known author names, paper titles, or journal
titles: we are just taking a potentially large set of unlabeled
citations and using them to disambiguate each other.

A more difficult example

We must admit that it took some effort to find a citation
where the the distinction between authors and title was truly
ambiguous. However, there are other domains where fewer
formatting cues are available, and word or character n-gram
models are less helpful for distinguishing the values of dif-
ferent attributes. As an extreme example, the radio station
WPTC displays the artists and titles of songs on its playlist in
two unlabeled columns: 2

The Used Maybe Menori es
From Zer o Smack
V lce Not hi ng i s Real

Soundtrack to the
Wor st Movi e Ever
Tsunam Bonb Take the Reigns
Squi rt M . Nor mal
The reader is challenged to tell which column is which.
Clearly, it would help to find other mentions of these artists
and titles where their roles are less ambiguous.

Burnt by the Sun

2htt p: / / www. pct . edu/ wpt ¢/ pl ayl i st 2. ht

4 Desiderata for a FOPL

In section 2, we gave an informal description of our model.
Our current implementation essentially requires the details of
the model to be hardcoded in. Such an approach will not scale
as we build models for many different IE tasks: it would be
desirable to have a declarative language for specifying such
models. Based on our experience in modeling this domain,
here are some of the features we think such a first-order prob-
abilistic language (FOPL) should have:

e A probability distribution over possible worlds which
contain objects, functions, and relations.

e Uncertainty about the number of objects in the world,
and the ability to make inferences about the existence or
nonexistence of objects having particular properties.

e Uncertainty about the relational structure of the world. It
is often, as in the citation domain, not possible to specify
this structure beforehand.

e The ability to answer queries about all aspects of the
world, including the relational and object structure.

e The ability to represent common types of compound ob-
jects such as lists and finite sets, and common probabil-
ity distributions for dependencies between them, such as
models for selecting a subset of a set, and models for
elementwise dependencies between lists

e The ability to represent probabilistic dependencies that
don’t have a natural generative structure, such as the de-
pendence between authors, topics, and papers.

e An efficient inference algorithm with provable guaran-
tees on accuracy and computational complexity, and
ways to adjust the tradeoff between these two.

e The ability to incorporate domain knowledge into the in-
ference algorithm. For example, in MCMC this knowl-
edge can be used to design a proposal distribution.

e A learning procedure which allows priors over the pa-
rameters.

5 Inference

Because exact inference in our model is intractable, we use
MCMC [Gilks et al., 1996; Andrieu et al., 2003] as our
inference procedure. Specifically, we use a Metropolis-
Hastings proposal distribution, the details of which are de-
scribed in [Pasula et al., 2003]. This proposal includes moves
that create and destroy objects, as well as moves that change
the attributes of existing objects. This last type of move in-
cludes changes to the parse tree of a citation, thus allowing



top-down information to be used to resolve uncertainty about
the parse.

An important point is that, for most queries, if an object is
not referred to by any other objects in the current state, then
we don’t need to waste time resampling its attributes. This
allows us to reason efficiently about worlds with a large num-
ber of unseen papers. However, if we are answering queries
like “How many papers has Mike Jordan published at UAI?”,
we are forced to sample attributes of all papers, and so these
queries are more difficult.

Designing efficient general-purpose MCMC algorithms for
first-order models remains a challenging open problem. We
are investigating several possibilities for speeding conver-
gence. Query-dependent sampling is based on the idea that
when answering a query that only depends on the marginal
distribution of a small subset of the variables, we should fo-
cus our sampling near those variables. [Marthi et al., 2002]
described how to do this for a specific graph structure, but
the idea is more broadly applicable. Rao-Blackwellization
is a technique that can be used when some of the variables
are amenable to exact inference conditional on their Markov
blanket. These variables then don’t need to be sampled, as we
can marginalize them out. Finally, a common approximation
technique is to replace a distribution by a reweighted distribu-
tion over its k£ most likely values. This is useful for sampling
variables with large domains, such as parse trees.

Besides sampling, the other major family of approximate
inference algorithms is that of variational approximations. In
the future, we hope to apply generalized variational infer-
ence [Xing and Russell, 2003] and generalized belief prop-
agation [Yedidia et al., 2001] in this domain, and compare
their performance to MCMC.

6 Redated Work

6.1 ExistingworkinlE

A great deal of work on extracting information from news
articles is described in the MUC proceedings (most re-
cently [DARPA, 1998]); examples of work on highly for-
matted text include [McCallum et al., 2000b; Lafferty et al.,
2001; Cohen et al., 2002]. However, most IE work has not
focused on combining information from multiple documents.
IE researchers have made considerable progress on resolving
coreference within documents, e.g., between nouns and pro-
nouns; see [Harabagiu et al., 2001] and references therein.
There has been less work on cross-document coreference res-
olution, but [Bagga and Baldwin, 1999] describes a method
for detecting mentions of the same event in different news
stories, and [Lawrence et al., 1999b; McCallum et al., 2000a]
discuss coreference among citations.

There has been considerable work on record linkage,
the task of finding and merging duplicate entries in
databases [Fellegi and Sunter, 1969; Cohen et al., 2000b;
Bilenko and Mooney, 2002]. However, record linkage algo-
rithms typically take database tuples as input, while we are
starting with unsegmented text. Of course, one could do IE to
obtain database tuples and then find duplicates with a record
linkage algorithm. But then one would not be able to disam-
biguate text by finding other mentions of the same entities, as

our proposed system does.

Our work can be seen as a fusion of information extraction,
which deals with the relationship between facts and text, and
data mining, which deals with statistical regularities in the
facts themselves. Nahm and Mooney [Nahm and Mooney,
2000] have implemented such a combined system, called
DiIscOTEX, for extracting information about job openings
from newsgroup postings. Their system learns association
rules between fields (analogous to our prior model over ob-
ject attributes) and uses these rules to improve the recall of an
IE system. Another example of using domain knowledge to
improve IE is the DATAMOLD system [Borkar et al., 2001],
which was applied to parsing postal addresses. DATAMOLD
has a database of containment relationships between cities,
provinces, and countries, and prefers parses that include city-
country pairs where the city is known to be in that country.
If we used a FOPM for this task, we would hope to infer the
geographic relationships while parsing the addresses.

6.2 Bayesian modeling

Another way to think about our probabilistic model would
be to say that all the unobserved attributes are parameters of
the model: then the prior distributions over these parameters
become parameter priors, and the problem of choosing how
many hidden objects there are (or computing a posterior dis-
tribution over the number of hidden objects) is one of model
selection (or model averaging). This Bayesian model selec-
tion problem has been tackled, for example, by [Green, 1995]
using an MCMC inference method.

Researchers in other branches of Al have used similar mod-
els where the observed data is generated by first generating
some hidden objects, then generating a correspondence be-
tween observations and hidden objects, and finally generat-
ing the values of the observations conditioned on their cor-
responding hidden objects. Applications of such models in-
clude robot localization [Anguelov et al., 2002], recovering
the 3D structure of an object from multiple images [Dellaert
etal., 2003], and finding stochastically repeated patterns (mo-
tifs) in DNA sequences [Xing et al., 2003]. However, not all
these models are fully Bayesian: [Dellaert et al., 2003] esti-
mate the positions of visual features (corner points, etc.) on
objects using maximum likelihood. They note that this strat-
egy is feasible only because they assume that in each image,
the mapping from observed features to actual features is one-
to-one. Thus, there is no question about the number of hidden
objects (features), and no need for the Occam’s razor effect
provided by a fully Bayesian approach.

7 Conclusions

We have argued that first-order probabilistic models are a use-
ful, probably necessary, component of any system that ex-
tracts complex relational information from unstructured text
data. We presented an example of such a model for one par-
ticular information extraction task. Many desirable features
of plausible reasoning, such as a preference for simple ex-
planations and the combination of top-down and bottom-up
information, which are lacking in most nonrelational or non-
probabilistic IE systems, occur naturally in our model.



Some of the directions we plan to pursue in the future
include defining a representation language that allows such
models to be specified declaratively, scaling up the inference
procedure to handle large knowledge bases, and tackling do-
mains where the observed text is even less structured.
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Abstract

Although information extraction and data mining
appear together in many applications, their inter-
face in most current systems would better be de-
scribed as serial juxtaposition than as tight inte-
gration. Information extraction populates slots in
a database by identifying relevant subsequences of
text, but is usually not aware of the emerging pat-
terns and regularities in the database. Data mining
methods begin from a populated database, and are
often unaware of where the data came from, or its
inherent uncertainties. The result is that the accu-
racy of both suffers, and significant mining of com-
plex text sources is beyond reach.

This position paper proposes the use of unified, re-
lational, undirected graphical models for informa-
tion extraction and data mining, in which extrac-
tion decisions and data-mining decisions are made
in the same probabilistic “currency,” with a com-
mon inference procedure—each component thus
being able to make up for the weaknesses of the
other and therefore improving the performance of
both. For example, data mining run on a partially-
filled database can find patterns that provide “top-
down” accuracy-improving constraints to informa-
tion extraction. Information extraction can provide
a much richer set of “bottom-up” hypotheses to
data mining if the mining is set up to handle ad-
ditional uncertainty information from extraction.

We outline an approach and describe several mod-
els, but provide no experimental results.

Introduction

David Jensen
Department of Computer Science
University of Massachusetts Amherst
Amherst, MA 01003 USA
jensen@cs.umass.edu

techniques has revolutionized many commercial and govern-
ment enterprises by enabling more accurate decision making
in such areas as industrial contfaang, 1999, fraud de-
tection[Fawcett and Provost, 19B7nventory management
[Agrawal et al, 1993, and customer relationship manage-
ment[Domingos and Richardson, 2001

There is already much data in the necessary “database-
form,” (with fields and records), but there is also a vast
amount of important information available only in natural
language text, such as Web pages, publications, corporate
memos, research findings, government reports and other doc-
uments. To be accurately mined, these data must first be be
first organized and normalized into database-form.

Information extraction aims to do just this—it is the pro-
cess of filling the fields and records of a database from un-
structured text. Its traditional intended use is as the first
step of a pipeline in which unstructured text is converted
into a structured database, and then data mining produces
predictive models from this database. Historically informa-
tion extraction has most often been studied for news articles
[Appelt et al, 1994, but more recently has been applied to
many textual formats, including Web pad&sderland, 1997;
Cravenet al, 1998; Bleiet al, 2004, government reports
[Pintoet al., 2009, scientific article§Lawrenceet al., 1999;
McCallum et al, 2000b; Ray and Craven, 2004nd legal
documentdBruninghaus and Ashley, 20D1 Also recently
there has been somewhat of a revolution in the use of statisti-
cal and machine learning methods for information extraction,
e.g. [Bikel et al, 1997; McCallumet al, 2000a; Lafferty
et al, 2001; Carreragt al, 2002; Roth and tau Yih, 2002;
Ray and Craven, 2001; Klekt al, 2003.

However, in spite of the improved results of these machine
learning methods, and in spite of a surge of over-anxious
commercial ventures claiming success, information extrac-

pdion with sufficient accuracy to dump directly into data min-

future, and make informed decisions based on the evidendd9 remains elusive, and the promise of mining from textual

in large databases. For example, data mining of catego

to understand which items are bought by the same custome

predict sales of seasonal items, and more efficiently mana

its inventory> Over the past decade, the use of data miningf_
[

rsources is largely unfuffilled. Although there has been much
gfiscussion about combining information extraction and data
ining, there are few examples of successful pipelining of
le two technologies on anything but simple problems.

This position paper proposesxtraction-mining random
elds—a family of models for improving our ability to data

While in some circles, data mining indicates “unsupervised dis-Mine information in unstructured text by using information
covery of patterns,” here we include classification and other superextraction and data mining methods that have such tight inte-
vised learning tasks within the scope of data mining.

gration that the boundaries between them disappear, and they



can be accurately described asified framework for ex- 2.1 Inaccurate extraction
traction and mining. This framework uses rich, intertwined state-of-the-art precision and recall for extracting named en-
undirected graphical models in which extraction decisionsgjties (such as people, organizations and locations) is in the
and data-mining de_C|S|ons are made with acommon inferenc@- to mid-90's percent for many systems and domains—
procedure—the evidence for an outcome being the result qhcjuding BBN's IdentiFinder on news wire articlgBikel et
inference both “bottom up” from extraction, and “top down” g1 "1997, Cora’s hidden Markov models on research paper
from data mining. Thus (1) intermediate hypotheses fromhaaderdMcCallumet al, 20008, and WhizBang Lab’s ex-
both extraction and data mining can be easily communicategactors on web page dasicCallum, 2002. The winners of
between extraction and data mining in a closed loop systempe CoNLL-2002 named entity competitidGarreraset al,
(2) mutually-reinforcing evidence and uncertainty will have 2004 reached only about 80% precision and recall on Span-
the opportunity to be properly marshaled, (3) and accuracysh newswire text. One of the most recent research papers on
and confidence assessment will improve. named entity extraction from Web pages reached precision
Our focus in both areas is on relational data—data aboudnd recall in the high 80ECollins, 2002. Reaching about
entities and links that is better described by graphs than by th@0% precision and recall may seem good until one realizes
flat attribute-value representations used in much of machinghat this means that more than one in ten fields in the database
learning. The edges (or hyper-edges) in such graphs represefie either incorrect or missing.
binary (or n-ary) relations between entities, such as familial When we consider the accuracy of database records (or
relationships among people or hyperlink relations among webrelations”) instead of individual fields, the state-of-the-art is
pages. In terms of probabilistic models, individual relationseven worse. For a relation to be correct, all its constituent
or chains of multiple relations help structure the probabilisticfields and its relation-type categorization must be correct.
dependencies among entities. More formally, in addition toEven if a system had 95% accuracy in extracting individ-
having graph structure, we define a relational task as one ipal fields and categorizing relations, the overall accuracy of
which the system’s outputs have several compongnts;  a three-slot relation would be only 80%. This happens be-
{v1,...}, and not all the components are independent frontause each automated decision in the formation of a relation
each other given the inputs; thus3i, j such thatP(y;|x) #  is performed independently, and the errors compound. For
P(yilyj, x). example, the top performer in the 2002 DARPA ACE evalua-
Our proposed models are all trained to maximize con+ion had entity extraction precision and recall scores of about
ditional probability of the outputs given the inputs. Such80%, but binary relation extraction scores of only roughly
models have the advantage of not requiring explicit rep60%[DARPA, 2003.
resentation of dependencies among the features of the in- A better solution should not treat the components of a re-
put. This is especially advantageous when using complexXation independently, but should make coordinated decisions
overlapping and multi-granularity features, as is common irand model them together. For example, the model could know
work with natural language teMcCallum et al, 2000a; that a person graduates from a university, not from another
Lafferty et al,, 2001. person, and use this to coordinate its extraction of a person
name, a university name, and its categorization of the rela-
tion. If done correctly, relations should actually provide con-
2 The Task and Problem straints that help improve overall extraction accuracy, not hurt

o o ) _ . it. Thisidea is one component of our proposed approach, and
Data mining has enabled a revolution in planning, decisions expanded in the section 3.

making and organizational efficiency in many areas of indus-
try and government. A similar revolution could be brought2.2 Poor coreference resolution

about in many additional areas if it were possible to mine thegne of the key problems in current systems that work on
vast amount of information currently locked in unstructured,stryctured text is recognizing when two string names are
text. In many domains, there is far more information in doc'referring to the same entity. For example, “Colin Powell,”
uments and other text than there is in structured databases.upowe”,n “U.S. Secretary of State,” “the Secretary of State”
For example, CiteSedtawrenceet al, 1999 mines the  are not string-identical, but in some context may all refer to
Web for research papers, extracts title, authorship and citatiofhe same person. If they get separate entries in the database,
information, and thus enables analysis of the citation graphelational connections will be missing, and data mining will
for finding seminal and survey papers. This service has hafot find the patterns it shou[densen, 1999
significant impact on the the practice of computer science re- Coreference (also known as de-duplication, or record
search. However, the variety of fields and relations it extractgnatching) is also a difficult problem in traditional databases.
is small, and the limited accuracy of its existing relations con-There, some of the most successful approaches bring to bear
strains the ability to perform more sophisticated data mininga multitude of evidence from different fields of each record,
For example, Pasukt al. [2009 note that CiteSeer contains e.g. [Borthwick et al, 2000; Bilenko and Mooney, 20p2
records of over 30 separate Al textbooks written by RusseHowever, the problem is especially difficult in text domains
and Norvig, when actually there is only one. where the original data is unstructured, the availability of
Unfortunately, the complex data mining of rich unstruc- some fields is questionable, and the collection of fields into
tured text is not feasible with current methods: extraction isrecords has not yet been performed.
often inaccurate, co-reference resolution is often poor, and Often some amount of coreference resolution must hap-
data mining is not able to recover from a noisy database. pen in order to gather all fields of a record because the infor-



mation is dispersed across multiple sentences, paragraphstan from unstructured text.
documents. Thus we have a difficult chicken-and-egg prob- A few preliminary research-level exceptions are discussed
lem: to perform accurate coreference we need a multitude af section 4. Two larger-scale exceptions are FlipDog.com
evidence from different fields of a record, but to gather all the(a database of job openings populated mostly through ex-
fields of a record we rely on coreference resolution. Corefertraction), and CiteSediawrenceet al, 1999 (a database
ence resolution and record (relation) building should happeiwnf research papers and citations populated through various
simultaneously in a coordinated effort. automatic methods). However, FlipDog makes significant
Part of the reason coreference has historically been sconcessions in recall to obtain higher precision, and also re-
problematic in text domains is that it sits on the boundarylies on non-trivial amounts of human verification to clean
between extraction and data mining. Formation of the fieldsts databas¢McCallum, 2002. In CiteSeer, the extraction
and records is addressed by extraction; record de-duplicationf research paper references is significantly easier than most
is usually seen as a database issue. However, as we hakiads of named entity extraction from less structured data,
just pointed out, they rely on each other in highly intertwinedand CiteSeer still makes many significant errors in extraction
ways. They cannot be deeply solved separately. This is pa&nd coreference (as described in the “Russell and Norvig” ex-
ticularly true of cross-document coreference, an extremelample in section 2).
important problem that has received little attention. We believe that extraction and data mining should be able
Early work on relational coreference resolution includesto help each other through close coordination rather than each
Pasulaet al. [2003 and McCallum and Wellnei2003; the  failing separately. We describe our approach in some detail
later is briefly described in section 3.4. in the next section.

2.3 Fragile data mining 3 A Solution

One might hope that data mining techniques could compen- ) ) , i
sate for the errors introduced by inaccurate extraction an@Uur approach to both information extraction and data min-
poor coreference resolution. Research in data mining has 89 1S based on statistical machine learning and probabilistic
long history of constructing accurate models using combinaModels. These methods have had a high degree of success in
tions of many features. Work with decision trees, Bayesiarfach of the two fields recently. There are also strong benefits
classifiers, support-vector machines, and ensemble method®, Using models of IE and data mining that are tightly com-
has produced methods that combine large numbers of (poteRatible with each other—with both of them speaking the lan-
tially noisy) features into a single model that can “damp out”guage of probabilities, they will share a common, low-level
high levels of noise and allow accurate predictions. communication medium. _ _ _

Unfortunately, this existing work on high-accuracy clas- I fact, we propose a model that is so tightly integrated that
sifiers presumes propositional instances, each of which hd§€ boundaries between IE and data mining disappear. Our
large numbers of features. In contrast, data produced by iRfoposed unified system can be understood as a single, large
formation extraction has a rich relational structure, but eactgonditionally-trained undirected graphical model. This is a
entity and relation has relatively few features. This obviatedyP€ of probabilistic model that excels at capturing highly in-
the strategies used to such great effect in propositional learrierdependent, relational data in which strict causality among
ers, and can often result in brittle, inaccurate models. Som8Vents is not necessarily apparent—a set of circumstances ap-
relational learning techniques attempt to overcome this difP€aring both in low-level text data and higher-level relational
ficulty by constructing relational features to supplement thedata mining. . .
relatively small number of intrinsic features present in the raw In the next subsections we describe how recent research
data. However, such calculations rely simultaneously on botf both information extraction and data mining have inde-
extracted relations (the most error prone element of extracte@endently arrived at undirected graphical models, and then
data) and extracted features, so they suffer from the combine@escribe our proposed unification, the advantages of our ap-
errors of both types of data. proach, and several specific models.

Fortunately, relational graphical models can leverage twqg ) ) )
sources of added power to compensate for the relative lack-1 Models for information extraction

of high-quality features. First, these models can incorporatginite state machines are the dominant model for information
information about the uncertainty of the underlying data to in-extraction both in industry and research. There was signifi-
fluence how strongly specific features influence predictionscant early work with hand-tuned finite state transducesg,

By using uncertainty estimates on extracted entities, relationgJerryet al., 1996, but more recent work is with finite state
and features, the models can “play to the strengths” availablghachines whose parameters are set by machine learning—
in extracted data. Second, these models can use the relationgabst commonly hidden Markov moddBikel et al, 1997;
structure of the data themselves so that high-confidence infe[-eek, 1997; Freitag and McCallum, 1999; Ray and Craven,
ences about some entities can be used to aid inferences ab@g].

related entities. We discuss this approach in more detail in Hidden Markov models have parameters for state-to-state

section 3.3. transition probabilities and per-state observation emission
probabilities. From these one can easily calculate the proba-
2.4 Consequences of Problems bility that the model would have generated a particular state

The consequence of these problems is that little or no datsequence associated with a particular observation symbol se-
mining is conducted on databases produced through extragquence. When used for extraction, the emission symbols are



typically natural language words, and states are associate?l2 Models for data mining

with different extraction fields. For example, to extract per-york on data mining has traditionally relied on a common
son names, the hidden Markov model may have two stategamily of techniques for learning statistical models from
one forperson-names, and one foother. To perform ex-  honositional data. For example, algorithms that learn deci-
traction on a particular word sequence, one uses the Vlterkgion treedQuinlan, 1993; Breimagt al, 1984, linear mod-
algorithm to find the state sequence most likely to have geng|s[McCullagh and Nelder, 1989and simple Bayesian clas-
erated the given the observed word sequence, and then degriers[Mitchell, 1997 are typical parts of many data mining
ignates as person names any words Viterbi that claims Wergystems. More recently, work has focused on how to com-
generated while in thperson-name state. bine simple models into more complex models such as en-

A disadvantage of hidden Markov models is that, beingS€Mbles learned through bagglyeiman, 199pand boost-

generative models of the observation sequence, they are linff?d [Schapire, 1999 Finally, the use of graphical models of
ited in their ability to represent many non-independent, overPropositional datgJordan, 199Bhas become widespread, of-
lapping features of the sequence. In other words, since th€" incorporating simple classifiers such as decision trees to
observations argeneratedy the model, the model must rep- €Stimate conditional probability distributions. y
resent any correlations between features in order to faithfully Unfortunately, attempting to adapt these propositional
reproduce them. When there are many correlated features, 2/Ners to relational data can lead to serious statistical er-
complex dependencies among them, (or a desire to captuf@rS: Over the past two years, the second author has iden-
features at multiple levels of granularity and features of the!l1€d several ways in which the structure of relational data

past and future), this modeling is prohibitively difficult, (and @0 cause significant bias in learned models. For example,
in many cases impossible). many relational data sets exhibit autocorrelation among the

features of relational entities (e.g., most coauthors of a pa-
The ability to use arbitrary features is important becauseer tend to be employed by a single type of organization).
often significant features of the observation sequence includ€his autocorrelation can be useful for prediction, but it can
not just the identity of the words, (e.g. the word “Wisniewski” also systematically bias naive learning algorithms toward fea-
was observed), but also other features of the word and itkires with theeastsupporting evidencElensen and Neville,
context—for example, it is capitalized, it ends in “ski,” itisin 2004. More recently, we have also discovered that corre-
bold face, left justified, it is a member of a list of last nameslation between the feature values and the structure of rela-
from the U.S. Census, the previous word is a recognized firdgional data can cause naive learners to produce models with
name, and the next word is “said”. All of these are powerfulinvalid structure[Jenseret al, 20034. We have found so-
pieces of evidence that the word is a person’s last name-utions to both these probleniSensen and Neville, 2003;
especially useful evidence if the word “Wisniewski” does notJenseret al, 20033 and incorporated them into our own re-
appear anywhere in the labeled training data, (a typical cirtational learning algorithms.
cumstance in the common case of limited labeled data). Another failing of many traditional data mining techniques
. N is that they do not use uncertainty information on data items.
Furthermore, and highly significant to our approach, wepjthough we know the probability of correct extraction for
also want an information extraction model that provides & given entity or relation, most data mining models cannot
place for data mining to inject arbitrary “top-down” infor- ;se that information during learning or inference. Notable
mation that could improve extraction accuracy. A simple,exceptions are the techniques for learning and inference in
yet powerful interface between data mining and extraction igraphical models.
for the extraction model to see the output of data mining €s=" A fing| failing of traditional models learned through data

sentially as additional features.—top-dow.n f_eatures in_stead %ining is that they make predictions for each instance (e.g.,
bottom-up word features. Details and variations are discusseg, ., document) individually, independent of any other. These

in the following subsections. approaches typically “propositionalize” the data, by flatten-

Maximum entropy Markov models (MEMM$McCallum N9 complex relational da}ta into a S|_ngle table. Such ap-
et al, 20003 and conditional random fields (CRA&fferty ~ Proaches miss the potential opportunity to correct for errors
et al, 2007 are two conditional-probability finite state mod- O" SOMe instances based on higher-confidence predictions
els that—because they are conditional instead of generative-2P0Ut related instances.

afford the use of arbitrary features in their modeling of the _Fortunately, a small but growing body of researchers is ex-
observation sequence. ploring new methods for relational data mining that overcome

these difficulties. These techniques move beyond naive adap-

Conditional Markov models have provided strong empir-tations of methods for propositional learning, and they take
ical success. They extracted question-answer pairs froreeriously the unique opportunities and challenges presented
Frequently-Asked-Question lists with double the precision ofby relational data. One excellent example is the work by
an HMM [McCallum et al, 20004. They reduced part-of- Getooret al. [200] on learning probabilistic relational mod-
speech tagging errors on unknown words by 50% over aels (PRMs), a form of directed graphical model that learns the
HMM [Lafferty et al, 2001. They have achieved world-class interdependence among features of related entities. PRMs
results in noun phrase segmentatiSha and Pereira, 2003a have been applied to learning relationships among movies
They found tables in government reports significantly moreand their actors, among tuberculosis patients and their con-
accurately than previous methofRintoet al, 2003. They tacts, and among Web pages.
remain an extremely promising area for new research. Despite their power, PRMs are unable to express many of



the types of mutual dependence among features becausebatween “Beth Smith” and “Tracy”. Since the data mining

PRM must be alirected acyclicgraph. For example, the model parameters indicate that this relation only occurs be-

acyclicity constraint makes it nearly impossible to express autween a person and a project, it can be correctly deduced that

tocorrelation[Jensen and Neville, 2002a nearly ubiquitous the word “Tracy” must be a project name here, not a person

feature of relational data sets. Autocorrelation can be used toame. And furthermore an appearance of the person name

greatly improve model accuracy through the natural feedbacKTracy Jones” on a different Web page can correctly be said

of probabilistic inference. not to be co-referent with the project “Tracy” on the first page.
Undirected graphical models, however, remove theAll of these constraints are communicated in subtle shades of

acyclicity constraint, and some of the most advanced workrobability that work themselves out through the statistically

in relational learning has focused on these models in th@rincipled methods of inference.

past two years. These models combine the benefits of tradi- . )

tional graphical models, including understandability and in-3-4 Conditional Random Fields

corporation of uncertainty, with the advantages of full infer-|n this section we define conditional random fields and

ential feedback. Studies o&lational or collective classifi- describe how they may be used to create unified models

cation with undirected model§askaret al, 2002; Neville  for information extraction and data mining—illustrating this

and Jensen, 200Cthave shown impressive gains in accu- framework with several specific examples.

racy. Based on the our preliminary work, undirected graph- Conditional Random Fieldd afferty et al, 2001 are undi-

ical models of relational data are poised to produce subrected graphical models (also knowrrasdom fieldyused to

stantial accuracy gains in almost all cases, analogous to thglculate the conditional probability of values on designated

type of gains seen with ensemble classifl@giman, 1996;  output variables given values assigned to other designated in-
Schapire, 1990and for the same reasons—substantial reducput variables.

tions in variance because of an increase in the evidence used| et X be a set of input random variables, a¥iche a set of

for each inferencéJenseret al, 2003H. output random variables. Then, by the fundamental theorem
. of random fielddHammersley and Clifford, 1971a condi-
3.3 AUnified Model tional random field defines the conditional probability of val-

Thus, conditionally-trained, undirected graphical models aréiesy given valuesk to be a product of potential functions on
at the heart of recent work in two fields: one examining datecliques of the graph,
at word level for information extraction, and the other exam-

ining data at the entity level for data mining. Even though P(ylx) = 1 H D (X, ¥e)s

they provide modeling at different levels of abstraction, they Zx ceC

meet each other at the entity level, and are fundamentally pro- ) »

viding models of the same data—one “bottom up,” the othewhere Zx = >_., [[.cc Pc(xc,yc) is the partition func-
“top down.” tion (normalizer),C is the set of all cliques®.(-) is the

The two models are entirely compatible with each otherpotential function for cliquec, x. is that sub-set of the
An undirected graphical model of information extraction canvariables inx that participate in clique:, andy. is de-
be combined with an undirected graphical model of data minfined analogously. We calculate the potential functions as a
ing in one grand, unified graphical model—a unified proba-log-linear combination of weighted featureB,(x.,y.) =
bilistic model, with a unified representation of data and out-exp(> ;. Aicfre(Xe, ¥e)), Wherefic(si—1, s¢, 9, t) is an arbi-
comes, a unified set of parameters, unified inference procdrary feature function over its arguments, and is a learned
dures, and unified learning procedures. weight for each feature function.

Seen in this light, information extraction and data min-
ing are not separate processes, but a single collective whol
No hard, brittle decisions need to be made at one stage of
pipeline in order to be passed to the next stage—the subtle ! ) .
and most uncertain of hypotheses can be communicated bagXFS make a first-order Markov independence assumption
and forth between extraction and data mining, each helpiné‘".10ng output nodes, and thus correspond to finite state ma-
the other converge to an agreed upon conclusion. hines (FSMs), which have been shown to be suitable se-

For example, consider the following scenario. Word-leve|dU€Nce mOdI?IS for :jnfqrmatlon extractiang. [Bikel et al,
features alone might leave ambiguous whether an appearan$897' McCa ‘um‘an Li, 2003 .
of the word “Tracy” on a university Web page is a person -6l X = (z1,22,...z7) be some observed input data se-
name or a project name. An appearance of “Beth Smith” orfluence, such as a sequence of words text in a document, (the

: : : lues om input nodes of the graphical model). L&the a
the same page might more certainly be hypothesized to be‘fgt of FSM states, each of which is associated with a label,

Linear Chain
Eg’ the special case in which the designated output nodes of the
ggphical model are linked only by edges ifisear chain,

person name. Through initial coreference analysis, we migh £ (such as a label ERSON. Let v —
find Beth Smith's home page, and her relations to some othdr € £+ (SU  tat ’\%h Iy « <yt1’yt2’ "‘é’T>
people. These patterns of relations (in combination with th?® SOMe sequence of states, (the value$' @utput nodes).

. :Ii . . ” . P
words on her home page) might cause the model to decide 2The term “random field” has common usage in the statistical

that Beth Smith is likely a professor. Knowing this might physics and computer vision communities. In statistics the same
help provide just enough additional evidence to the extraCmodels are also known as “Markov networks.” THdenditional

tion model running in the context of the original page thatmarkov NetworkdTaskaret al, 2003 are identical to Conditional

it is able to hypothesize Rrincipal-Investigator-Of relation ~ Random Fields.



CRFs define the conditional probability of a state sequencéffinity- or Relationship-Matrix

given an input sequence as When predicting entity coreference (or other types of rela-
tionships), rather than a sequence of labels, let the output be

) T a matrixw = {w;1,wa, .. ws, ... wpr} Of labels on pairs
Pi(vlx) = — e A - x,1) . of vx_/o_rds (or ent|t|e$), and formlng a matrix of .coreference
A1x) Zx P <;§k: REUSRS )> decisions or other binary relationships. We define the distri-
B bution,

This model ties parameters = {),...} across sequence
positions, but this is just one possible type of tying. Various
patterns of parameter tying may be based on arbitrary SQL- 1 ,
like queries[Taskaret al, 2004. Several specific patterns Py (wlx) = 7 eXP ZZ)‘k’fk’(wtt/vX»tvt)
relevant to unification of extraction and data mining are de- x 2
scribed below. Many others in this framework are also possi-

ble. + Z A fe(Wegr , Wergrr, wegrr )
Cross-referenced Linear Chain bt b

The previous model captures dependencies between adjacent.l_h. del. in which inf d h
pairs of labels, but in some cases we may have reason to be.. | /s Model, in which inference corresponds to graph par-
lieve that other, arbitrarily-separated words have depender@omng’ is further described in McCallum and Wellner
labels. For example, capiuring the fact that two identical capt2003, where the need for dependencies amongutsén the

italized words in the same document often should share thgecond sum is also explained. Another variant described there
same label will help us know that “Green’” is a last name Whenals:o predicts attributes associated with entities. The matrix

we have seen the phrase “David Green” elsewhere in th aTI be Tafjezcs)gg(rjse by approximation witanopies[Mc-
document. Such dependencies among selected [airsf allumetal, '
arbitrarily-separated words can be represented withoas-  Factorial Chain and Relationship-Matrix

referenced linear chain Entity extraction, classification of entities, coreference, and
determination of other relationships among entities can all be

1 T performed simultaneously by a factorial model over chains

Pi(vlx) = — ex A LU X, T and matrices. This is a model that could solve the “Tracy”
A1) Zx P (;zk: i1, ) problem described above. The equation (which we omit to
save space) includes a straightforward combination of the

sums from the previous two models, plus additional desired
+ Z Z A T (Yes Yo %, 1) dependencies among output variables. Other promising vari-

(tt')eP K ations include the integration of hierarchical models corre-

Note that the edges among the output variables now forrf?’pondmg to parse trees.

loops, and inference is more difficult than before. Approxi- Inference and Parameter Estimation

mate inference methods are discussed below. Given an inference procedure, parameter estimation in all

Factorial Linear Chain these models can be performed with standard optimization
- - . dures such as conjugate gradient or approximate quasi-

When there are multiple dimensions of labels to beProce i X

predicted—for example part-of-speech, phrase boundarie éewton ;ne}_hod{;l\/lglr(])qf, 200dZ,|Sha agd Per}c{awa, qu’ﬁmr ’

named entities, and the classification of entities into cate'c c'c€ '0r Linear Lhain Models can be performed eticiently

gories (such as BIDENT and FROFESSOB—these multi- with dynamic programminglafferty etal, 2001. The other
]x:nodels have loops among output variables, and thus we must

esort to approximate inference. Approximate inference in
he Affinity-Matrix models can be performed by randomized
graph partitioning algorithms, as describedMcCallum and
Wellner, 2003. We have had considerable success perform-
ing inference in the Factorial Linear ChaiRohanimanesh
and McCallum, 200Bwith Tree-based Reparameterization
[Jaakkolaet al, 2001. Improved methods of efficient ap-
proximate inference in these models remains an open area
ZAkfk(ytflayt,Xa t) for research. Feature induction (which also corresponds to
k graphical structure induction for these models) is described
in McCallum[2003.

ficiently represented in a factorial model. Ghahramani an
Jordan[1999 describe a factorial HMM. Factorial CRFs are
detailed inf[Rohanimanesh and McCallum, 2Q0and define
the probability of two label sequence factoysandy’, con-
nected in a grid as

M=

1
Pa(y,y'|x) = -~ ©Xp (

“
Il

1

E

+ )\k’fk’(yéfh y£>X7 t)

1K 4 Related Work
There has been a large amount of previous separate work on

et fror (Y, Yty X, t)) . information extraction and data mining, some of which has
been referenced and described previously in this paper.

+

M~ 1

t=1 Kk’



4.1 Relational extraction and data mining may merge records based on TF-IDF similarity instead of ex-
act matches—doing so on the fly in response to a particular

There is also a new and growing body of work in extractlonquery_ This approach is intriguing, but it seems only to delay

of relational data, as well as separate work in data MININGhe inevitable difficulties. Much noise and error remains in

of relational data. In extraction, the association of entities I :
into relations has traditionally been performed by classifica—these soft joins, and this approach could not support complex

tion of entity pairs independently from each other. For ex_relatlonal data mining. : . :

ample, noun coreference can be decided by the output of g SOMe Of the most truly integrated work in extraction and
binary maximum entropy classifier indicating whether or notdat@ mining has been done by Ray Mooney's group at UT
the two nouns in the pair are co-referéMorton, 1997. The Austin. For example, in one project, twelve fields of data are

binary classifiers can also be quite sophisticated, for exampIFXtraCtegr;ro? %EN ETI c&)mputer-relayed JIOb ads “S'rr‘lg %rUIe
using SVMs with complex kerne[Zelenkoet al., 2003. earner. Thefields include programming-language, haraware-

However, these methods perform entity extraction com platform, application-area, etc. A second rule learner is ap-

pletely independently from association (causing error lied to an imperfectly-extracted database to produce rules

to compound), and also make coreference and relation[-hatw'” predict the value in each field given the others. Then

. i : hese rules are used to fill in missing values and correct er-
formation decisions independently from each other (allow-, oy traction—a very nice example of “closing (one turn
ing decisions to be inconsistent and errorful). For example

one classifier might decide that “Mr. Smith” is co-referent of) the loop.” This work is a promising first beginning; there

with “Smith,” and another classifier might incompatibly de- remain much additional work to do, especially in the use of

: s ha i S b stronger statistical machine learning methods, such as graph-
ﬁgt?véh:;;?(l)zcﬁrgt?o 'esxt(ﬁg;[e;irdergu\i'lv(;t?elzgghs ﬁ]naalst?nréleical models, that have provided world-class performance in
- : other independent extraction and data mining problems. This
augmented finite state machifi@ay and Craven, 200 or is the aper())ach we put forward in this paperg P
parsing mode[Miller et al, 200d, however this only oper- ’
ates over relations formed within one sentence. Other work )
[Roth and tau Yih, 2002recognizes and models the depen-5 Conclusions

dencies across multiple entity classifications and relationswe have presented motivation. problems and proposed So-
however it relies on entity extraction having already been - P e ' P ; prop .
utions for a unified framework of extraction and data min-

performed. Recent work in coreference analysis also explic- using conditionally-trained undirected graphical models.

itly models the dependencies among coreference decisions gty e X . .
multiple pairs of pre-extracted entitiéBasulaet al, 2002; qﬁlk%s approach addresses the three critical topics of integrating

McCallum and Wellner, 2043 extraction _and data mining:
As described in sect’ion 3.2, there has been a recent surg%létri‘gﬁrfgg%2;:”;%??eg:e_rlhfeggﬁggeif’]esrggggmt e)((j-is-
of research on relational data mining. Particularly notabletr 9 P P y

is work based on undirected graphical moddaskaret al ibutions on nodes of the graphical model. For example, in
2003, (and also indirectlfNeville and Jensen, 2000 The €xtractionsections of the model, a node might represent an in-

former involves experiments on data mining of academic englwdual word, and contain a probability distribution over the

s, alfough i does 50 through Wieb page and hyperin1Y abeierson, projet Umversiy. atherete In e
classification, not through full information extraction (which g ' 9 P

would involve extracting multiple sub-segments of text Onrelation between two entities, and contain a probability distri-

a page, and more difficult coreference and relation-buildinggu'".On over the labelprincipal-investigator-of, adviser-of,
analysis). roject-colleague-of, etc.

With both extraction and data mining embedded in the
P ; : same model, intermediate hypothesis are naturally communi-
4.2 cllze?tg.ymmilr?irnkgm integration of extraction and cated back and forth in the language of probabilities. Rather
than being a problem, uncertainty becomes an opportunity—
There has still been relatively little work on integration be- with the ability for the intermediate hypotheses of data min-
tween extraction and data mining. Most current work is beting to improve extraction, and vice-versa.
ter characterized as serial juxtaposition, (el@haniet al., Inferential Feedback — Closed-loop feedback between
200d), or mining raw text data (such as documents, webextraction and data mining is a natural outcome of inference
sites, hyperlinks, or web logs), (e.gHearst, 1999; Craven in the unified graphical model.
et al, 1998; Taskaet al, 2002; Kosala and Blockeel, 2000;  Note that there has been some previous work on feeding
Andersonet al, 2003), but not mining a rich database re- extracted data into data mining (see section 4), and perform-
sulting from information extraction, (that is, sub-segments ofing inference on this noisy data. However, we are proposing
text on a page, each referring to different entities—which ismodels that actually “close the loop” by feeding results of
significantly more difficult). data mining back into extraction, and looping back to data
One interestingly different approach does not aim to eximining repeatedly. This closed-loop, bi-directional commu-
tract a correct database, but instead attempts to data minenécation will allow subtle constraints to flow both directions,
“soft database” consisting of the raw text of each mentionjet sharper conclusions be formed by the agglomeration of
(without any coreference analysis having been performednultiple pieces of uncertain evidence, and help turn the com-
and perhaps with extraction boundary errof€phen and munication of uncertainty into an advantage, not a disadvan-
Hirsh, 1998. New database operations, such as “soft joins’tage.
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Abstract are applicable only to this universe. In practice, however,
) . _ ) there is an evident need to generalize conclusions obtained
The Variable Precision Rough Set Inductive Logic from a smaller set of examples to a larger population. The
Programming model (VPRSILP model) extendsthe  \/pRS model allows for a controlled degree of misclassifica-
Variable Precision Rough Set (VPRS) model toIn- jon Any partially incorrect classification rule provides valu-

ductive Logic Programming (ILP). The VPRSILP able trend information about future test cases if the majority
model is considered from the Statistical Relational  f gvailable data to which such a rule applies can be correctly
Learning perspective, by comparing and contrast-  ¢|assified.

ing it with Stochastic Logic Programs. This paper presents the Variable Precision Rough Set

Inductive Logic Programming moddMaheswariet al,
_ _ , . 20014, an extension of the gRS—ILP model using features
Keywords: Rough Set Theory; Variable Precision Rough ot the VPRS model, and compares and contrasts this model

Sets; Inductive Logic Programming; Machine Learning; Stasjith Stochastic Logic Prograni#luggleton, 2000
tistical Relational Learning '

2 Inductive Logic Programming

1 Introduction The semantics of ILP systems are discussefMaggleton
Inductive Logic Programming (ILHMuggleton, 1991isthe  and Raedt, 1994In ILP systems, background (prior) knowl-
research area formed at the intersection of logic programmingdgeB and evidence® (consisting of positive evidencg*
and machine learning. ILP uses background knowledge, angdnd negative evidencE~) are given, and the aim is then to
positive and negative examples to induce a logic program th&ind a hypothesig? such that certain conditions are fulfilled.
describes the examples. The induced logic program consists In the normal semantigs the background knowledge,
of the original background knowledge along with an inducedevidence and hypothesis can be any well-formed logical
hypothesis. formula. The conditions that are to be fulfilled by an ILP
Rough set theoryPawlak, 1982; 1991defines an indis- system in the normal semantics are
cernibility relation, where certain subsets of examples can- Prior Satisfiability:B A E~ [ O
not be distinguished. A concept is rough when it contains Posterior SatisfiabilityB A H A E~ (£ O
at least one such indistinguishable subset that contains both Prior NecessityB ~ E*
positive and negative examples. It is inherently not possible Posterior SufficiencyB A H = ET
to describe the examples accurately, since certain positive and
negative examples cannot be distinguished. However, thedefinite semantigsvhich can be considered
The gRS-ILP moddISiromoney, 1997; Siromoney and In- as a special case of the normal semantics, restricts the
oue, 2002 introduces a rough setting in Inductive Logic Pro- background knowledge and hypothesis to being definite
gramming. It describes the situation where the backgroundlauses. This is simpler than the general setting of normal
knowledge, declarative bias and evidence are such that any isemantics, since a definite clause theftyhas a unique
duced logic program cannot distinguish between certain posninimal Herbrand modeM ™ (T'), and any logical formula is
itive and negative examples. Any induced logic program willeither true or false in the minimal model. The conditions that
either cover both the positive and the negative examples iare to be fulfilled by an ILP system in the definite semantics
the group, or not cover the group at all, with both the positiveare
and the negative examples in this group being left out. Prior Satisfiability: alle € E~ are false inM™(B)
The Variable Precision Rough Set (VPRS) mold&arko, Posterior Satisfiability: alle € FE— are false in
1999 is a generalized model of rough sets that inherits all ba:\ ™ (B A H)
sic mathematical properties of the original rough set model. Prior Necessity: some € E* are false inM*(B)
Rough Set Theory assumes that the universe under considera-Posterior Sufficiency: at € E* are true inM* (B A H)
tion is known and all the conclusions derived from the model



The Sufficiency criterion is also known @empleteness has a carbon atom, negative example moledyleas an oxy-
with respect to positive evidence and the Posterior Satisfiagen atom, negative example molecdiehas a nitrogen atom,
bility criterion is also known asonsistencyvith the negative  and so on. The background knowledgehas only ground
evidence. facts, using the predicai@om, and so does not cover any

The special case of definite semantics, where evidence ®xample. It is seen that for al- ¢ E~, B If ¢7, and
restricted to true and false ground facts (examples), is calletbr somee™ € E*, B I/ e*. (Two conditions (i) and (ii)
the examplesetting. The example setting is thus the normalof an ILP system in the example setting hold.) Lt =
semantics withB and H as definite clauses ardas a set of  {p(dl),p(d2),p(d3)}. Thenforalle € E—, BAH /e,
ground unit clauses. The example setting is the main settingnd for alle™ € E*, BA H + e*. (Two conditions (iii) and
of ILP employed by the large majority of ILP systems. (iv) also hold.)

3 Formal definitions of the gRS—ILP model The following definitions of Rough Set ILP systems in the

The generic Rough Set Inductive Logic ProgramminggRS—ILP model (abbreviated &SILP systemsise the ter-
(gRS—-ILP) model introduces the basic definition of elemen-minology of[Muggleton and Raedt, 1994

tary sets and a rough setting in ILRSiromoney, 1997;

Siromoney and Inoue, 2002The essential feature of an el- Definition 3.2.  An RSILP system in the example setting
ementary set is that it consists of examples that cannot bgibbreviated as RSILP-E system) is an ILP system in the
distinguished from each other by any induced logic programexample settingS.; = (E.s, B), such that there does not
in that ILP system. The essential feature of a rough setting igxist a programP ¢ P(S,,) satisfying both the conditions
that it is inherently not possible for certain positive and neg-jii) and (iv) above.

ative examples to be distinguished, since both these positive

and negative examples are in the same elementary set. The

basic definitions formalised ifSiromoney and Inoue, 20D0  Definition 3.3. An RSILP—E system in the single—predicate

follow. learning context(abbreviated as RSILP-ES system) is an
The ILP system in the example setting[dfuggleton and  RSILP-E system, whoseiverseF is such that all examples
Raedt, 199%is formally defined as follows. (ground facts) inE use only one predicate, also known as the

target predicate
Definition 3.1. An ILP system in the example settirgya
tuple Ses = (F.s, B), where A declarative biagMuggleton and Raedt, 1994estricts
(1) E.s = EX, U E_, is theuniverse whereE; is the set of  the set of acceptable hypotheses, and is of two kisgistac-
positive examples (true ground facts), afd, is the set of tic bias (also calledanguage biasthat imposes restrictions
negative examples (false ground facts), and on the form (syntax) of clauses allowed in the hypothesis, and
(2) B is a background knowledge given as definite clausesemantic biashat imposes restrictions on the meaning, or the

such that (i) for alle™ € E_,, B t/ e~, and (ii) for some behaviour of hypotheses.
et € Ef,, Bifet.

Definition 3.4. An RSILP-ES system with declarative bias
Let S.s = (E.s, B) be an ILP system in the example set- (abbreviated as RSILP-ESD system) is a tuple: (S’, L),
ting. Then letH(S.s) (also written asH(E.s, B)) denote  where
the set of all possible definite clause hypotheses that cafi) S’ = (E, B) is an RSILP-ES system, and
be induced fromE.; and B, and be called théaypothesis (i) L is a declarative bias, which is any restriction imposed
spaceinduced fromS,; (or from E.; and B). Further, let  on the hypothesis spaé(E, B).
P(Ses) (also written asP(E.s,B) = {P = BAH | H € WealsowriteS = (E, B, L) instead ofS = (5’, L).
H(E.s, B)}) denote the set of all the programs induced from
E.s and B, and be called therogram spacenduced from
Ses (or from E,.; and B). For any RSILP—ESD syste$i= (E, B, L), let
The aim is to find a progran? € P(S.s) such that the H(S)={H € H(E,B) | H is allowed by L}, and
next two conditions hold: (iii) foralt~ € E_,, Pt/e ,(v) P(S)={P=BAH|H e H(5)}
foralle™ € Ef, PFet. H(S) (also written asH(FE, B, L)) is called thehypothesis
spaceinduced fromS (or from E, B, andL). P(S) (also
The following simple illustration is used to explain this written asP(E, B, L)) denotes the set of all the programs

definition. LetS = (F, B) whereE = ET U E~, induced bysS, and is called th@rogram spacénduced from

ET ={p(dl),p(d2),p(d3)}, S (or from E, B, andL).

E™ = {p(d4),p(d5), p(d6)} and

B = {atom(d1, ¢), atom(d2, ¢), atom(d3, o), atom(d4, o), It is seen in the illustration used earlier that the ILP sys-

atom(d5,n), atom(d6,n)}. Without loss of generality, only tem can exactly describe the set of positive examples, but
six examples are considereddl), p(d2), p(d3), p(d4), in a manner that is not very useful, since the hypothesis is

p(db), p(d6) in our universe of examples. The backgroundthe same as the positive example ground facts. If the terms
knowledgeB indicates that the positive example moleciéife  d1,...,d6 are not allowed ind, then withH = {p(A) —



atom(A,c)}, foralle~ € E-, BAH ¥ e=. However 4 Formal definitions of the VPRSILP model
o + + + si
%'i ]rgjorftrtésg’t)hgtglr a(lgeondeitifrj] (iii)]i(ﬁdg bFuteno,t iglﬁgi- The formal definitions of the VPRSILP model are defined in
tion (iv) )p ' : [Maheswarkt al., 20014.

: b A parameters, a real number in the randg8.5, 1], is used
\é\lllltgHe_Eip (%) /T Hatﬁ ?£A’ﬁé$éégriigtg$(tﬁjg )t%’iofror in the VPRS model as a threshold in elementary sets that have

ale- € E-, BAH i/ e, sinceB A H - p(d4) € E- both positive and negative examples. This threshold is used
(Condition (i\7/) holds. but not condition (iii).) ~ todecide if that elementary set can be classified as positive or
This is formalised in the definition of the RSILP—ESD sys- negative, depending on the statistical occurrence of positive

tem. LetS = (E, B, L) whereE and B are as given above, 2nd negative examplesin it.
andL is the declarative bias such thét, . . ., d6 is not a term
ing(...)forany H € H(S), anyC € H, and any predicate
q(...)eC

Definition 4.1. A Variable Precision RSILP-ESD sys-

tem (abbreviated as VPRSILP-ESD system) is a tuple
= (5, 8), where

An equivalence relation on the universe of an RSILP—ESD(') 5" = (E, B, L) is an RSILP-ESD system, and

. fined. (i) gis a real number in the range.5, 1.
system is now defined Itis also writtenS = (E, B, L, 3) instead ofS = (8, 8).

Definition 3.5. LetS = (F, B, L) be an RSILP-ESD sys-

tem. An indiscernibility relation of, denoted byR(S), is a _r , )
relation onZ defined as followsYz,y € E, (z,y) € R(S) The def|n|t|o_ns of hypothesis space, program space, equiv-
iff alence relation, elementary sets, composed sets and rough

(Praz e Py foranyP € P(S) (ie. iff 2 andy are setting defined above for RSILP-ESD systems hold for the

inherently indistinguishable by any induced logic progrem VPRSILP-ESD system.
in P(S5)).
() The following definitions use the VPRS terminology from

The following fact follows directly from the definition of [Anetal, 1997.

R(S5).
(5) ) ) Definition 4.2. Theconditional probabilityP(E* | [z] g(s))
Fact 1 For any RSILP-ESD systeff\ R(S) is an equiva- s defined as

lence relation.

+ P(E* Nlelrs)) _ | EY N[z]rs)) |
P(E™ | [2]r($)) = = P(Elunes) elns) |

Definition 3.6. LetS = (F,B,L) be an RSILP-ESD

system. Anelementary seof R(S) is an equivalence class  whereP(E* | [2] r(s)) is the probability of occurrence of
of the relationR(S). For eachr € E, let [z](s) denote the  ayentE+ conditioned on everit:] ps)-

elementary set aR(S) containingz. Formally,

[@]res) ={y € E| (z,y) € R(5)}. It is noted thatP(EJr | [#]res)) = 1 if and only if

A composed setf R(S5) is any finite union of elementary [, rs) C ET

sets ofR(S). P(ET ||z ]R(s ) > 0ifand only if [z] g5y N ET # 0
andP(EJr | [#]r(s)) = 0ifand only if [z] g5y N ET = 0.

Definition 3.7. An RSILP-ESD systen = (E, B, L) is - . . .
said to be in aough settingff y ( ) Definition 4.3.  The g—positive regionof S, Posg(S), is

Jet € B+ Jom € E- ( (o+,e-) € R(S) ). defined as
(( ) (5)) Posg(S) = UP(E+ | [z]res)) >= B, for all [¢]r(s) in R(S) {[z]res)}
It is seen fromE, B, and L in the illustration used The3-negative regiorf S, Negs(S), is defined as

earlier that R(S) = { (p(dl),p(d2)), (p(d2),p(d1)),  Negs(S) =Up(m+ | (a]nes)) < 8. for all [a]nes) n &(s) UZR(S)}
(p(d3), p(dd)), (p(d4), p(d3)), (p(d5), p(d6)),
(p(d6),p(d5)) }. . ,

The elementary sets di(.9) are Definition 4.4.  The [—restricted program spacef S,
{p(dl), p(d2)}, {p(d3), p(d4)}, {p(d5), p(d6)}. Ps(S) (also written asPs(E, B, L, 3)), is defined as

The composed sets &(.S) are P3(S)={P eP(S)| P+ x=x € Posg(S5)}.
{}, {p(d1), p(d2)}, ..., {p(d1), p(d2), p(d3), p(d4)}, ..., Any P € P3(S) is called a3-restricted program of.
{p(d1),p(d2), p(d3), p(d4), p(d5), p(d6)}.

Sisin a rough setting singg(d3) € E*, p(d4) € E~ and
(p(d3),p(d4)) € R(S5). Our aim is to find a hypothesiH such thatP = B A H €

Ps(S).

Other work in Rough Set Inductive Logic Programming
include [Midelfart and Komorowski, 2000; Liu and Zhong, The VPRSILP model has been applied in illustrative exper-
1999. iments to determine the transmembrane domains in amino



acid sequencdd/aheswarket al, 20014 and to analyse and 6 The VPRSILP model and application to
classify web log datBMaheswarkt al., 2001a; 200B Predictive Toxicology

In this section, the cVPRSILP approach based on the
] ) VPRSILP model is outlinedMilton et al, 2003. In the
5 The VPRSILP model and Stochastic Logic  cvPRSILP approach, elementary sets are defined using at-
Programs (SLP) tributes that are based on a finite number of clauses of inter-
est.

A clauseC is said to beange-restrictedf and only if every

variable in the head of C is found in the body of Cstachas-  Predictive Toxicology Evaluation

tic clauseis a pairp : C wherep in the interval[0, 1] is the

probability associated witl’, a range-restricted clause. A The rodent carcinogenicity tests conducted within the US
set of stochastic clause? is called aStochastic Logic Pro- National Toxicology Program by the National Institute of En-
gram (SLP) if and only if for each predicate symhgplin P vironmental Health Sciences (NIEHS). has resulted in a large
the probabilities associated with all clauses wiih the head database of compounds classified as carcinogens or other-
sum tol [Muggleton, 2000 Every example derived from an wise. The Predictive Toxicology Evaluation project of the
SLP has a probability associated with it. This is the produciNIEHS provided the opportunity to compare carcinogenicity
of the probabilities associated with every clause used in theredictions on previously untested chemicals. This presented
derivation of the example. a formidable challenge for programs concerned with knowl-

In a VPRSILP-ESD systeri — (E, B, L, 3), every ex-  €dge discovery. The ILP system ProgMuggleton, 1995
ample in E falls into one of the elementary sefs] xs). has been used in this Predictive Toxicology Evaluation Chal-

An elementary set in VPRSILP, by definition, consists of eX_Ienge[Srinivasaret al, 1997a; 1997h
amples that are indistinguishable by any logic prograthat

can be induced from the examplEsbackground knowledge Elementary Sets
B and declarative biag. Every elementary sét|gs) has

a conditional probability?(E* | [z] r(s)) associated with it~ In [Pawlak and Skowron, 1999wo finite, nonempty sets
depending on the statistical occurrence of positive and negd/ and A are considered, whel€ is the universe of objects,
tive examples in it. and A is a set of attributes. With every attributec A is

ssociated a séf, of its values, called the domain of

Hence every example in VPRSILP has a probability based The set of attributest determines a binary relatioR on

value associated with it, namely the conditional probability . D o2 : \
of the elementary set in which this example occurs. This |sU R is an indiscernibility relation, defined as followsz2y

donly ifa(z) = a(y) for everya € A; wherea(x) € V,
in some sense similar to the probability associated with arj1 an
example derived from a stochastic logic program. denotes the value of attributefor objectx. ObviouslyR is

an equivalence relation. Equivalence classes of the rel&tion
However, further study of the comparison between thesgyre referred to as elementary sets.
two models is required. In CVPRSILP, letA = {Ay,..., A;, ..} be the set of
attributes, withV, {true, false} for everya € A.
Every A; € Alis assouated with the clauses of interest
The following points are observed. Cli =1,...,imaz, SUuch thatd; = true if the example can
In VPRSILP, the conditional probability associated with an be denved fronC/ A B, andA; = false otherwise. In this
elementary set is based on the examples. In other words, th@ntext, it is seen that these attributes form an equivalence
conditional probablllty is obtained from the observed data. |nre|at|on
SLP, a probability is associated with each clause, probably
using domain knowledge.

In VPRSILP, a probability value is associated with the neg-

ative examples also. In SLP a probability value of 0 is as- E|ementary sets formed from the training examples fall

signed to an example that is rejected by the SLP. into either thes—positive or the3—negative region, depending
In VPRSILP, the conditional probability associated with anon the value of3.

elementary set uses both negative and positive examples in A test example is decided as being positive or negative,

that elementary set. In other words, the negative exampledepending on whether its elementary set is inghpositive

also play a role in determining the probability value. In SLP,or the f—negative region.

the probability value is associated with a clause, and so only

th(la examples that are derived (the positive examples) play Bxperimental illustration

role.

In VPRSILP, the conditional probabilities associated with  An illustrative experiment is performed using the
the elementary sets do not form a probability distribution. IncVPRSILP model. The dataset used is the Predictive Toxi-
SLP, the probabilities associated with each clause with theology Evaluation Challenge dataset found at
same head predicate form a probability distribution. http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/canc

Beta positive and beta negative regions



In this experimental illustration, two predicates and Strings.Computational Intelligengel7(3):460-471,
has _property  and atm with four properties and three August 2001.
atom types are considered. These have been heuriSticalh(/laheswariet al, 2003 V.
chosen based on visual inspection of clauses induced by . )
Progol. Further studies are in progress to arrive at a more
systematic choice.

Uma Maheswari, Arul
Siromoney, and K. M. Mehata. The Variable Preci-
sion Rough Set Inductive Logic Programming model
Th . ber of predi . | is tak and future test cases in web usage mining. In Masahiro
) de n’;axtlmum nfur? ero pfrga tlcates_lnacaneO;s taken as |nyiguchi, Shusaku Tsumoto, and Shoji Hirano, ed-
and a finite set of clauses of interest Is generated. itors, Rough Set Theory and Granular Computing
Each of the clauses of interest is treated as an attribute, ;
. : : Physica—\Verlag, 2003.
and every example is placed in the appropriate elementary ) .
set, based on the subset of clauses which cover that exampl&idelfart and Komorowski, 2000H. Midelfart and J. Ko-

Each elementary set falls in thie-positive or the3—negative morowski. A Rough Set approach to Inductive Logic Pro-
region, depending on the chosen valugsofin this illustra- gramming. In W. Ziarko and Y. Yao, editorRough Sets
tion, we use the value 6f5. An example is predicted positive ~ and Current Trends in Computing — Second International
if its elementary set falls in thé—positive region, and is pre- Conference, RSCTC 200Decture Notes in Artificial In-
dicted negative if the elementary set falls in thenegative telligence 2005, pages 190-198, Banff, Canada, October
region. 2000. Springer.

The following table is obtained when prediction is done on[miiton et al, 2003 R. S. Milton, V. Uma Maheswari, and
the training set itself. The overall prediction accuracy is 86%.  Arul Siromoney. The variable precision rough set induc-
Further analysis needs to be done. tive logic programming model and predictive toxicology.

2003. Submitted.

Actual Positive| Actual Negative IMu
: - [Muggleton and Raedt, 19945tephen  Muggleton  and
Predicted Positive 142 22 164 | 4c De Raedt. Inductive logic programming: The-
Predicted Negative 16 111 127 ory and methods. Journal of Logic Programming
Unclassified 128 125 2 19(20):629-679, 1994,

[Muggleton, 1991 S. Muggleton. Inductive logic program-
7 Conclusions ming. New Generation Computing(4):295-318, 1991.

The VPRSILP model combines statistical and relational perlMuggleton, 1995 S. Muggleton. Inverse entailment and
spectives. The utility of the model has already been shown in Progol-New Generation Computing3:245-286, 1995.
classification experiments in computational biology and wel{Muggleton, 200D S. Muggleton. Learning Stochastic Logic
mining. A brief discussion on the similarities and differences  Programs. IMAAAI 2000 Workshop on Learning Statistis-
of the model with Stochastic Logic Programs, a Statistical tical Models from Relational DataAustin, Texas, USA,
Relational Learning paradigm, is presented. July 2000.
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Statistical relational learning (SRL) research has
made significant progress over the last 5 years.
We have successfully demonstrated the feasibil-
ity of a number of probabilistic models for rela-
tional data, including probabilistic relational
models, Bayesian logic programs, and relational
probability trees, and the interest in SRL is
growing. However, in order to sustain and nur-
ture the growth of SRL as a subfield we need to
refocus our efforts on the science of machine
learning — moving from demonstrations to
comparative and ablation studies. We will out-
line four assertions that are implicit to SRL re-
search but which have been only minimally
evaluated. We hope to stimulate discussion as to
how, as a community, these claims can be ad-
dressed in future research.

1 Introduction

In the hopes of generalizing the results of recent research
from the statistical relational learning (SRL) community,
we surveyed twenty recent SRL papers. From the papers
studied we were able to distill four implicit claims that
underlie much of the current SRL research. We present
an examination of those claims in the context of the pa-
pers surveyed.

We chose twelve of the papers as a representative
sample for the purposes of this discussion. Each paper
chosen describes and evaluates a discriminative, prob-
abilistic relational model. A descriptive list of the se-
lected models and papers appears in Table 1.

The purpose of this paper is to stimulate a discussion
of the scientific methods that will help to illustrate and
evaluate the relative merits of the different models and
their frameworks.

2 Relational vs. propositional

Claim: Models learned from both intrinsic and relational
information perform better than those learned from in-
trinsic information alone, and are therefore worth the
added complexity.

This is an implicit claim of relational learning in gen-
eral. We expect that predictive information exists in rela-
tionships among instances, and that this information can
be used to reduce model bias. However, decreasing bias
often results in increased variance (Friedman 1997). This
is a very real concern for relational learning algorithms
that are faced with an exponential explosion in the size of
the model space.

The simplest way to evaluate this claim is to record
model performance using intrinsic data, a subset of the
data where relational information is removed. By this we
mean data where the instances are objects in isolation,
and the only information available are the attributes in-
trinsic to those objects as individuals. Popescul, Ungar,
Lawrence, and Pennock (2003) use this approach when
evaluating their models on citation data, comparing mod-
els learned on information intrinsic to documents alone
with those learned from both intrinsic and citation infor-
mation. Getoor, Segal, Taskar and Koller (2001) use an
alternative approach, including results from a baseline
propositional model learned on intrinsic data. This tech-
nique is also employed in four other papers. See figure 2
for details.

More than half of the papers surveyed included some
comparative intrinsic analysis, and the results vary con-
siderably across models and datasets. For example, when
using relational features Neville, Jensen, Gallagher, and
Fairgrieve (2003) found marked improvement in model
performance on two datasets, but no significant gain on a
third. We believe that this type of analysis is important
baseline for determining whether the inclusion of rela-
tional information is of any benefit, and if so whether the
additional model complexity is warranted. Although pre-
liminary analysis along these lines is a common compo-
nent of SRL research, we feel that more explicit and di-
rected experimentation is needed to fully justify the use
SRL models for relational datasets.

3 Probabilistic vs. deterministic

Claim: Probabilistic relational models offer significant
advantages over deterministic relational models in rela-
tional domains.



Table 1: Statistical relational learning models surveyed

Model Description Selective  Generative Reference

RVS relational vector-space model No no Bernstein, Clearwater, and Provost, 2003
FOIL-PILFS relational learner w/statistical predicate invention Yes no Craven and Slattery, 2001

Maccent maximum entropy model with clausal constraints Yes no Dehaspe, 1997

SNM Markov random field for social networks No no Domingos and Richardson, 2001

BLP Bayesian logic programs yes yes Kersting and De Raedt, 2002

1BC2 first-order naive Bayesian classifier no no Lachiche and Flach, 2002

RBC relational Bayes classifier no no Neville, Jensen, Gallagher and Fairgrieve, 2003
RPT relational probability trees yes no Neville, Jensen, Friedland and Hay, 2003

SLR structural logistic regression yes no Popescul, Ungar, Lawrence, and Pennock, 2003
NBILP-R naive Bayes classifier with ILP features no no Pompe and Kononenko, 1995

PRM probabilistic relational model yes yes Getoor, Segal, Taskar and Koller, 2001

RMN relational Markov network no no Taskar, Abbeel and Koller, 2002

Research in relational learning has investigated deter-
ministic models for many years (e.g. Muggleton & De
Raedt 1994, Lavrac & Dzeroski 1994). Recent efforts
have shifted the focus towards a probabilistic setting. We
outline a number of advantages of probabilistic models
below, but we feel that discussion of the strengths and
weaknesses of each technique is worth exploring in
greater detail. Discussion along these lines is necessary
to come to a general understanding of the range and ap-
plicability of SRL models.

WebkB |- s | FOIL-PILFS
Web
RPT KDD Gene
Cora / CiteSeer RBC
SRL
- - Yahoo Business
EachMovie  l-- @
Mutagenesis |- - Alzheimer's
Mesh = @ Diterpenes
King-Rook-King |- - NBILP-R Parts of Speech

Figure 1: SRL models and evaluation datasets.

One strength of probabilistic models is the ability to
evaluate how these models will perform over a range of
class and cost distributions (Provost and Fawcett, 1997).
Classification tasks involving complex relational data
often have varying levels of misclassification costs as
well as uncertain class distributions. Since deterministic
models do not associate a level of confidence with their
classifications, it is difficult to estimate their behavior in
these domains.

Another advantage of probabilistic models is their
suitability to real-world analysis tasks. Since these mod-
els generate meaningful, continuous probability scores,
they lend themselves to an iterative, hierarchical ap-
proach to analysis. As Bernstein, Clearwater, and Provost
(2003) point out, “scores may be most useful as feature
constructors in other, more complicated systems.” It is
therefore crucial to evaluate the probabilities produced in
SRL models quantitatively; unfortunately, none of the
papers we surveyed perform this type of evaluation. Sec-
ondly, probability scores allow us to rank instances in
order of certainty. This is of great use to real-world ana-
lysts who have limited time to investigate “positive” in-
stances, as confidence scores allow an analyst to priori-
tize instances rather than treat all members of a predicted
class equally.

Finally, probabilistic models are in general more suited
to learning with relational data than deterministic ones.
Due to their complexity, relational datasets are often
noisy, which can be troublesome for deterministic models
(Popescul et al. 2003). Furthermore, the advantage of
working with relational data may be lost without the use
of probabilistic models. For example, Craven and Slat-
tery (2001) found in the text classification domain that
“learned rules will not be dependent on the presence or
absence of specific key words as a conventional rela-
tional method. Instead, the statistical classifiers in its
learned rules consider the weighted evidence of many
words.”



4 Heterogeneous data

Claim: SRL algorithms learn accurate models of struc-
tured data.

Most conventional classification techniques assume
data instances are recorded in homogeneous structures.
Relational data however, often have complex structures
that are difficult to model in propositional form. For ex-
ample, information about actors, directors and producers
may be useful when building a model of movie success
but each movie has a different number of related entities.
This variety results in examples with diverse structure —
some movies may have 10 actors, and others may have
hundreds. The ability to deal with heterogeneous data
instances is a defining characteristic of relational learning
algorithms.

The relational learning community has developed a

number of models that can handle heterogeneous data.
For example, Lachiche and Flach (2002) extend conven-
tional naive Bayes classifiers to handle heterogeneous
instances and Deshape (1997) extends conventional
maximum entropy models to use a richer first-order logic
format.
Each of the 12 papers surveyed introduces a different
model for this purpose. However, few of these papers
evaluate the effects of heterogeneity on the learned mod-
els. Some of our recent work has examined how particu-
lar characteristics of relational data affect the statistical
inferences necessary for accurate learning (Jensen &
Neville 2002, Jensen, Neville & Hay 2003). Specifically,
we have shown that concentrated linkage combined with
high autocorrelation can lead to feature selection bias if
models are constructed naively. Also, we have shown
that degree disparity can lead to spurious correlations in
aggregated features, resulting in overly complex models
with excess structures.

These characteristics of relational data can greatly
complicate efforts to construct good statistical models.
Only selective models are vulnerable to the particular
biases mentioned above, but 7 of the models surveyed do
some form of selection while learning. It is difficult to
evaluate models for unidentified biases; however, com-
parative studies among the wvarious SRL algorithms
should help to uncover these biases. In particular, de-
tailed comparisons of selective and non-selective model
performance may help to uncover additional biases. Fig-
ure 2 depicts the 12 SRL models with links to the various
models compared to during evaluation. The paucity of
outlinks speaks for itself.

We have only begun to explore the effects of data
characteristics on model learning. While many relational
models outperform propositional models on the same
datasets, the relational models may not be living up to
their full potential. Further investigation of the com-
plexities of relational data will help to identify sources of
potential bias and correcting for these biases will unleash
the full power of SRL models.

FROGOL

NBILP-R @

Figure 2: SRL models and evaluation models. Self-loops indi-
cate ablation comparisons.

5 Interdependent data

Claim: SRL algorithms learn accurate models of depend-
ent data instances.

Independence of instances is a deeply buried assump-
tion of traditional machine learning methods that is con-
tradicted by many relational datasets. For example, in
scientific literature datasets there are dependencies
among papers written by the same author and in web
datasets there are dependencies among pages linked to by
the same document. The structure of complex relational
data such as these presents a unique opportunity for im-
proving the accuracy of statistical models. If two objects
are related, inferring something about one object can aid
inferences about the other.

In our analysis of relational data, we have encountered
many examples of dependencies that could be exploited
to improve learning. For example, in analysis of the 2001
KDD Cup data we found that the proteins located in the
same place in a cell (e.g., mitochondria or cell wall) had
highly autocorrelated functions (e.g., transcription or cell
growth). Such autocorrelation has been identified in other
domains as well. For example, fraud in mobile phone
networks has been found to be highly autocorrelated
(Cortes, Pregibon & Volinsky 2001). The topics of
authoritative web pages are highly autocorrelated when
linked through directory pages that serve as “hubs”
(Kleinberg 2001).



Table 2: Characteristics of data and sampling approach used for evaluation

Model Data connectivity Sampling approach

RVS one large connected component not mentioned

FOIL-PILFS disjoint large graphs leave-one-graph-out cross validation
Maccent disjoint small graphs leave-k-graph-out cross validation
SNM one large connected component sample by time

BLP one large connected component transduction

1BC2 disjoint small graphs leave-k-graph-out cross validation
RBC one large connected component subgraph sampling

RPT one large connected component subgraph sampling

SLR one large connected component transduction

NBILP-R disjoint small graphs leave-k-graph-out cross validation
PRM large conn comp / disjoint graphs transduction / leave-one-graph-out cv
RMN disjoint large graphs leave-one-graph-out cross validation

Many of the models surveyed do not attempt to exploit
dependencies among relational instances. More than half
of the algorithms are designed to learn models relational
datasets with independent, heterogeneous instances (i.i.d.
relational data) where any dependencies among instances
are ignored.

Inductive logic programming (ILP) models have been
capable of representing dependencies among instances
for years, albeit only extreme (deterministic) dependen-
cies (Lavrac & Dzeroski 1994). However, it is only re-
cently that statistical models have been developed to ex-
ploit the dependencies in relational data. For example,
Kersting and De Raedt (2002) combine ILP with Baye-
sian networks to integrate probabilities into logic pro-
grams and model the dependencies among proteins in a
cell. Getoor et al. (2001) use probabilistic relational
models (PRMs) to model the the dependencies among
hyperlinked web pages. Taskar, Abbeel and Koller
(2002) use conditional Markov networks to model the
same domain. Domingos and Richardson (2001) repre-
sent market entities as social networks and develop
Markov random field models to model the influence in
purchasing patterns throughout the network. Bernstein,
Clearwater and Provost (2003) outline a relational vector-
space model that uses autocorrelation to identify the
group membership of linked entities.

Statistical models capable of collective classification
across a network of instances are a relatively new phe-
nomenon. It is unclear how to effectively evaluate the
performance of these models. In what context do we ex-
pect to be using these models in the real world? Will we
be applying the model to a completely new graph or do
we expect new instances to arrive temporally related to
the existing (training set) graph. Answers to this question
should help to develop sampling methods to get an unbi-
ased estimate of model performance.

Furthermore, how should we sample from a large con-
nected graph? Table 2 outlines the characteristics of
datasets examined by each of the models along with the
sampling approach that was chosen. There are four ap-
proaches to sampling currently in use; more work is

needed to determine which of these approaches is appro-
priate for a particular learning task.

6 Conclusions

Although the SRL community has successfully demon-
strated the feasibility of a number of probabilistic models
for relational data, there is much work to be done in order
to begin generalizing the range and applicability of the
various models. We have presented four claims for dis-
cussion with the purpose of advancing the science of
SRL as well as machine learning in general.
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Abstract

Given a sample from an unknown probabil-
ity distribution over strings, there exist algo-
rithms for inferring the structure and parame-
ters of stochastic grammatical representations
of the unknown distribution, i.e. string gram-
mars. Despite the fact that research on gram-
matical representations of sets of graphs has
been conducted since the late 1960’s, almost no
work has considered the possibility of stochas-
tic graph grammars and no algorithms exist
for inferring stochastic graph grammars from
data. This paper presents PEGG, an algo-
rithm for estimating the parameters of stochas-
tic context-free graph grammars given a sample
from an unknown probability distribution over
graphs. It is established formally that PEGG
finds parameter estimates in polynomial time
that maximize the likelihood of the data, and
preliminary empirical results demonstrate that
the algorithm performs well in practice.

1 Introduction

Graphs are a natural representation for relational data.
Nodes correspond to entities, edges correspond to rela-
tions, and symbolic or numeric labels on nodes and edges
provide additional information about particular entities
and relations. Graphs are routinely used to represent ev-
erything from social networks [Pattison, 1993] to chemi-
cal compounds [Cook et al., 1994] to visual scenes [Hong
& Huang, 2002].

Suppose you have a set of graphs, each representing an
observed instance of a known money laundering scheme
[Office of Technology Assessment, 1995]. Tt would be
useful to learn a statistical model of these graphs that
supports the following operations:

o Compute graph probabilities: If the model represents
a probability distribution over graphs, then it is pos-
sible to determine the probability of a new graph
given the model. In the context of money laun-
dering schemes, this would amount to determining
whether a newly observed set of business relation-

ships and transactions (represented as a graph) is
likely to be an instance of money laundering.

o Identify recurring structures: Money laundering
schemes may contain common components (i.e. sub-
graphs) that are arranged in a variety of ways. To
better understand the domain, it is useful to explic-
itly identify such components and the common ways
in which they are connected to one another.

e Sample new graphs: Given the model, one might
want to sample new graphs (money laundering
schemes) according to the probability distribution
defined by the model. This might be useful in ex-
ploring the space of possible schemes, perhaps look-
ing for new variants that law enforcement has not
previously considered, or for generating training ex-
amples from which humans or programs can learn.

Stochastic grammatical representations of probability
distributions over strings, such as stochastic context-
free grammars (SCFGs), support these three operations.
Given a SCFG, G, and a string, s, it is possible to ef-
ficiently compute p(s|G). It is also trivial to sample
strings from the probability distribution defined by G.
Finally, there exist a number of methods for learning
both the structure [Stolcke, 1994] and parameters [Lari
& Young, 1990] of string grammars from data. The most
well-known algorithm for computing maximum likeli-
hood estimates of the parameters of string grammars
is the Inside-Outside algorithm. In addition to esti-
mating parameters, this algorithm can be used to learn
structure. This is done by constructing a grammar con-
taining, for example, all possible CNF productions that
can be created from a given set of terminals and non-
terminals. Inside-Outside can then prune away (i.e. set
production probabilities to zero) those productions that
are possible but that are not actually in the grammar
that generated the training data. Also, Inside-Outside
can be used as a component in a system that explic-
itly searches over the space of grammar structures, iter-
atively evaluating structures/parameters via, for exam-
ple, the description length of the grammar and the data
given the grammar.

We have embarked on a program of research aimed
at creating algorithms for learning and reasoning with



stochastic grammatical representations of probability
distributions over graphs that provide functionality mir-
roring that available for string grammars. There exists a
fairly extensive literature on deterministic graph gram-
mars that define sets of graphs in the language of the
grammar (see, for example, [Engelfriet & Rozenberg,
1997] and [Ehrig et al., 1999]), just as deterministic
string grammars define sets of strings that are in the
language of the grammar. However, the vast majority of
existing work on graph grammars has completely ignored
the possibility of stochastic graph grammars and there
is no work whatsoever on learning either the structure
or parameters of graph grammars.

This paper describes an algorithm for estimating the
parameters of stochastic graph grammars that we call
Parameter Estimation for Graph Grammars (PEGG),
the first algorithm of its kind. PEGG is similar in
many respects to the Inside-Outside algorithm. PEGG
computes inside and outside probabilities in polynomial
time, and can use these probabilities to efficiently com-
pute p(g|G), the probability of graph g given graph
grammar G. In addition, PEGG computes maximum
likelihood estimates of grammar parameters for a given
grammar structure and set of graphs, again in polyno-
mial time. Though we have explored the use of Bayesian
model merging techniques developed for learning the
structure (i.e. productions) of string grammars [Stolcke,
1994] in the context of learning the structure of graph
grammars [Doshi et al., 2002], the current focus is on
parameter estimation.

The ability to learn grammar-based representations of
probability distributions over graphs has the attractive
property that non-terminals encode information about
classes of functionally equivalent sub-graphs. For exam-
ple, most money laundering schemes have a method for
introducing illegal funds into the financial system and a
method for moving the funds around to distance them
from the source. If sub-graphs in the ground instances of
money laundering schemes correspond to these methods,
and there are different instantiations of each method, it is
reasonable to expect that the learned grammar will con-
tain a non-terminal that expands to ways of introducing
funds into the financial system and another non-terminal
that expands to ways of moving these funds around.
Identifying these non-terminals in the learned grammar
makes it possible to enumerate the sub-graphs they gen-
erate (i.e. all possible instantiations of a method) and to
determine their probability of occurrence to, for exam-
ple, focus law enforcement efforts.

From a more formal standpoint, graphs are logical
structures, so individual graphs and sets of graphs can
can be described by logical formulas. It is possible to de-
duce properties of graphs and sets of graphs from these
descriptions [Immerman, 1999]. PEGG opens up the
possibility of automatically synthesizing logical descrip-
tions (i.e. graph grammars) of sets of graphs from data.
For example, the expressive power of certain graph gram-
mar formalisms is co-extensive with that of monadic
second-order logic [Courcelle, 1997].

The remainder of this paper is organized as fol-
lows. Section 2 describes stochastic context-free graph
grammars and discusses their relationship to stochas-
tic context-free string grammars. Despite the fact that
graph grammars have a rich history of application in
a variety of domains, no algorithms exist for learning
them from data. To introduce the fundamental concepts
of grammar induction from data, section 3 reviews the
Inside-Outside algorithm for estimating the parameters
of stochastic context-free string grammars. Section 4
introduces the Parameter Estimation for Graph Gram-
mars (PEGG) algorithm for learning maximum likeli-
hood parameter estimates for graph grammars. Section
5 presents the results of a set of preliminary experiments
with PEGG. Section 6 reviews related work, concludes,
and discusses a number of directions in which we are
taking this research.

2 Graph Grammars

This section provides an overview of graph grammars.
For a thorough introduction to the formal foundations of
graph grammars see [Engelfriet & Rozenberg, 1997], and
to learn more about the vast array of domains in which
graph grammars have been applied, see [Ehrig et al.,
1999].

The easiest way to build intuition about graph gram-
mars is by way of comparison with string grammars,
for which we will take stochastic context-free grammars
to be the paradigmatic example. (For the remainder
of this paper the term string grammar means stochas-
tic context-free string grammar.) Recall that a string
grammar G is a 4-tuple (S, N, X, P) where N is a set of
non-terminal symbols, S € N is the start symbol, X is a
set of terminal symbols disjoint from N, and P is a set of
productions. Associated with each production is a prob-
ability such that the probabilities for productions with
the same left-hand side sum to one. Sometimes it will be
convenient to describe grammars as being composed of
structure and parameters, where the parameters are the
production probabilities and the structure is everything
else.

In this paper we will be concerned exclusively with
stochastic context-free graph grammars [Mosbah, 1994],
and will use the term graph grammar to refer to gram-
mars of this type. Despite the fact that our present con-
cern is with stochastic graph grammars, it is important
to note that prior work reported in the literature has
focused almost exclusively on deterministic grammars.

Just as string grammars define probability distribu-
tions over strings, graph grammars define probability
distributions over graphs. A graph grammar G is a 4-
tuple (S, N, X, P) where N is a set of non-terminal sym-
bols, S € N is the start symbol, ¥ is a set of terminal
symbols disjoint from N, and P is a set of productions.
Associated with each production is a probability such
that the probabilities for productions with the same left-
hand side sum to one.

The primary difference between string grammars and



graph grammars lies in the right-hand sides of produc-
tions. String grammar productions have strings of termi-
nals and non-terminals on their right-hand sides. Graph
grammar productions have graphs on their right-hand
sides. At this point the reader may well be wonder-
ing where the terminals and non-terminals appear in the
graphs generated by graph grammars. It turns out that
they can be associated with nodes, yielding a class of
grammars known as Node Controlled Embedding (NCE)
graph grammars, or they can be associated with edges,
yielding a class of grammars known as Hyperedge Re-
placement (HR) graph grammars. For reasons that will
be discussed later, we focus exclusively on HR grammars.

Figure 1 shows the three productions in a simple HR
grammar [Drewes et al., 1997] that has one non-terminal
- S. Each left-hand side is a single non-terminal and each
right-hand side is a graph. Some of the edges in the
graphs are labeled with non-terminals in boxes. These
non-terminal edges can be expanded, a process that in-
volves removing the edge and replacing it with the graph
on the right-hand side of a matching production. Each
right-hand side has a pair of nodes labeled 1 and 2 that
are used to orient the graph when it replaces a non-
terminal edge. We will generally use the term host graph
to refer to the graph containing the non-terminal edge
and the term sub-graph to refer to the graph that replaces
the non-terminal edge.

S—=3—0

Figure 1: Productions in a simple HR grammar.

Figure 2 shows a partial derivation using the produc-
tions in figure 1. The second graph in figure 2 is obtained
from the first by removing the labeled edge and replacing
it with the sub-graph on the right-hand side of the sec-
ond production in figure 1. After removing the edge, all
that remains is two disconnected nodes, one that used to
be at the head of the edge and the other at the tail. The
edge is replaced by gluing the node labeled 1 in the sub-
graph to the node that was at the head of the removed
edge. Likewise, the node labeled 2 in the sub-graph is
glued to (i.e. made the same node as) the node that was
at the tail of the removed edge.

The last graph in figure 2 is obtained from the penul-

Figure 2: A partial derivation using the productions in
figure 1.

timate graph by replacing a non-terminal edge with the
right-hand side of the first production in figure 1. This
results in an edge with no label — a terminal edge — which
can therefore not be expanded. A terminal graph is one
that contains only terminal edges. Terminal edges can
be unlabeled, as in the current example, or productions
can specify labels for them from the set of non-terminals
¥.

Note that every production in figure 1 has exactly two
distinguished nodes, labeled 1 and 2, that are used to
orient the sub-graph in the host graph when an edge is
replaced. When expanding a non-terminal in the deriva-
tion of a string there is no ambiguity about how to join
the substrings to the left and right of the non-terminal
with its expansion. Things are not so clear when ex-
panding non-terminal edges to graphs. Given that the
sub-graph to which the non-terminal is expanded will be
attached by gluing, there are in general several possible
attachments. Consider the second production in figure
1, whose right-hand side has three nodes. When it is
used to replace a non-terminal edge, there are 6 possible
ways of gluing the sub-graph to the host graph. Any
of the three sub-graph nodes can be glued to the host
graph node that was at the head of the non-terminal
edge, and any of the remaining two sub-graph nodes can
be glued to the host-graph node that was at the tail of
the non-terminal edge. To remove this ambiguity, each
production specifies which nodes in the sub-graph are to
be glued to which nodes in the host graph.

In general, non-terminal edges can be hyperedges that
join more than two nodes. A hyperedge is said to be
an n-edge if it joins n nodes. All of the hyperedges in
the above example are 2-edges, or simple edges. If an
n-edge labeled with non-terminal X is to be expanded,
there must be a production with X as its left-hand side
and a graph on its right-hand side that has n distin-
guished nodes (e.g. labeled 1 - n) that will be glued to
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Figure 3: A graph containing a 3-edge labeled X.

the nodes that were attached to the hyperedge before
it was removed. Figure 3 shows a graph containing an
undirected 3-edge labeled X.

3 Parameter Estimation for String
Grammars

Our goal is to develop a set of algorithms for graph gram-
mars that mirror those available for string grammars,
with the starting point being an algorithm for estimat-
ing the parameters of graph grammars from data. This
section reviews the most widely used algorithm for esti-
mating the parameters of string grammars from data -
the Inside-Outside (IO) algorithm [Lari & Young, 1990].
This review will provide the necessary background for
readers unfamiliar with IO and will make it possible to
focus on issues specific to graph grammars in section 4
where we derive a version of 10 for graph grammars (the
PEGG algorithm).

Let G = (S,0) be a stochastic context-free string
grammar with structure S and parameters 6. Let E be
a set of training examples created by sampling from the
probability distribution over strings defined by G. Given
S and E, the goal of parameter estimation is to obtain
a set of parameters, 6, such that p(E|S, #) is maximized.

If G is unambiguous then maximum likelihood param-
eter estimation is easy. A grammar is unambiguous if ev-
ery string in L(G) has exactly one derivation [Hopcroft
& Ullman, 1979]. That is, given a string in L(Q) it is
possible to determine which productions were used to de-
rive the string. Let ¢(X — «|s) be the number of times
production X — ~ is used in the derivation of string
s. Let ¢(X — 9|E) be ) cpc(X — 7/s). Then the
maximum likelihood estimate for p(X — «) is:

_ dX =4B)
S e(X = 9E)

The estimate is simply the number of times X was ex-
panded to 7y divided by the number of times X occurred.

If G is ambiguous then strings in L(G) can have multi-
ple derivations, and parameter estimation becomes more
difficult. The problem is that only the strings in E are
observable, not their derivations. Given a string s € E,
one of the possibly many derivations of s was actually
used to generate the string when sampling from the prob-
ability distribution over strings defined by G. It is pro-
duction counts from this derivation, and none of the
other legal derivations, that are needed for parameter
estimation.

PX =)
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This is an example of a hidden data problem. Given
information about which derivation was used when sam-
pling each s € E, the estimation problem is easy, but we
do not have this information. As is typical in such cases
the solution is Expectation Maximization (EM) [Demp-
ster et al., 1977]. For string s with m possible deriva-
tions, d; — d,,,, we introduce indicator variables, z; — z,,,
such that z; = 1 if d; is the derivation used when s was
sampled. Otherwise, z; = 0. The expected value of z;
can therefore be computed as follows:

Elzi] 1xp(zi =1) +0xp(z; = 0)
= plzi=1)
p(d; is the true derivation)
_ p(di|G)
- X, p(d4]G)

In the expectation step, the indicator variables are used
to compute expected counts:

3 Blale(X = 11d)

2 P(di|G)e(X = v|di)
>2; p(d;|G)
In the maximization step, the expected counts are used

to compute new maximum likelihood parameter esti-
mates:

éX — vls)

1)

_ X —»1|E)

X5 éX = 8lE)

Tterating the E-step and the M-step is guaranteed to lead
to a local maximum in the likelihood surface.

The only potential difficulty is that computing ex-
pected counts requires summing over all possible deriva-
tions of a string, of which there may be exponentially
many. The Inside-Outside algorithm uses dynamic pro-
gramming to compute these counts in polynomial time
[Lari & Young, 1990]. Our discussion of the algorithm
will follow the presentation in [Charniak, 1993].

For string s and non-terminal X, let s; ; denote the
sub-string of s ranging from the i** to the jt* position,
and let X;; denote the fact that non-terminal X roots
the subtree that derives s; ;. We can now define the
inside probability, 8x(i,j), as the probability that X
will derive s; j. More formally:

Bx (i,5) = p(si,;1Xi5)

The outside probability, ax(i,j), is the probability of
deriving the string s;,;—1Xs;41,, from the start symbol
such that X spans s; ;. More formally:

X =)

ax (Z7J) = p(sl,i—lv Xi,]'a 8j+1,n)

In the formula above, n = |s|. As figure 4 suggests, given
that non-terminal X roots the sub-tree that derives s; ;,
the inside probability Bx(i,j) is the probability of X
deriving the part of s inside the sub-tree and the outside
probability ax (i, j) is the probability of the start symbol
deriving the part of s outside the sub-tree.



How are a and S useful in parameter estimation?
Rather than implementing equation 1 as a sum over
derivations, we will soon see that knowing a and § makes
it possible to compute expected counts by summing over
all possible substrings of s that a given non-terminal can
generate. For a string of length n there are n(n — 1)/2
substrings, which is far fewer than the worst case expo-
nential number of possible derivations.

For example, consider the somewhat simpler problem
of computing the expected number of times X occurs in
a derivation of string s. This non-terminal can poten-
tially root sub-trees that generate any of the n(n —1)/2
substrings of s. The expected number of occurrences of
X is thus given by the following sum:

=> " p(Xi;ls)
i

This expression can be rewritten as follows in terms of
inside and outside probabilities exclusively:

&(X) ZP i.j15)

Zp

( E pslz 1781,]78]+1H7X,])

i,J

Iﬁ Zp(si,j|Xi,j)p(
Iﬁ 3 ax(i,)8x(0,4)

a.77

pis

81,i—1,Xi,j,8j+1,n)

The move from the first line to the second above is a
simple application of the definition of conditional prob-
ability. We then expand s, apply the chain rule of prob-
ability, and finally substitute a and .

Equation 1 requires é(X — «), not é(X). Suppose for
the moment that our grammar is in Chomsky Normal
Form. That is, all productions are of the form X - Y Z
or X — o where X, Y, and Z are non-terminals and
o is a terminal. To compute ¢(X — «), rather than
just summing over all possible substrings that X can
generate, we sum over all possible substrings that X can
generate and all possible ways that Y and Z can carve
up the substring. Consider figure 4. If X generates s; ;
and X expands to Y Z, then concatenating the substring
generated by Y with the substring generated by Z must

yield Sij-
The expected counts for X — Y Z are defined to be:
UX =Y 2) = p(Xij,Yik, Zt,ls)

a]7

It is easy to show that this is equivalent to:

Zﬂy i,k)Bz(k+1,5)
p( by

ax(,))p(X =-YZ)

dX =-Y2Z)

(2)
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A complete derivation will be given in the next section
when a formula for computing expected counts for graph
grammars is presented.

i-1,i K, k+1 J.g+

Figure 4: Given that X derives s; ; and that X expands
to YZ, there are only j — ¢ + 1 ways that Y and Z can
carve up S; ;.

Clearly, evaluating equation 2 requires O(n®) compu-
tation, in addition to that required to compute a and 5.
For string grammars, tables of a and 8 values are com-
puted via dynamic programming in O(m?n) time where
m is the number of non-terminals in the grammar. Sec-
tion 4 will show a complete derivation of the formulas for
computing a and f in the context of graph grammars.

4 Parameter Estimation for Graph
Grammars

In this section we define and derive analogs of inside
and outside probabilities for graph grammars. Just as
«a and B can be computed efficiently, top down and bot-
tom up respectively, for string grammars by combining
sub-strings, they can be computed efficiently for graph
grammars by combining sub-graphs. While there are
only polynomially many sub-strings of any given string,
there in general can be exponentially many sub-graphs
of any given graph. It turns out there there is a natural
class of graphs [Lautemann, 1990] for which the number
of sub-graphs that one must consider when computing
a and f is polynomial in the size of the graph. For this
type of grammar, maximum likelihood parameter esti-
mates can be computed in polynomial time.

For non-terminal hyperedge X and graph g we define
the inside probability 8x (g) to be p(g|X), the probabil-
ity that X will derive g. Note that Bs(g) is the proba-
bility of g in the distribution over graphs defined by the
grammar. There are two cases to consider - either X
derives g in one step, or X derives some other sub-graph
in one step and g can be derived from that sub-graph in
one or more steps:

Bx(g) p(g|X)



(X = g)+ Y p(X = 7)p(y > g) (3)
X—y

In equation 3, we use — to denote derivation in one

step via a production in the grammar and = to denote
derivation in one or more steps.
The difficult part of evaluating equation 3 is comput-

ing p(y = g). Because 7 is the right-hand side of a
production it can be an arbitrary hypergraph. Suppose
~ has m hyperedges - h1, ha, ..., h,. If v can derive g,
then there must be m graphs - ¢1,92,-..,9m - such that
h; derives g; for 1 < i < m and the graph that results
from replacing each h; with the corresponding g; is iso-
morphic to g. Note that each g; must be isomorphic to a
sub-graph of g for this to occur. It is therefore theoreti-
cally possible to determine if v (and thus X) can derive
g by generating all possible sub-graphs of g, forming all
ordered sets of these sub-graphs of size m, generating
the graphs that result from substituting the sub-graphs
in each ordered set for the hyperedges in ~y, and testing
to see if any of the resulting graphs are equal to g.

Because the sub-graphs are taken directly from g the
equality test can be performed in polynomial time (i.e. a
test for graph isomorphism is not required). However,
there may be exponentially many sub-graphs. As stated
earlier, we will restrict our attention to a robust class
of graphs for which the number of sub-graphs one must
consider is small (polynomial). Let’s finish our deriva-
tion of Bx(g) before getting to the details of computing
it efficiently.

Let ¥(v,g) be the set that results from computing all
ordered sub-sets of size m of the set of all sub-graphs
of g. Recall that v is a hypergraph with m hyperedges
(i.e. non-terminals). Let ¥;(, g) be the i*" element of
this set. Each element of ¥ represents a mapping of hy-
peredges in 7y to structure in g. If any of these mappings
yield g, then it is that case that v can derive g.

To compute p(y = g) we simply need to iterate over
each element of ¥(v, g) and compute the probability of
the joint event that each of the h; derive each of the g;
and sum this probability for each element that produces
a graph equal to g. That is, for each ¥;(~, X) we need
to compute:

p(hi = gi,hs = g3, Aoy = gi)
Because HR graph grammars are context free, deriva-
tions that start from different hyperedges are completely
independent of one another [Courcelle, 1987]. There-
fore, the probability of the joint event is equivalent to
the product of the probabilities of the individual events.
That is:

m
p(hs > g ks = g5, b > gi) = [ o(h] = g))
i=1
Combining the above with equation 3 yields an expres-
sion for Bx(g) in terms of other inside probabilities:

Bx(9) = p(X—=g)+ Y p(X —=7)p(y > g)
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X =g+ )

X—
pX =g+ Y p(X =)

X—
> p(hi 5 gishh 5 g5, ... by 5 g1)
i

pX = 9)+ > p(X =D []pk g

X =y

pX = 9)+ > p(X =) ] p(hilg})

X—y

pX = g)+ Y (X =) [ Bui(e)) 4)

X—

p(X =) Zp(‘l'z-(%g))

i j=1

i j=1

i j=1

Equation 5 makes it possible to compute inside prob-
abilities in terms of other inside probabilities. Note that
this computation can proceed bottom up because the
sub-graphs considered in the inner sum, i.e. the recur-
sive computation of ﬂh;’. (9%), must be smaller than g be-

cause they are composed via 7 to yield g. That is, one
can compute [ for sub-graphs containing one node, then
sub-graphs containing two nodes, and so on. The num-
ber of levels in this bottom up computation is bounded
by the size of g. The outer summation is linear in the
number of productions in the grammar, and the product
is linear in the maximum number of hyperedges in any
right-hand side, which we assume to be bounded by a
small constant. However, the inner sum iterates over all
elements of ¥, of which there can be exponentially many.

If the number of sub-graphs considered in the inner
sum in equation 5 were polynomial, then all inside prob-
abilities could be computed in polynomial time. Laute-
mann [Lautemann, 1990] defines a class of HR grammars
for which this is the case, i.e. grammars with logarithmic
k-separability.

The k-separability of graph g (see definition 3.2.3 in
[Lautemann, 1990]) is the maximum number of con-
nected components that can be produced by removing
k or fewer nodes from g. This definition becomes useful
for our current purposes when considered in conjunction
with lemma 3.2.1 from [Lautemann, 1990]. To build in-
tuition before stating the lemma, consider how you might
try to determine if a hypergraph, v, with a single hyper-
edge, h, can generate a given graph, g. Note that all
of the nodes and edges in the hypergraph must appear
in the final graph. You might therefore try all possi-
ble mappings of nodes and edges in the hypergraph to
nodes and edges in the graph, and see if the hyperedge
can generate the unmapped remainder of the graph.

The lemma says, essentially, that if replacing hyper-
edge h in hypergraph v with graph ¢’ yields graph g,
then every connected component in g’ minus the nodes
in h is a connected component in g minus the nodes in
h. That is, if you map the nodes in v to nodes in g and
then remove those mapped nodes from g and find the
connected components in the resulting graph, you will



have enumerated (at least) all of the connected compo-
nents in the sub-graph with which h should be replaced
to derive g.

Therefore, rather than enumerating all possible sub-
graphs of g to determine if v = g, we can form all pos-
sible mappings of nodes and edges in v onto g, compute
the connected components that result when the mapped
nodes are removed from g, and consider only those sub-
graphs that are combinations of these connected compo-
nents. Because 7 is the right-hand side of a production
and we assume that its size is bounded by a small con-
stant, the number of possible mappings of v onto g is
polynomial in the size of g. If we further assume that the
k-separability of the graph is logarithmic, then the num-
ber of connected components formed for each mapping
of v onto g is O(log |g|) and there are only polynomially
many possible combinations of connected components.
In polynomial time we can compute all of the subgraphs
that need to be considered in the inner sum of equation 5,
of which there are polynomially many. All of the inside
probabilities can therefore be computed in polynomial
time.

Intuitively, bounded k-separability requires that
graphs have bounded degree and be connected. Con-
sider the language containing all star graphs, i.e. graphs
containing n nodes where nodes 2 — n have a single edge
to node 1. If node 1 is removed, n — 1 connected com-
ponents are created. At the other extreme, consider a
graph of n nodes and no edges. Removing any one node
results in a graph with n — 1 connected components. In
both cases, the k-separability of the graph is linear in
the size of the graph. For k-separability to have a lower
bound, there must be a bound on node degree and the
graph must be (mostly) connected.

We now turn to the derivation of the outside prob-
ability. Recall that the inside probability Bx (g) is the
probability that a non-terminal hyperedge labeled X will
generate graph g. In practice, given a graph G, 8 val-
ues are computed for sub-graphs of G. That is, Sx(g)
is computed for values of g corresponding to different
sub-graphs of some fixed graph G. The outside proba-
bility ax (g) is the probability that the start symbol will
generate the graph formed by replacing sub-graph g in
graph G with a non-terminal hyperedge labeled X. It
is called the outside probability because a is the prob-
ability of generating the graph structure in G outside
the sub-graph generated by X. Note that the quantity
ax (9)Bx(g) is the probability of generating G in such a
way that nonterminal X generates sub-graph g.

How might non-terminal X become responsible for
generating sub-graph g? Suppose Y is a non-terminal,
Y — v is a production in the grammar, and v contains
a hyperedge labeled X. Further, let g’ be a subgraph
of G that contains g. If Y is responsible for generating
g', then it could be the case that X generates g and the
remainder of v generates the remainder of ¢’. That is,
we can compute outside probabilities from outside prob-
abilities of larger subgraphs.

The above is formalized in equation 6. The outer sum
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(Xy_,,) is over all productions in the grammar. The

next sum ()_7",) is over all hyperedges in +y, of which
there are m. The first term in that sum (6(h; = X))
takes on the value 1 when the i** hyperedge in v is la-
beled X and takes on the value 0 otherwise. Collectively,
the first two sums and the first term iterate over all hy-
peredges labeled X in all right-hand sides.

The next sum (3°;) indexes into ¥(v, G), the set of all
ordered subsets of size m of subgraphs of G. The first

term in that sum (6(g] = g)) selects those elements of
¥ (7, @) that have g in a position that matches it up with
an X in . The next term multiples by the probability
that Y actually generated the subgraph of G represented
by the union of the elements of ¥;(v,G).

The next term (p(Y — +)) is the probability that Y,
which generates ¥ (v, G), expands to vy, whose i** hyper-
edge is an X and is mapped to g in ¥;(v,G). The final
product is over all hyperedges in v except the i*" hyper-
edge, where each term is the probability that the hyper-
edge will generate the subgraph to which it is mapped
via \I’j (’)’, G) .

9ay (¥;(7,G))

ax(g) = 3. Y shi=X)Y 44l =

Yy i=1 j

p(Y =) [ Br.(9])
ki

()

Equation 6 formalizes the notion that X can be re-
sponsible for g only if it is generated by expanding a
hyperedge that is responsible for a sub-graph contain-
ing g. Inside probabilities can be computed from the
top down, with the base case being ags(G) = 1. That
is, with probability 1 the start symbol is responsible for
generating any graph in the language of the grammar.

As with 3, all of the sums and products are polyno-
mial in the size of the graph except the one that iter-
ations over the elements of ¥(v,G). However, as with
B, if the graph has logarithmic k-separability, there are
only polynomially many elements of ¥(v, G) to consider.
Therefore, all outside probabilities can be computed in
polynomial time.

Finally, using the inside and outside probabilities to
estimate the parameters of the grammar is a relatively
straightforward modification to the iteration used by I0
for string grammars. Due to lack of space, further details
will not be provided here and the interested reader is
referred to [Charniak, 1993] for more information on the
nature of that computation.

5 Preliminary Empirical Results

This section reports the results of some simple, prelimi-
nary experiments with an implementation of PEGG. Let
G = (S, 0) be a stochastic context-free HR graph gram-
mar with structure S and parameters §. Let E be a set
of training examples created by sampling from the prob-
ability distribution over graphs defined by G. Given S



and E, the goal of PEGG is to obtain a set of parame-
ters, 6, such that p(E|S,0) is maximized. We used the
grammar shown in figure 1 for S, and the true parame-
ters were § = (0.6,0.2,0.2). That is, the probability of
expanding a hyperedge labeled S with the first produc-
tion is 0.6, with the second production is 0.2, and with
the third production is 0.2.

In the first experiment we sampled 1, 5, and 10 graphs
from the grammar and ran PEGG on these sample. The
learned parameters are shown in table 1. In all cases
the parameters appear to be “reasonable”, but they do
deviate from the desired parameters. This might be due
to the fact that the samples are small and are therefore
not representative of the true distribution over graphs
defined by the grammar. To test this hypothesis, we
took another sample of 10 graphs for which the esti-
mated parameters deviated significantly from the true
parameters. Given the derivations of the 10 graphs, it
was a simple matter to count the number of times the
various productions were applied and manually compute
maximum likelihood parameters. Both the estimated
parameters and the ML parameters are shown in table
2. Note that the sample of 10 graphs was clearly not
representative of the distribution over graphs defined by
the true parameters. The Kullback-Liebler divergence
between 6 = (0.6,0.2,0.2) and 65, = (0.75,0.15,0.10)
is 0.8985. However, PEGG did a good job of estimation.
The KL divergence between 8prpaa and 6,7 is 0.007,
two orders of magnitude less than the divergence with
the true parameters.

Table 1: Parameters estimated by PEGG for samples of
size 1, 5, and 10.

2] o 7 7
1| 0.5714 | 0.2857 | 0.1429
5| 0.6206 | 0.2168 | 0.1626
10 | 0.6486 | 0.2973 | 0.0541

Table 2: Estimated parameters and manually computed
ML parameters for a sample of size 10.

PEGG | ML
6; | 0.7368 | 0.75
6> | 0.1579 | 0.15
63 | 0.1053 | 0.10

Finally, to determine if PEGG was finding parameters
that actually maximize the likelihood of the data, we
computed the log-likelihood of a sample of 5 graphs given
the true parameters and the parameters estimated for
that sample. The log-likelihood of the data given the
true parameters was -9.38092, and it was -9.40647 given
the estimated parameters, a difference of less than three-
tenths of one percent.
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6 Conclusion

This paper introduced the Parameter Estimation for
Graph Grammars (PEGG) algorithm, the first algorithm
for estimating the parameters of stochastic context-free
hyperedge replacement graph grammars. PEGG com-
putes inside and outside probabilities in polynomial time
for graphs with logarithmic k-separability. In addition,
PEGG uses these probabilities to compute maximum
likelihood parameters for a fixed grammar structure and
a sample of graphs drawn from some probability distri-
bution over graphs.

Despite that fact that graph grammars have been an
active area of research since the late 1960’s, almost no
work has dealt with stochastic graph grammars. One
notable exception is [Mosbah, 1994], which explores
the properties of graphs sampled from stochastic graph
grammars.

There are only a handful of papers that directly ad-
dress the problem of learning graph grammars, and none
other than the current paper that leverage the vast
body of work on inferring string grammars from data.
[Bartsch-Sprol, 1983] describes an enumerative (i.e. com-
putationally infeasible) method for inferring a restricted
class of context-sensitive graph grammars. [Jeltsch &
Kreowski, 1991] describes an algorithm for extracting
common hyperedge replacement sub-structures from a
set of graphs via merging techniques. This work is simi-
lar to that reported in [Jonyer et al., 2002] in which merg-
ing techniques were used to extract node replacement
sub-structures from a set of graphs. Fletcher [Fletcher,
2001] developed a connectionist method for learning reg-
ular graph grammars. To the best of our knowledge, our
paper is the first to present a formally sound algorithm
for computing maximum likelihood parameter estimates
for a large class of HR graph grammars.

Future work will involve developing an approach to
inferring the structure of HR graph grammars based on
Bayesian model merging techniques, similar to those we
developed for node replacement grammars [Doshi et al.,
2002]. In combination with the PEGG algorithm de-
scribed in this paper the result will be a powerful tool
for inferring HR graph grammars from data. In addi-
tion, we are considering applications of this tool in the
domain of bioinformatics, such as refining initial protein
clusters based on primary structure (linear sequences of
nucleotide) by learning graph grammars based on sec-
ondary structure (the arrangement of alpha helices and
beta sheets in three-dimensional space).
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Traditional, flat-table learning algorithms have beensituations, linear models are preferable to tree inducti
scrutinized for many years from many angles, and ale weeven for problems where the true, underlying model is
understood with respect to their applicability and expressivrepresented better by a tree (Domingos & Pazzani, 1996;
power. Much less can be said about relational learninBerlich, Simonoff, & Provost, 2003). Relational leagi
approaches. One main reason is the lack of clarithef systems (e.g., ILP systems) often perform suboptinaily
space of possible relational concepts. purely propositional tasks, even when in principle they ar

We believe that a workshop that brings together peopléapable of representing the true concept.
with a variety of perspectives on relational learning Furthermore, given the extreme complexity of higher-
represents a unique opportunity to develop a formalevel relational concept classes, it is likely thandaling
characterization of relational concepts. Such formadion  approaches designed for lower levels will have broader
would contribute to research on relational learningain expressive power within the lower-level class. For
number of ways. example, ILP systems can represent very complex reédtion
1. It would provide a framework for the theoretical concepts. However, they cannot take full advantage of

analysis and comparison of relational learners wittstatistical properties like relational autocorrelat{densen
respect to their ability to express and learn certairand Neville 2000), which can be extremely useful for

concepts. modeling in relational domains.

2. It could thereby provide guidance in the choice of a A Wwell-designed concept-class hierarchy will also
method for a particular domain. facilitate a “bi-directional search” approach to rigadl

3. It would be a valuable tool for addressing the issue garning research. Although we are not aware of ingei
model and representation complexity. framed as such, this type of approach already is being

4. It would help to clarify the problem domain that aLaken.t Sdorge rezea:chers arebasllang_hhow ILP systqm1|§ cg
practitioner/research effort is targeting. € extended to deal more robustly with more specialize
) o concept classes, and recently there has been a surge of
5. It \_Nou_lc_i he'P to specify the scope of generalization Ofinteres'[ in generalizing propositional algorithms (e.g.,
scientific claims. Bayesian networks, decision trees, logistic regressia,

We argue for a hierarchy of increasingly more generahajve Bayes). A concept-class hierarchy will claaifd to
relational concept classes, conveniently placing stahda some degree quantify the nature of extensions of
single-table  (“propositional”) learning algorithms  as propositional learning methods.  For example, these
learning concepts in the most specialized class. Somgtensions of propositional methods typically cannotnlea
other, more general, cases of relational concepts been  concepts as general as can ILP systems. However, the
examined already, for example attribute hierarchie$nay be more robust at learning concepts at the laavet.|
(Almuallim et al., 1995). The most general (and complexResearch results along these lines are much mor#isatis
class would capture global concepts that include the entigggn saying “my relational Foo algorithm is bettearth
relational structure and all object attributes. FOIL on the domains I've tested.”

We expect learners developed for more specialized .
concept classes to apply broadly within the class, but ¢*N Aggregation-based framework
course to be suboptimal (biased) when a more genessl cla Moving upward from propositional algorithms to
is required. Nevertheless, it may be that the bizssmuhing  algorithms that can learn more complex relational
method actually performs better than an unbiasegoncepts, we must address two main issues: (i) how to
counterpart, for some problems. This is in direciana explore related objects in secondary tables and (ii) fwow
to what has been observed time and time again in machiaggregate the bags of related objects that are found. We
learning. For example, linear models (including naiveconjecture that the formalization of relational oepts
Bayes) learn a more restricted concept class thantremes must (at least) reflect these two main issues:
induction. However, they are extremely useful. In some The definition of “relatedness”
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e The aggregation of bags of related objects e undertaking of more comparative studies and acquiring
We have proposed (Perlich and Provost 2003) a first —additional benchmark datasets.
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Further Implications and Work Y

Having identified aggregation as a major driver of
generalization performance suggests that more efforts
should be made to dissect complex relational learning
systems into their components and to identify the soafc
generalization power.

As a research field we should work our way up
stepwise through increasing complexity, drawing from the
knowledge and experience of lower levels, rather than
jumping to very expressive model classes that (currently)
suffer from massive search problems.

Additional outstanding tasks are the
< improvement of the hierarchy of relational concepts,

* exploration of “relatedness” and alternative methods
of selecting related objects,

< identification of other components of concepts and of
algorithms (besides exploration and aggregation),

1P8
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Abstract

Link predictionis a comple, inherentlyrelational,
task. Be it in the domainof scientific citations,
social networks or hypertet links, the underly-
ing dataare extremely noisy and the characteris-
tics usefulfor predictionare not readily available
in a“flat” file format, but ratherinvolve complex
relationshipsamongobijects.In this paper we pro-
posethe applicationof our methodologyfor Sta-
tistical Relational Learning to building link predic-
tion models. We proposean integratedapproach
to building regressionmodelsfrom datastoredin
relational database@ which potential predictors
aregeneratedy structuredsearchof the spaceof
gueriesto the databaseand thentestedfor inclu-
sion in a logistic regression. We presentexperi-
mentalresultsfor the task of predicting citations
madein scientific literature using relational data
takenfrom CiteSeerThis dataincludesthecitation
graph,authorshipandpublicationvenuef papers,
aswell astheirword content.

1 Introduction

Link predictionis animportantproblemarisingin mary do-
mains. Web pages computersscientific publications,orga-
nizations peopleandbiologicalmoleculesareinterconnected
andinteractin oneway or another Being ableto predictthe
presencef links or connectiondbetweerentitiesin adomain
is bothimportantanddifficult to dowell. We emphasizéwo
importantcharacteristicdf suchdomains:i) their natureis
inherentlymulti-relational,makingthestandardflat” file do-
mainrepresentatiomadequateandii) suchdatais oftenvery
noisy or partially obsened. For example,in the domainof
scientific publications,documentsare cited basedon mary
criteria, including their topic, conferenceor journal,andau-
thorship,aswell asthealreadyexisting citationstructure All
attributescontribute, somein fairly complex ways.

The characteristicof the task suggeststatisticallearning
for building robust modelsfrom noisy data and relational
databasesasa naturalway to representind storesuchdata.
Difficulties arise from the fact that the standardstatistical
learningalgorithmsassumene-tableflat” domainrepresen-
tation. Suchalgorithmsare presentedvith a setof possible
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predictorsanda modelselectiorprocessnakesdecisionge-

gardingtheirinclusioninto amodel. Thus,theprocesof fea-

ture creationis decoupledrom featureselectionandis often

performedmanually Moreover, it is notalwaysobviouswhat
featureshouldbegeneratedThus,it is crucialto providesta-
tistical modelingtechniqueswith an integratedfunctionality
to navigatericher datastructuresn orderto discover poten-
tially new andcomplex sourcef relevantevidence features
not readily availablein singletablesandnot alwaysimmedi-

ately obviousto humans.

Oneapproachthat might be considereds to generatehe
full join of adatabas#or aone-tabldearningmethod.Thisis
bothimpracticalandincorrect—thesizeof theresultingtable
is prohibitive, andthe notion of an objectcorrespondindo a
training exampleis lost, beingrepresentetty multiple rows.
Moreover, the entriesin thefull join tablewill be atomic at-
tribute values, rather than valuesresulting from arbitrarily
complex queries,what we desirefor our features. Preserv-
ing therelationalrepresentatiomlsoallows the introduction
of intelligentsearcheuristicsthatexplore only subspacesf
thepossiblesearchspace.

Ourmethodof statisticarelationallearningintegratesstan-
dardstatisticalmodeling,herelogistic regressionwith a pro-
cessfor systematicallygeneratingfeaturesfrom relational
data.Weformulatethefeaturegeneratiomprocessssearch in
the space of relational database queries. Therichnesof this
spaceor space bias potentiallycanbe chosenat the desired
level of complexity by specifyingthetypesof queriesallowed
in the search. Aggregation or statisticaloperations group-
ings, richerjoin conditions,or argmax-basedjueriescanall
beconsideredspartof search.Thus,thesearchspaceallows
thediscovery of complex andinterestingrelationships.

In this paper we apply our methodof statisticalrelational
learning[Popescugt al., 2003 to theproblemof citationpre-
dictionin thedomainof scientificpublications.Link predic-
tion modelsin this domaincanbe usedasa citationrecom-
menderservice. This servicecan potentially be deployed to
recommenditationsto usersvho providetheabstractnames
of the authorsandpossiblya partial referencdist of a paper
in progress. In additionto prediction, the learnedfeatures
have anexplanatorypower, providing insightsinto the nature
of thecitationgraphstructure We usethedatafrom CiteSeer



(a.k.a.Researchindg,! anonlinedigital library of computer
sciancepaperd Lawrenceet al., 1999. CiteSeercontainsa
rich setof relationaldata,includingthetext of titles, abstracts
anddocumentsgitationinformation,authornamesandaffil-
iations,conferencer journalnames’

2 Methodology

Ourmethodof statisticarelationallearningcouplesgwo main
processesgenerationof featurecandidatedrom relational
dataandtheir selectionwith statisticalmodel selectioncri-
teria. Relationalfeaturegenerationis a searchproblem. It
requiresformulationof thesearchin thespaceof querieso a
relationaldatabaseWe introducenotationfirst.

Throughout this section we use the following fixed
schema

Citation( from: Docunent, to: Documnent),
Author( doc: Docunent, auth: Per son),
PublishedIit doc: Docunent, vn: Venue),
WordCoun¢ doc: Docunent, word: Word, cnt: I nt).

We useextendedrelationalalgebranotationto denoteag-
gregations. Aggregation functionsare subscriptedwith the
correspondingttribute nameif appliedto anindividual col-
umn, or are usedwithout subscriptsif appliedto entire ta-
bles. For example,an averagecountof the word “learning”
in documentscited from a learningexampledocumentd, a
potentially usefultype of featurein documentclassification,
is denotedas:

AVE€cnt [Uword:’learning’ Afrom='d'
(Citation Myp—goc WordCount)]

Theduplicatedn thecolumncnt arenot eliminated unless
anexplicit projectionof thatcolumnis performedbeforeag-
gregationtakes place. Whenambiguouscolumnnamesare
resolhed with relationnames.We abbreviate relationnames
with their first letter, andin the casef joinsinvolving more
thanoneinstanceof the samerelation, the relation nameis
suffixed with a numeral. For example,the numberof com-
mondocumentshatbothdocumentsi* andd? citeiis:

count[aC’l.from:’d“/\CQ.from:’d2’(C]- No1.to=C2.t0 02)]

This featureis an example of a featureusefulin link pre-

diction. It asksa questionabouta target pair of documents
< d',d?> >. Whenlearningn-ary targets,we superscripil

with a correspondingttribute index. Queriesmay be about
justoneof thedocumentsn atargetpair. For example:

countlogo—rg2: (C)]

is the numberof timesdocumentd? is cited. Largervalues
of this featureincreasethe prior probability of d' citing d?,
regardlesof whatd! is.

*http://citeseer.org/

2publicationvenuesareextractedby matchinginformationwith
theDBLP databaseht t p: / / dbl p. uni -tri er. de/

3Domains,or types,usedherearedifferentfrom the basicSQL
types.In implementationthesedomainsarespecifiedn additionto
thebasicSQL typesto guidethe searchprocessnoreefficiently.

2.1 Relational Feature Generation

We generatefeaturesby searchingthe spaceof relational
databasejueries. The main principle of our searchformula-
tion is basedon the conceptof refinement graphs [Shapiro,
1983 which are widely usedto searchthe spaceof first-
orderlogic clauses. The searchof refinementgraphsstarts
with most generalclausesand progressedy refining them
into more specializedones. Refinemengraphsare directed
agyclic graphsspecifyingthe searchspaceof the first-order
logic queries. The spaceis constrainedoy specifyinglegal
clauseg(e.g. disalloving recursionand negation), andthen
structuredy partialorderingof clausesusingasyntacticno-
tion of generality(9-subsumptiorPlotkin, 1969). A search
nodeis expanded,or refined,applying a refinement opera-
tor to produceits most generalspecializations. Inductive
logic programmingsystemsusing refinementgraphsearch,
usually apply two refinementoperators:i) addinga predi-
cateto the body of a clause jnvolving oneor morevariables
alreadypresent,and possiblyintroducingone or more new
variables,or i) a singlevariablesubstitution,[Dzeroskiand
Lavrac,2001]. In relationalalgebratheserefinementsorre-
spondto addingan equijoinwith a new relationinstance or
performinga selectionbasedon a conditionof equalitywith
a constant. In contrastto learninglogic clauses statistical
learningis not limited to binarylogic valuedattributes.
Ourfirst extensionintroducesaggreyationor statisticalop-
erationsinto the searchspace.A queryin relationalalgebra
resultsin atableof all attributevaluessatisfyingit, ratherthan
atrue/ f al se value. Queryresultsareaggreatedto pro-
ducescalamumericvaluesto be usedasfeaturesdn statistical
learning. Althoughthereis no limit to the numberof aggre-
gationfunctionsonemay try, e.g. squareroot of the sumof
columnvalues,logarithmof their productetc., we expecta
few of thembeingmostuseful,suchascount , ave, max,
m n, node, and enpty. Aggregationscanbe appliedto
awhole tableor to individual columns,asappropriategiven
typerestrictions,e.g. ave cannotbe appliedto a columnof
a catgorical type. Adding aggrejationoperatorsresultsin
a muchricher searchspace.Binary logic-basedeaturesare
alsoincludedthroughtheenpt y aggreyationoperation.The
situationswhen aggreyation operationsare not defined,e.g.
the averageof an empty set, areresolhed by introducingan
interactiontermwith a 1/0 not-defined/definetkature.
Theresultsof aggreyationoperationsmay be factorednto
further search.For example,we may wantto askhow mary
co-authorghe mostcited authorin a given conference: has
(including him/herself).Thefollowing aggreyation:

mostCitedAuth =

mOdeauth[(Uvnz’c’((P NP.doc:from C) Nto:A.doc A))]
is usedin:

count[mA2.quth (0 A1.quth="mostCited Auth’

(Al X A1.doc=A2.doc A2))] .

Richer selectionor join conditions,not necessarilycon-
juncts of equality conditions,can also be madepart of the
searchspace.Thesearctspaces potentiallyinfinite, but not
all subspacewiill be equallyuseful. We proposethe useof
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sampling from subspacesf the sametype performedat the
time of nodeexpansiongo decideif morethoroughexplo-
ration of that subspaceés promising,or if the searchshould
be morequickly refocusedn othersubspaces.

Our current implementationconsidersthe searchspace
covering querieswith equijoins,equality selectionsand ag-
gregation operations. Aggregatesare consideredor model
inclusionat eachnode, but are not factoredinto the further
search.Figure 1 presentsa fragmentof the searchspaceus-
ing relationsAut hor, Ci t at i on andPubl i shedl n for
thelink predictiontask.

Logistic regression[Hosmer and Lemesha, 1989 is
used for binary classificationproblems. Model parame-
ters/rgressioncoeficientsarelearnedto maximizethe like-
lihood function, i.e. the probability that the training datais
generatedy a modelwith thesecoeficients. More complex
modelswill resultsin higherlikelihoodvalues,but at some
pointwill likely overfit the data,resultingin poorgeneraliza-
tion. A numberof criteriaaiming at striking the balancebe-
tweenoptimizing the likelihood of training dataand model
compleity have beenproposed. Among the more widely
usedis the Bayesiannformation Criterion (BIC) [Schwartz,
1979, which works by penalizingthe likelihood by a term
that dependson model complexity. We usestepwisemodel
selectionto find a modelwhich generalizesvell by adding
one predictorat a time aslong asthe BIC canstill be im-
proved.

3 Tasksand Data

Learningfrom relationaldatafor link predictiondiffers in
severalimportantaspectdrom otherlearningsettings.Rela-
tionallearning,in generalrequiresaquitedifferentparadigm
from “flat” file learning. The assumptiorthat the examples
areindependernis violatedin the presencef relationalstruc-
ture; this can be addressedxplicitly [Jensenand Neville,
2002; Hoff, 2003, or implicitly, aswe do here, by gener
ating morecomplex featureswhich capturerelationaldepen-
dencies.Whenthe right featuresare used,the obsenations
areconditionallyindependengiiventhe featuresgliminating
theindependenceiolation.

In our link predictionsetting,a learningexampleclassla-
bel indicatingthe presencer absencef alink betweenwo
documentss informationof the sametype asthe restof the
link structurewhich can solely be usedfor prediction. In
somesensejt may be instructive to view this settingashy-
brid model and memory based learning. We build a formal
statisticalmodel,but predictionof future datapointsrequires
databas@ccessaseachselectedeatureis a databasejuery
Thus, an importantaspect,more so thanin attribute-value
learning, is what information aboutnew exampleswill be
availableatthetime of predictionandhow missingor chang-
ing backgroundnformationwould affecttheresults.

Considerthe following two scenariosfor prediction of
links betweerobjectsin adomain:

e Theidentity of all objectsis known. Only some of the
link structureis known. The goal is to predict unob-
sened links, from existing link structurealoneor also
usinginformationaboutotheravailableobjectattributes.

e New objectsarrive and we want to predicttheir links
to otherexisting objects. What do we know aboutnew
objects?Perhapswe know someof theirlinks, andwant
to predictthe other Alternatively, we might not know
ary of the links, but know someother attributesof the
new objects.

In thelattercase whennoneof the partiallink structureof
the new objectsis known, and predictionis basedsolely on
otherattributes,e.g. only authorshipandword content,fea-
ture generationwould have to be controlledto not produce
featuresdbasedon immediatelinks, but usethemwhenrefer
ring to thelinks in alreadyexisting backgroundnowledge.

In this paper we perform experimentsfor the first sce-
nario. Thedatafor our experimentsvastakenfrom CiteSeer
[Lawrenceet al., 1999. CiteSeercatalogsscientific publi-
cationsavailable in full-text on the web in PostScriptand
PDFformats. It extractsand matchesitationsto producea
browsablecitationgraph.Thedatawe usedcontains271,343
documentsand1,092,20Ccitations* Additional information
includesauthorshipand publicationrelations? We usethe
following schema:

Citation( from: Document , to: Docunent),
Author( doc: Docunent, auth: Per son),
Publishedlif doc: Document , vn: Venue) .

Thetrainingandtestsetsareformedby samplingcitations
(or absentitationsfor negative examples)from the citation
graph. We perform learningon five datasets. Four of the
dataset$ncludelinks amongall documentsontaininga cer
tain queryphrase andthefifth datasetcoversthe entirecol-
lection. Notethatthe backgroundknowledgein thefirst four
datasetsalso includesall otherlinks in the full collection;
only training and testlinks are sampledfrom the subgraph
inducedby documensubsetsTablel containshe summary
of thedatasets.

Thedetailedearningsettingis asfollows:

e Populate three relations Ci t ati on, Aut hor
Publ i shedl n initially with all data.

e Createtraining and test setsof 5,000 exampleseach
by i) randomly sampling 2,500 citations for training
and 2,500 citations for testing from thosein column
# Li nks of the Table 1; and ii) creating negative
examplesby sampling from the same subgraphalso
2,500/2,500rain/testof “empty” citations,i.e. pairsof
documentsot citing eachothetr

e Remove testsetcitationsfrom theCi t at i on relation;
but not the other information aboutthe documentsn-
volvedin thetestsetcitations. For example,othercita-
tionsof thosedocumentsarenot removed.

and

“This datais partof CiteSeemsof August2002.Documentson-
sideredareonly non-singletordocumentsutof thetotal of 387,703.
Singletonsare documentsvhich both citation indegreeand outde-
greeregisteredn CiteSeelarezero.

5The authorshipinformationis known for 218,313papersand
includes58,342authors. Publicationvenuesareknown for 60,646
documents. The setof venuesconsistsof 1,560 conferencesand
journals.
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Figurel: Fragmenbf the searchspaceandexamples.The selectconditionc is a booleanfunction specifyingjoin conditionsandequality

conditionsfor referencingearningtamget-pair< d*, d? >. Eachnodeis
abbreviationsof Ci t at i on, Aut hor andPubl i shedl n andthenu
AGGR denotedeaturegesultingin aggrgationoperationsatthecorre

Tablel: Datasesummaries.

Dataset #Docs #Links Density(102%)
“artificial intelligence” 11,144 16,654 1.3
“datamining” 3,424 6,790 5.8
“information retrieval” 5,156 8,858 3.3
“machinelearning” 6,009 11,531 3.2
entirecollection 271,343 1,092,200 0.1

e Remove trainingsetcitationsfrom theCi t at i on rela-
tion, soasnot to includethe actualanswerin the back-
groundknowledge.

e Learningisperformed) usingCi t at i on relationonly,
orii) usingall threerelationsCi t at i on, Aut hor and
Publ i shedl n.

The positive andnegative classesn this taskareextremely
unbalanced. We ignore the lack of balanceat the training
phase;at the testingphasewe performadditionalprecision-
recall curveanalysigfor largernegative classpriors. Thenext
sectionreportsexperimentakesults.

4 Reaults

We startby presentinghe resultsfor the balancedclasspri-
ors testscenario,and continuewith the analysisof the un-
balancedclasssettings. Two setsof modelsare learnedfor
eachdataset:i) usingonly Ci t at i on backgroundknowl-
edge,andii) usingall threerelationsCi t at i on, Aut hor
andPubl i shedl n.
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adatabasejueryaboutd®, d% or both (relationnamesarefirst letter
mberif morethatoneinstantiationof the samerelationis involved.
spondingearchgraphnode).

Table2: Trainingandtestsetaccuracie$%). 5,000train/test
examplespalancedoriors.

Dataset BK: Citation BK: All
Train Test Train Test
“artificial intelligence” 90.24 89.68 92.60 92.14
“datamining” 87.40 87.20 89.70 89.18
“informationretrieval” 85.98 85.34 88.88 88.82
“machinelearning” 89.40 89.14 91.42 91.14
entirecollection 92.80 92.28 93.66 93.22

Whenonly G t at i on backgrounknowledgeis usedthe
averagetestsetaccuray in five datasetss 88.73%andwhen
all relationsare usedthe averageincreasego 90.90%° In
both caseghe searchexploredfeaturesnvolving joins of up
to threerelations. It is not unreasonabléo expectthat even
bettermodelscanbe built if we allow the searchto progress
further. Table2 detailsthe performancen eachdataset.The
largestaccurag of 93.22%is achieved for the entire Cite-
Seerdataset. Even thoughthis is the largestand the most
sparsedatasetthis is not surprisingbecausesincethe fea-
turesarenot domainspecificandrely on the surroundingci-
tation structure this datasetretainsmore useful “supporting
link structure”after someof them are removed to sene as
trainingandtestingexampleg(Section3).

In the experimentausingonly theCi t at i on relationthe
averagenumberof featuresselecteds 32; 13 of the selected

8Usingthe predictedprobability of 0.5 asthe decisioncut-of in

logistic regression.



featuresarethe sameacrossall five datasetsWhenall three
relaionsCi t at i on, Aut hor andPubl i shedl n areused
the averagenumberof selectedfeaturesis 40, with 14 fea-
turescommonto all five datasets.In additionto more ob-
vious features,suchasd! is morelikely to cite d? if d? is
frequentlycited, or if the samepersonco-authoredothdoc-
uments,or if d' andd? are co-cited, or cite the samepa-
perd, we learnedsomemore interestingfeatures. For ex-
ample,a documentis morelikely to be citedif it is cited by
frequentlycited documents. Locally, this effectively learns
the conceptof an authoritatve documen{Pageet al., 1998;
Kleinberg, 1999. Or, the following feature,selectedn all
models:

Count[WCZ.to(o'Cl.toz’dQ’(Cl NCI.f’rom:CZ.f’rom 02))]

increaseghe probability of a citationif d? is co-citedwith

mary documentsSincethis featureis selectedn additionto
the simplecitation countfeature,it couldmeanthateitherd?

appearsnoreoftenin reviews, whichtendto havelongerlists
of referencesopr it is cited from documentshaving smaller
overlap amongtheir referenceswhich is more probableif

they belongto differentcommunities.

We comparethe above resultsto the modelstrained on
only binary features,i.e. whenusingonly the enpty ag-
gregationfunction on the entiretable. Suchfeaturesarethe
logic-basedeaturesfrom the original formulationof refine-
mentgraphsearch;or, in otherwords, propositionalizedn-
ductive logic programmingfeatureswith logistic regression
featureselection[Popescukt al., 2003. Thebinaryfeatures
resultedn modelswith lower out-of-sampleaccuraciesn all
datasets.On averagethe accurag with only binary features
is 2.52 percentaggointslowerin modelsusingCi t at i on
relation,and2.20percentag@ointslowerin modelsusingall
threerelations.The decreasef accurag is significantat the
99%confidencdevel in bothcasesaccordingto thet-test.

Theclasspriorsareextremelyunbalancedgdueto the spar
sity of the citation structure.The citation graphof the “arti-
ficial intelligence”datasetfor exampleis only 1.34 x 10~4
dense;that meansthat for one citation betweentwo docu-
mentsthereare morethan7,000non-&isting citations,thus
thereare morethan7,000timesas mary negative examples
asthereare positive. We performthe precision-recalcurve
analysisof our modelstrainedwith balanced:lasspriorsfor
testingsituationswith increasedegative classproportions.

We vary theratio k of the numberof negative to the num-
ber positive examplesusedat testing. The ratio of one cor-
respondgo the initial balance. We usefor illustration the
“artificial intelligence"dataseandthemodeltrainedusingall
threerelations.New largersetsof negative examplesaresam-
pledwith replacementrom all “non-existing” links between
documentsn this dataset.Figure2 presentgprecision-recall
curvesfor k£ = 1, 10 and 100. As k increaseghe precision
fallsfor thesamdevelsof recall. Reducingheneggative class
prior shouldbe performedwhenpossibleby filtering out ob-
viously negative examplesfor exampleby usingatext based
similarity, or othermeasuresppropriatdor a giventask.

"Thesewo featuresorrespondo theconcept®f co-citationand
bibliographiccouplingusedin bibliometrics.
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Figure 2: Precision-recalcunes for the “artificial intelligence”
datasetwith differentclasspriors. k is the ratio of the numberof
negative to the numberof positive examplesusedattesting.

In applicationto citation recommendationwhen only a
few citationsneedto be recommendedye shouldcareonly
aboutthe high precisionmode performance.In the caseof
the precisionrecall curve for £ = 100, for example,10% of
citationscanberecalledfor recommendatiowith 91%preci-
sion. Thisis anoverallmeasuref performance—somesers
canreceve morethanenoughrecommendationsnd others
none. Whenwe wantto recommend fixed numberof cita-
tionsto every user the CROC performancenetric shouldbe
used[Scheiret al., 2004.

5 Redated Work

Integratingor extendingexisting modelsor techniquego re-
lational data has beenaddressedy researchersn several
fields,includinginductivelogic programmingpelief netsand
link analysis.

A numberof approachextendingone-tablelearnersto
multi-tabledomainshave beenproposedn theinductivelogic
programmingILP) community Generally theseapproaches
extend learnersmost suitable to purely binary attributes.
Tilde [BlockeelandRaedt, 1999 andWARMR [Dehaspand
Toivonen,1999, for example extenddecisiontreesandasso-
ciationrules,respectiely. AnotherILP approachs proposi-
tionalization. It usesbodiesof first-orderruleslearnedby an
ILP techniqueas binary featuresin attribute-value learners.
Krameret al. [2001] review this methodology Proposition-
alizationwith linear regressionmodeling,for example,was
usedby [SrinivasanandKing, 1999 to build predictve mod-
elsin a chemicaldomain. Decouplingthe processof gen-
eratingfeaturesby propositionalizatiorand modelingusing
thesefeatureshowever, retainstheinductive biasof thetech-
nigueusedto constructfeatures.As onesolution,the gener



ationof binaryfirst-orderfeaturedy anILP-style searchand
featureselectiorwith native criteriaof a modelingtechnique
arecoupledinto a singleloop [Blockeel andDehaspe2000;
Popescukt al., 2004, e.g. while modelingwith a stepwise
logistic regression. Stochastic Logic Programs [Muggleton,
1995 modeluncertainlyfrom within the ILP framework by
providing logic theorieswith a probability distribution.

A numberof probabilisticnetwork relationalmodelshave
alsobeenproposedProbabilistic Relational Models (PRMs)
[Getooret al., 2001] area relationalversionof Bayesiamet-
works. PRMsaregeneratie modelsof joint probability dis-
tribution capturingprobabilisticinfluencesbetweenentities
andtheir attributesin a relationaldomain. PRMs presenta
very powerful formalism. Beinga joint probability modelof
theentiredomain,PRMscanprovideanswergo alargenum-
ber of possiblequestionsaboutthe domain,including class
labels,latentgroupings changingbeliefsgivennew obsena-
tions. An importantlimitation, however, of generatre mod-
eling is thatin reality thereis rarely enoughdatato reliably
estimatethe entire model. Onecanachieve superiorperfor
mancewhenfocusingonly onaparticularquestiong.g.class
label prediction,andtraining modelsdiscriminatively to an-
swerthat question. A formulation similar to PRMs, but se-
manticallydifferent,calleda Statistical Relational Model—a
statisticalmodel of a particulardatabasenstantiation—vas
proposedor optimizingthe answeringof relationaldatabase
gueries[Getooret al., 2004. Taskaret al. [2004 propose
aframawork calledRelational Markov Networks (RMNs)—a
relationalextensionof Markov networks, traineddiscrimina-
tively following the approacthof Lafferty et al. [2001]. Here,
the structureof a learningdomain,determiningwhich rela-
tional interactionsareexplored,is prespecifiedy a template
expressedn arelationalquerylanguage.

A techniquecalledStatistical Predicate Invention [Craven
andSlattery 2001] combinesstatisticalandrelationallearn-
ing by usingclassificationproducedy Naive Bayesaspred-
icatesin FOIL [Quinlanand Cameron-Joned4,999. Statis-
tical PredicatdnventionpreseresFOIL asthe centralmod-
eling componentand calls statisticalmodeling from within
theinner structurenavigationloop to supplynew predicates.
Neville and Jensen[200d proposean iterative technique
basednaBayesiarclassifiethatuseshigh confidencenfer-
encegto improve classinferencedor relatedobjectsat later
iterations.CohnandHofmann[2001] proposea joint proba-
bilistic modelof documentontentandconnectvity, andap-
ply it to classificatiortasks,includinglink prediction.A rela-
tional formulation of Markov chainsfor sequencenodeling
in webnavigationis proposedn [Andersoret al., 2002.

Link analysisplaysanimportantrole in the hypertet do-
mains,a notableexamplebeing Google,which usesthe link
structureof the Web by employing a link basedconceptof
pageauthorityin rankingsearchresults[Pageet al., 1994.
In additionto knowing the authoritatve documentsit is of-
ten usefulto know the web pageswhich point to authorities
onatopic,thesocalledcalled“hub” pagedKleinbery, 1999,
which correspondo the conceptof review papersn the sci-
entific literaturedomain.

6 Discussion and Future Work

We presentedhe applicationof statisticalrelationallearning

to link predictionin the domainof scientific literature cita-

tions. Thelink predictiontaskis inherentlyrelational. The

noisein the available datasourcesuggestshe useof statis-

tical modeling.Standard statisticalmodels however, usually

assumenetabledomainrepresentationyhichis inadequate
for this task. Our approachovercomeghis limitation. Sta-

tistical modelingand featureselectionare integratedinto a

searchover the spaceof databaseueriesgeneratingeature
candidatednvolving complex interactionsbetweenobjects
in a given relational database.This avoids manualfeature
“packaging”into onetable,a processhat canbe expensve

anddifficult.

Our methodextendsbeyond ILP becausestatisticsallows
generatiorof richer features bettercontrol of searchof the
featurespaceandmoreaccuratenodelingin the presencef
noise. On the otherhand,our methoddiffersfrom relational
probabilisticnetwork models,suchasPRMsandRMNSs, be-
causethesenetwork modelswhile beingableto handleun-
certainly do not attemptto learnandmodelnewx complex re-
lationships.

In additionto prediction,learnedmodelscan be usedfor
explanatorypurposesSelectedeaturegrovide insightsinto
thenatureof citations.Otherlinkedervironmentssuchasthe
Web, social networks or biological interactionswe believe,
canbeexploredwith themethodologypresentedh thispaper

We planto useintelligentsearcheuristicsto speedup the
discovery of subspacewith moreusefulfeatures.Sincethe
potential searchspaceis infinite, intelligent searchis nec-
essaryto focusthe processinto more promisingsubspaces.
As one approachwe proposeusing statisticalestimatesof
“promise” computedby samplingfrom the subspacesf the
sametype to decideif thosesubspaceshouldbe explored
morethoroughly

Using clustering or latent class modeling in statistical
relational learning should also prove highly beneficial.
Clusterscan generaterich relational structure[Foster and
Ungar, 2004. For example,a documentbelongsto one or
moretopics. Eachof thesetopics,in turn, hasautomatically
generategbropertiessuchas“most frequentlycited paperon
thistopic”. Thusafeaturesuchas
nost - ci t ed- doc( mai n-topi c(doc-231)) could
be learned, as could featuresinvolving setsof most cited
documents.This hasthe potentialto produceextremelyrich
andpowerful models,helpingto overcomeproblemsof data
sparsity
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In recent years, we have seen remarkable advances in
algorithms for relational learning, especially statisticaly
based algorithms. These agorithms have been
developed in a wide variety of different research fields
and problem settings. It is important scientificdly to
understand the strengths, weaknesses, and applicability
of the various methods. However, we are stymied by a
lack of a common framework for characterizing
relational learning.

What are the dimensions aong which relationd learning
problems and potential solutions should be
characterized? Jensen (1998) outlined dimensions that
are applicable to relational learning, including various
measures of size, interconnectivity and variety; items to
be characterized include the data, the (true) model, the
background knowledge, and so on.  Additionaly,
individual research papers will characterize aspects of
relationa learning that they are considering and are
ignoring. However, there are few studies or even
position papers that examine various methods,
contrasting them along common dimensions (one
notable exception being the paper by Jensen and Neville
(2002D)).

It dlso is not clear whether straightforward measures of
size, interconnectivity, or variety will be the best
dimensions. In this paper we argue that other sorts of
dimensions are at least as important. In particular, the
aforementioned dimensions characterize the learning
problem (i.e., the training data and the true model).
Equally important are characteristics of the context for
using the learned model—which have important
implications for learning. For ilustration, let us discuss
three context characteristics, and their implications for
studying relational learning algorithms.
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i) Training data versus background knowledge.
Relational learning incorporates background knowledge
in a more principled manner than is possible with
traditional, single-table learning. Here we consider one
particular type of background knowledge: descriptions
of known objects, of the same type as those to be
classified. Dealing with such objectsis not an issue for
typica (propositional) learning approaches, because data
items are assumed to be independent. In contrast,
relational models may be able to take advantage of
relations between the data to be classified and
background-knowledge entities. But what distinguishes
background knowledge from training data? Comparison
of methods is difficult if they incorporate different
assumptions.

Consider the simple question:

Q1: Should it be possible for the learned model to take
advantage of links to specific training entities?*

There is not a simple answer; it depends on the
application to which the learning is being applied. This
is not a new observation, but to our knowledge it is not
dedt with uniformly by researchers and their methods
(which makes comparisons difficult).

Let us clarify by defining two, possibly overlapping, sets
of data training data (T) and background knowledge
(B). Only B will be available when the moddl isin use.
Q1 then becomes. IsT1 B? Andif wedefineT¢e=T —

(T C B), then models should not be allowed to consider
links o entities in T¢ Thisisasimple example, but it is
not trivial—which we will discuss more below.
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1 To be clear, we are focusing on the links to specific entities
themselves, rather than to properties of the entities.



Once such a dimension is agreed upon, we can define
mutually acceptable comparative studies, for example
that vary the size of T and of B, their overlap, and so
on. We aso can discuss whether al of B is present at
training time, or if new background knowledge may
become available when the model is used.

ii) Base-levd learning vs. learning determinations.
Assume that models may refer only to background-
knowledge entities. The question still remains, should
they? For example?isit useful to learn that Hitchcock
directs horror movies if Hitchcock is dead and is not
going to direct any more movies? Wouldn't it be better
tolearn that di r ect or strongly determines genr e?

Q2 (Q19: Should it be possible for the model to take
advantage of links to specific background entities?

Again, this depends on the application, and in particular,
on the level of generdization desired. |s it appropriate
to learn base-level models or higher-level modes (or
both)?  Such higher-level learning has been caled
learning determinations (Russell, 1986; Schlimmer,
1993). For example, in a traditional, Sngle-table setting
one may learn that Mexicans speak Spanish and
Brazilians speak Portuguese, or at a higher level learn
that Count ry- of - ori gi n determines Language. A
determination is a higher-order regularity that, once
known, can be used in a completely new context for
learning from very few data, for anaogica reasoning,
etc.

If the application of the mode is going to be in a
completely different context (new entities are not linked
to previous background knowledge), it may be
appropriate to learn higher-level regularities. If the
mode! is going to be used in the same or similar contexts
(e.g., it might encounter more Mexicans), baseleve
learning may be quite appropriate. If the context is
uncertain, it may be appropriate to learn both.

iii) Linking to the target values. In traditional flat-
table learning, supervised induction algorithms
reference the target values in the training set. However,
it does not make sense for alearned propositional model
to reference the target values of other examples
(because they are assumed to be i.i.d.). However,
relational learning does not assume independent entities,
and in fact tries to take advantage of linkages between
entities. The target values of the linked entities can be
treated in different ways, and again, if methods have
different treatments comparison is difficult.

2 Thanks to David Jensen for the example.
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Consider another simple question:

Q3: Should it be possible for the model to consider the
target values of linked entities?

Again, there is not a simple answer: it depends on the
application. This question is related to the question of
training data versus background knowledge. By our
previous discussion, the model should not be able to
access the target values of entitiesin T¢ (The induction
agorithm, of course, will access these.)

Issues i through iii illustrate dimensions that are
qualitatively different from the size, connectivity,
homogeneity, etc., of the data or models. These are
characteristics of the application that influence what sort
of modeling should be done.

Example L We want build a model to predict the box-
office receipts of movies, using data such as those
represented in the Internet Movie Database (IMDB)
(Jensen & Neville, 20028). How do we answer our
three questions? We assert that the answer to al three
should be “yes” We should not forget about prior
movies. (And who knows, a long-lost Hitchcock movie
may resurface) We should not ignore the box-office
receipts of prior movies. ¥

Example 2. We want to predict the subtopic of
published academic papers within the area of machine
learning, based on their relationships to each other
through citations or common authors (McCalum et dl.,
2000; Taskar et al., 2001). How do we answer our
three questions? Again, it depends on the application
context. If the models are to be applied to the same area
(machine learning) from which the training data were
selected, the answer to al three should be “yes.” We
should not forget about other papers we know about.
We should not ignore these papers subtopics. ¥

We believe that these three questions will be answered
in the affirmative for many applications of relationa
learning.®  This has implications for the design and
evaluation of relational learning agorithms. Here we
discuss only one implication: the answers to these
questions may bear on the baseline classification
procedure to which other methods are compared. If it
is possible for a model to reference the class values of
training/background entities, very simple models may
perform well.

® The answer to one or more questions of course aso may be
negative. For example, consider classifying web pages from a site
different from that used for training (Slattery & Mitchell, 2000).



Consider the following two closdly related relationa
classfiers.  Both perform simple combinations of
evidence from an entity’s relational neighbors. More
specifically, these classifiers take advantage of relationa
“homophily”—the tendency of entities to be related to
other similar entities, a form of relational autocorrelation
(Jensen and Neville 2002c). The difference between
the two classifiersis whether they take advantage of the
class labds of linked entities or of explicit class
membership probabilities of linked entities.

Definition.  The  degree-k  relational-neighbor
classifier (k-RN) estimates the probability of an entity e
being a member of class i as the (weighted) proportion
of the background entities linked to e by paths of length
k, that belong to classi. |

Definition. The degree-k probabilistic relational-
neighbor classifier (k-pRN) estimates the class
membership probability of an entity e as the normalized
sum of the classmembership probabilities of the
background (B = T) entities to which e is linked by
paths of length k. 1

For a domain of company affiliation classification
(Bernstein et a., 2003), for high-autocorrelation
affiliations a 1-RN model performs remarkably well—as
well as a complicated (and much dSower) multi-
document  text-classification  procedure  devised
specifically for this application, and better than methods
based on correlations in stock performance. It clearly
would be a mistake to omit this smple modd from a
comparison of learning techniques for this domain. A
k-RN model aso works quite well (compared to other
methods) for classifying initial public offerings (Perlich
& Provost, 2003).

We suggest using a smple, homophily-based classifier
(such as one of these relational neighbor classifiers) as a
basdine because homophily is ubiquitous in relationa
data. Jensen & Neville (2002c) found high relationa
autocorrelation for amost al attributes they examined in
linked movie data. Homophily-based classification is
one of the primary techniques used in fraud detection
[Fawcett & Provost, 1997; Cortes et al., 2001].
Chakrabarti et a. (1998) take advantage of homophily
to dassify hypertext documents. Furthermore,
homophily with respect to a wide variety of descriptive
variables has been observed in the interpersonal
relationships that define social groups, and is one of the
basic premises of theories of social structure (Blau,
1977).

Since we borrowed our two examples from the existing
literature, we can ask how the simple reationd
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classifiers perform in comparison to more-complex
methods.

Example 1, revisited. Neville et a. (2002) learn
models for predicting (inter alia) box-office receipts of
movies, using Relational Probability Trees (RPTs) and
Relational Bayesian Classifiers (RBCs). The models
estimate the probability that a movie “will be’ a
blockbuster (the box-office receipts exceed $2million).
Neville et a. found areas under the ROC curve (AUCs)
of 0.82 and 0.85 for RPTs and RBCs, respectively,
using a set of eight attributes on related entities, such as
the most prevalent genre of the movi€e's studio.

How well does a homophily-based classifier perform on
this problem? Consider 2-RN based on a particular link
type (call it ZRNgjing type>)- Links between movies are
through various other entities (actors, studios,
production companies, etc.), and we consider the links
to be typed by the entity through which they pass (e.g.,
2RNoducer Means: how often does the producer produce
blockbusters). The relationa-neighbor classifiers
achieved AUCs of 0.78 and 0.79 for NumLinKSoguction-
company TOI Z2RNgroqucer (respectively). Simply averaging
the homophily scores for the various links achieves
AUC=0.82"

Let us pretend that the experimental designs are
completely comparable, and ask: Do the more complex
models produced by the relational learners perform
substantially better than simple classifiers? Before
answering this we first must agree on issues i—iii
above.

Example 2, revisited. Taskar et a. (2001) learn
Probabilistic Relationa Models (PRMs) for classifying
academic papers within machine learning into one of
seven possible subtopics.  Figure 1 shows the accuracy
of the PRM as larger proportions of the data are used as
training data and labeled background knowledge (here,
T=B). They varied the proportion of known classes in
10% increments, performing 5-fold cross-validation.

How well does a simple homophily-based classifier
perform on this problem? With a moderate amount of
labeled background papers, a 1-pRN model performs
remarkably well—as well as the PRM. Figure 1
compares the classification accuracy of 1-pRN with the

* Learning a linear combination of 2-RN.. for severa link types
(actor, director, producer, production company) and the number of
links (as suggested by David Jensen) of severd link types achieves
AUC=0.85. Although this does involve some learning, and perhaps
a quirk of data entry, it nevertheless only uses a single attribute
(the class value) from related entities.



reported results from the PRM. Specifically, wsing the
same data as the prior study, we varied the proportion
of papers for which the class initialy is known from
10% to 60%, in 5% increments. We performed a 10-
fold cross-validation at each setting. For classification,
unknown classes of related papers were taken to be the
class prior (as defined by the known classes). As
shown in Figure 1, although 1-pRN has accuracy of
only 50% initially, the accuracy is comparable to that of
the PRM once hdf of the papers are labeled.

CoRA Comparison: 1-pRN ws. PRM

Accuracy

1-pRN F—e—

E—
R S

Iterative 1-pRMN
PRlem

a5 | ' : :
2.3 e.4

s labeled
Figure 1: Probabilistic 1-pRN vs. PRM

The poor performance when few of the classes are
known is not surprising, as there is little evidence on
which the relational neighbor classifier can base its
prediction. The PRM uses aform of belief propagation
from labeled to unlabeled entities, which may account
for the high performance even with only 10% of the
entities labeled. Also shown in Figure 1, iterative 1-
pRN adds smple belief propagation to the relational-
neighbor classifier. Specificaly, it estimates the classes
of the unknown papers by repeatedly updating the
class-probabilities of each initially unknown node (using
1-pRN) until some stopping criterion is met (in this
case, we simply let it run for 100 iterations). While
there is little difference from 1-pRN when a large
percentage of class labels are known initidly, iterative 1-
pRN shows a marked improvement when fewer class
labds are known. In fact, it is quite competitive with
the PRM.

Again, if we assume that the experimenta designs are
comparable, these results provide additional evidence
that for this application context (.e., “yes’ to dl three
guestions) such simple models should receive attention.

8.5
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Final words

In summary, we have argued (1) that we should come
to an agreement on dimensions such as these for
characterizing relational learning tasks, and (2) that we
should be aware of the power of simple models when
certain problem formulations are chosen. In particular,
we advocate use of the (homophily-based) Relational
Neighbor classfiers as basdines for evaluating
generdization performance.
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Abstract

First-order probabilistic models are recognized
as efficient frameworks to represent several real-
world problems: they combine the expressive
power of first-order logic, which serves as a
knowledge representation language, and the ca-
pability to model uncertainty with probabili-
ties. Among existing models, it is usual to dis-
tinguish the domain-frequency approach from
the possible-worlds approach.

Bayesian logic programs (BLPs, a possible-
worlds approach) and stochastic logic pro-
grams (SLPs, a domain-frequency approach)
are promising probabilistic logic models in their
categories.

This paper is aimed at comparing the re-
spective expressive power of these frameworks.
We demonstrate relations between SLPs’ and
BLPs’ semantics, and argue that SLPs can en-
code the same knowledge as a subclass of BLPs.
We introduce extended SLPs which lift the lat-
ter result to any BLP. Converse properties are
reviewed, and we show how BLPs can define the
same semantics as complete, range-restricted
SLPs. Algorithms that translate BLPs into
SLPs (and vice versa) are provided, as well
as worked examples of the inter-translations of
SLPs and BLPs.

1 Introduction

The recent study APrIL |

| aimed at assessing how probabilistic reasoning
could be integrated with first-order logic representa-
tions and machine learning. The project ended in June
2002 and raised the conclusion that, due to the re-
quirements for the use in functional genomics, stochas-
tic logic programs (SLPs) and Bayesian logic programs
(BLPs) [were] the most promising formalisms. They
represent the most expressive frameworks as they al-
low not only for constant and predicate symbols but also
for functors. Moreover, both formalisms are alternative
and complementary formalisms. Indeed, in BLPs the
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possible-worlds perspective is dominant, while SLPs use
a domain-frequency approach.

1.1 Motivations

Comparing these two major approaches looks like an
interesting issue. The study of the relations between
the possible-worlds and domain-frequency approaches,
which is not new, crops up in many articles. Halpern
dedicated a paper to that study | ]. Fur-
thermore, the idea of investigating the relations between
BLPs and SLPs in particular has been put forward in

| by Kersting and de Raedt,
who reckon at the very end of their article: Ezploring the
relations between Bayesian logic programs and stochas-
tic logic programs is interesting because of: (1) both are
using SLD trees and (2) transformations between proba-
bilities on the domain and probabilities on possible worlds
exist as Halpern noted.

Essentially two questions at two different levels can be
asked:

e Given an expert domain, can we encode the same
knowledge in a BLP and in a SLP?

e More practically: can we translate a BLP into an SLP,
and an SLP into a BLP? What are the respective in-
terests of these formulations? In particular, does the
translation have the same features (computation of the
probabilities, inference with or without evidence)?

Figure 1: BLPs, SLPs... What is at the intersection?

We argue that it is possible to encode a complete,
range-restricted SLP with a BLP, and that the converse
holds for a certain subclass of BLPs (the restricted BLPs,
whose predicate definitions contain a single clause). This
latter result is lifted to all BLPs by introducing extended



SLPs, which are SLPs augmented with combining func-
tions, and whose evaluation is made in stochastic SLD
and-or trees instead of stochastic SLD-trees for SLPs.

1.2 Outline

The section 2 of this article is dedicated to some pre-
requisites (we recall the usual syntax and semantics of
SLPs and BLPs). We also demonstrate relations be-
tween SLPs” and BLPs’ semantics, hence we eventually
reduce the issue of inter-translations of SLPs and BLPs
to the practical question: given a BLP (resp. an SLP),
how can we find an SLP (resp. a BLP) that encodes
equivalent distributions of probabilities with respect to
the semantics?

The section 3 presents some ways to construct and
evaluate an SLP which computes equivalent probabilities
to a given BLP.

e Firstly, a standard translation is proposed, which
deals with the subclass of restricted BLPs, whose
and-or trees (as defined in [

]) contain only and-nodes (these BLPs don’t
make use of combining rules). Extended SLPs are
introduced, and the latter result is lifted to all BLPs.

However, standard translations can only be queried
without evidence. Thus a BN translation is also
proposed, which can be queried with evidence but
works only for BLPs with finite Herbrandt model
(which obviously prevent the use of functors). Fi-
nally, we show how this result can be lifted to all
BLPs, provided that we insert a KBMC'-inspired
stage in the query-answering procedure.

In section 4, we provide a converse translation (from
SLP to BLP) and prove that it computes equivalent dis-
tributions of probabilities.

We conclude that extended SLPs and BLPs can en-
code the same knowledge (although their formalism is
more or less intuitive, depending on the kind of knowl-
edge we want to model).

2 Background
2.1 Stochastic Logic Programs (SLP)

Stochastic logic programs were first introduced by
Stephen Muggleton in 1996, as a generalization of
stochastic grammars.

Syntax:

As defined in [ ], a SLP consists of a
set of labelled clauses p : C, where p is from the interval
[0,1], and C is a range-restricted” definite clause. Later
in this report, the labelled clauses p : C will be named
parameterized clauses or stochastic clauses. The simplest
example of SLP is the coin example which mimics the

"Knowledge-Based Model Construction, as defined in
[ J.

2C is said to be range-restricted iff every variable in the
head of C is found in the body of C.
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action of a fair coin. The probability of the coin coming
up either head-side up (0) or tail-side up (1) is 0.5:

0.5 coin(0) «—
0.5 coin(1) «
In | ], SLP definition requires that for

each predicate symbol ¢, the probability labels for all
clauses with ¢ in the head sum to 1. However, this
can be a restrictive definition of SLPs. In other articles
([ | for instance), SLPs having this prop-
erty are called complete SLPs, while in uncomplete
SLPs, the probability labels for all clauses with a same
predicate symbol in the head sum to less than 1. In

| James Cussens introduces pure SLPs,
whose clauses are all parameterized (whereas impure
SLPs can have non-parameterized clauses. Furthermore,
normalized SLPs are like complete SLPs, but in un-
normalised SLPs, the probability labels for all clauses
with a same predicate symbol in the head can sum to
any positive value other than 1.

Semantics:

A stochastic logic program P has a distributional se-
mantics, that is one which assigns a probability distri-
bution to the atoms of each predicate in the Herbrand
base of the clauses in P. These probabilities are assigned
to atoms according to an SLD-resolution strategy which
employs a stochastic selection rule.

In | |, three different related distri-
butions are defined, over derivations, refutations and
atoms. Given an SLP P with n parameterized clauses
and a goal G, it is easy to define a log-linear proba-
bility distribution over the set of derivations, by
considering the function:

qu(x) _ 6)\.1/(1) _ H liVi(iU)
=1

where

e 1 is a derivation in the set of derivations from the
goal G.

A (A1, A2, oy Ap) € R™ is a vector of log-
parameters where \; = log(l;), l; being the label
of the clause 1.

v = (v1, va, ..., vy) € {N Uoo}" is a vector of
clause counts s.t. v;(z) is the number of times the
ith parameterized clause is used in the derivation .

The proof that 1, (x) is a probability distribution (pro-
vided that P is pure and normalized) can be found in
]. So far we have defined a probability dis-
tribution over all possible derivations, but we are mainly
interested in the refutations of the goal G. Now, if we
assign the probability 0 to all derivations that are not
refutations of the goal G, and if we normalize the re-
maining probabilities with a normalization factor Z, we
obtain the probability distribution f\(r) over the
set of the refutations of G:

fialr) = Z):lG e v(r)



Each refutation r involves some bindings along the
SLD-tree, which permits finding the computed answer
for G using r. The computed answer is the most general
instance of the goal G that is refuted by r; it is also
named the yield atom. Let us note X(y) the set of
refutations which lead to the yield atom y. We can finally
define a distribution of probabilities over the set of
yield atoms, with the function:

pel) = > K = Zig Y.
reX(y) reX(y)

Thus it is fairly simple to define probability-
distributions over the yield atoms in SLPs: we can use
the stochastic SLD-tree, which is the SLD-tree in
which each vertex (which corresponds to a resolution
step) is labelled with the parameter of the clause that
is used in the resolution step. Since every refutation of
the goal G corresponds in the stochastic SLD-tree to a
branch from the root to a leaf, we only have to:

- draw the stochastic SLD tree,

- compute the probability of each refutation by multi-
plying the labels along the corresponding branch,

- normalize the probabilities, so that they sum to 1,

- associate each refutation to a yield atom, and sum the
probabilities of the refutations that lead to the same
yield atom.

We can illustrate this method with Cussens’ sample
SLP:

ﬁ l{"i(r)

i=1

0.4 s(X) — p(X),p(X)
0.6 s(X) — q(X).

0.3 p(a).

0.7 p(b).

0.2 q(a).

0.8 : q(b).

We take the goal G = s(X); the stochastic SLD tree
which derives from the query : — s(X) is:

= 5(X).

Refutation
4

Refutation
r3

Refutation
r2

Refutation ~ Fail ~ Fail

rl

Figure 2: Stochastic SLD tree for the query - s(X).

There are 4 refutations of the goal (r1 to r4). The yield
atom is s(a) for r; and rs, s(b) for ro and r4. Thus the
probability distribution over {s(a), s(b)} is {Z 7! x (0.4 x
0.3x0.3+0.6x0.2), Z71 x(0.4x0.7%0.740.6 x 0.8)}
where Z is a normalization constant.
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2.2 BLPs

Bayesian logic programs were first introduced by Ker-
sting and De Raedt in 2000, as a generalization of
Bayesian nets (BNs) and Logic Programs.

Syntax:

A Bayesian logic program has 2 components: a logical
one (which is a set of Bayesian clauses) and a quanti-
tative one (a set of conditional probability distributions
and combining rules corresponding to that logical struc-
ture).

A Bayesian clause is an expression of the form:

Al Ar, ol Ay

where n > 0 and the A; are Bayesian atoms which
are (implicitly) universally quantified. The difference be-
tween a logical definite clause and a Bayesian clause is
that:

- the sign | is employed instead of : — |
- Bayesian atoms are assigned a (finite) domain, whereas
first order logic atoms have binary values.

In order to represent a probabilistic model, we asso-
ciate with each Bayesian clause ¢ a conditional proba-
bility distribution ¢pd(c) which encodes the probability
that head(c) takes some value, given the values of the
Bayesian atoms in body(c):

P (head(c)|body(c))

This conditional probability distribution is usually
represented with a matrix called conditional probability
table (CPT).

As there can be many clauses with the same head (or
non-ground heads that can be unified), we use combining
rules to obtain the distribution required, i.e. functions
which map finite sets of conditional probability distribu-
tions onto one combined conditional probability distri-
bution. Common combining rules include the noisy-or
rule, when domains are boolean, and the max rule, which
is defined on finite domains.

Semantics:

The link to Bayesian networks is now straightforward:
each ground Bayesian atom can be associated to a chance
node, whose set of states is the domain of the Bayesian
atom. The links (influence relations) between chance
nodes are given by the Bayesian clauses, and the link
matrices by the conditional probability distributions as-
sociated to these Bayesian clauses.

The set of ground Bayesian atoms in the least Her-
brand model® together with the structure defined by the
set of ground instances of the Bayesian clauses and the
conditional probability tables, define a global (possibly
infinite) Bayesian network that can be queried like any
other Bayesian net*.

3We define the least Herbrand model of a BLP in the same
way as in logic programs.

4Bayesian networks are formally defined only for finite sets
of chance nodes; this point of view is put forward because it



Thus the query-answering procedure actually consists
of two parts: first, given a query and some evidence,
the Bayesian network containing all relevant atoms is
computed, using KBMC (Knowledge Based Model Con-
struction). Then the resulting Bayesian network can be
queried using any available inference algorithm. Fur-
ther details about the query-answering procedure can be
found in | .

In the remainder of the paper, we further assume that
no merging of nodes takes place in the and-or tree (when
constructing the Bayesian net from the and-or tree). It
is equivalent to say that the constructed Bayesian net
consists of a singly connected network (no loop).

2.3 Formulation of the problem

Halpern’s paper [ ] as well as [
| are good clarifications about what respective
kinds of knowledge can be captured with probabilities on
the domain (such as those defined by SLPs) and proba-
bilities on possible worlds (BLPs). Links between these
probabilities are also provided.

Let B be a BLP and G, a ground query. The Bayesian
network (BN) constructed with KBMC (as defined in
[ ]) is denoted by BN ¢, . The
probability of a chance node ) taking the value v in
BNpg ¢ (ie. the probability of the set of possible worlds
of BNp ¢ in which @ has the value v) will be denoted
Pp ¢(Q = v). Given a SLP S, the probability of a ground
query G (as defined in the distributional semantics [

]) is noted P(G / S).

The fact that a k-ary Bayesian atom G, takes the
value v can be represented with a (k + 1)-ary logical
atom G having the same predicate and k first arguments
as G4, and the value v as last argument. Conversely,
we can identify any logical atom to a Bayesian atom
having the domain {true, false} and taking the value
true whenever the logical atom holds.

Hence we will claim that a BLP and an SLP define
equivalent semantics if the probability that any ground
Bayesian atom G, in the Herbrand model of the BLP
takes some value v is identical to the probability of the
associated logical atom G in S:

P(G/S) = Pgg,(Ga =)

Given these relations between SLPs’ and BLPs’
semantics, we eventually reduce the issue of inter-
translations of SLPs and BLPs to the practical question:
given a BLP (resp. an SLP), how can we find an SLP
(resp. a BLP) that encodes equivalent distributions of
probabilities with respect to the semantics?

3 From BLPs to SLPs

We provide two translations from BLPs to SLPs. The
standard translation (3.1) actually works for all BLPs

provides a better idea of the relations between BLPs and
Bayesian nets.
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but does not handle evidence (that is: some prior knowl-
edge about the domain, which corresponds to the instan-
tiation of a chance node in a BN). The reason is that
SLPs and e-SLPs define semantics on tree structures,
whereas KBMC (in BLPs) permits the union of several
trees, hence the computation of probabilities in singly
connected networks. Thus we also provide a more global
approach with the BN translation (3.2).

3.1 Standard Translations

Standard Translation for Restricted BLPs:

Definition: If S is an SLP, the subset S}, of clauses in
S with predicate symbol h in the head is called the defi-
nition of h. A restricted BLP is a BLP whose predicate
definitions contain one single stochastic clause each.

Definition (standard translation of a restricted
BLP):
Let B denote a restricted BLP.

e Identify each k-ary Bayesian atom b, which appears
in B and has the value domain V', to the (k+1)-ary
(logical) atom b(vp) having the same k first argu-
ments and a value v, of V' as last argument.

For each Bayesian clause head|by,...,b, in B, for
each value in the associated CPT, which indicates
AAAA v, that the Bayesian atom
head takes the value vy, given that the {b; : i € N}, }
take the values (vp1, ..., Upn ), construct the stochastic
clause consisting of the parameter p,, v,,.....vp,, and
the definite clause:

head(vy) @ — b1(vp1)s -y bp(Von)

The standard translation of B consists of the n
stochastic clauses constructible in that way, n being
the sum of the numbers of coefficients in the CPTs.
This SLP is pure and unnormalised (the parameters
of the clauses in S, C S sum to the product of the
domain sizes of the Bayesian atoms in the body of
the Bayesian clause with head h).

Theorem: Given a restricted BLP B, its standard
translation S obtained as defined above, and a ground
Bayesian query G,. Let us associate to G, the logi-
cal query G(v), v € dom(G,). Then: P(G(v)/S)
PB’GQ(GQ = ’U).

We illustrate the standard translation mechanism
through this simple example:

Example:

Let us take the following standard translation of a BLP
(the original BLP does not need to be mentioned):



099 : alarm(A,yes) —
burglary(A,yes), tornado(A, yes).

0.80 : alarm(A,yes) —

burglary(A,yes), tornado(A, no).
0.90 : alarm(A,yes) «—

burglary(A,no), tornado(A, yes).
0.05 : alarm(A,yes) —

burglary(A, no), tornado(A,no).
0.01 : alarm(A,no) «—

burglary(A,yes), tornado(A, yes).
0.20 : alarm(A,no) —

burglary(A,yes), tornado( A, no).
0.10 : alarm(A,no) «—

burglary(A, no), tornado(A, yes).
095 : alarm(A,no) «

burglary(A, no), tornado(A,no).
0.4 :  burglary(A,yes) < neighborhood(A, bad).
0.2 :  burglary(A,yes) — neighborhood(A, avg).
0.1 :  burglary(A,yes) < neighborhood(A, good).
0.6 : burglary(A,no) < neighborhood(A,bad).
0.8 :  burglary(A,no) < neighborhood(A, avg).
09 :  burglary(A,no) < neighborhood(A, good).
0.3 : neighborhood(tom,bad).
04 : neighborhood(tom,avg).
0.3 :  mneighborhood(tom, good).
0.01 : tornado(tom,yes).
0.99 : tornado(tom,no).

We want to compute the probability
P(burglary(tom,yes) / S). Each refutation in the
stochastic SLD-tree rooted at burglary(tom,yes) per-
mits the computation of the probability of a particular
set of possible worlds. The nodes along the refutation
correspond to instantiations of some Bayesian atoms.
The set of possible worlds we are talking about is the
set of worlds where the instantiations defined along the
refutation hold.

?- prove( burglary(tom,yes) ).

:— prove( neighborhood(tom,good)

0.3
:— prove( neighborhood(tom,avg) ).
0.4

Refutation Refutation Refutation
rl r2 r3

Figure 3: Stochastic SLD tree for ?7— burglary(tom, yes).

e The refutation 1 is associated to the set of pos-
sible worlds in which {burglary(tom) = vyes,
neighborhood(tom) = bad}. Pr = 0.4 x 0.3 =0.12

e The refutation 2 is associated to the set of pos-
sible worlds in which {burglary(tom) = vyes,
neighborhood(tom) = avg}. Pr =0.2 x 0.4 =0.08

e The refutation 3 is associated to the set of pos-
sible worlds in which {burglary(tom) = vyes,

neighborhood(tom) = good}. Pr = 0.1x0.3 = 0.03.

Hence the probability P(burglary(tom,yes) / S)
is equal to 0.12 + 0.08 + 0.03 = 0.23. In
the BN constructed from the original BLP,
we have as well: Pr(burglary(tom,yes)) =
Pr({possible worlds where burglary(tom) = yes}) =
0.12 + 0.08 + 0.03 = 0.23.

Extended SLPs:

Restricted BLPs don’t make use of the or-nodes, in
that all queries can match at most one head. In order to
lift the latter result to general BLPs, we have to intro-
duce an extension of SLPs, namely extended SLPs.

Definition (Syntax of Extended SLPs): An ex-
tended SLP (e-SLP) is an SLP S augmented with a set of
combining functions C Ry, for all predicates h appearing
in the head of some stochastic clause in S. A combin-
ing function is a function that maps a set of possible
resolvents of h (obtained using one clause in Sp) and as-
sociated real numbers in [0, 1] to a real number in [0, 1]:

ORh : ((rlapl)w'v(rnapn)) = T e [071]

Definition (Proof of Extended SLPs): Given an
e-SLP S, consisting of the SLP S and the combining
functions (CRy,)p, and a query @ (consisting of the pred-
icate p with none or more arguments), the probability
P.(Q/S.) is the probability of the pruned and-or tree T
rooted at the or-node (). The probability of a pruned
and-or tree is defined by structural induction:

e Base case: if T is a single or-node, P.(Q/S.) is the
probability P(Q/S).

o If the root of T is an or-node with n branches
leading to the resolvents (and-nodes) (r;);cns, , then
P.(Q/Se) = CRy((ni,pi)ien,), where p; is the
probability of the pruned and-or subtree rooted at
the and-node r;.

e If the root of T is an and-node leading to the
resolvents (or-nodes) (7;)ienr,, then P.(Q/S.) =
[T, pi, where p; is the probability of the pruned
and-or subtree rooted at the or-node r;.

Standard Translation for BLPs:

Definition (Standard Translation of a BLP): Let
B denote a BLP. The standard translation of B is the ex-
tended SLP S, defined by the following stochastic clauses
and combining functions:

e The stochastic clauses (which form the set S) are
obtained in the same way as the stochastic clauses
obtained from a restricted BLP (definition 2).

e Let us take a ground predicate h in the head of
some clause in S and assume that it can be unified
with the heads of some clauses in S, leading to
the resolvents (r; ;);,; with probabilities in S equal
to (pi,j)i;- A resolvent can contain several atoms.
The clauses in S, come from z different Bayesian
clauses with the same predicate in the head. These
original clauses can be indexed with a number that

135



corresponds to the first index i € A/, in the name of
the resolvents. The second index j € N, refers to
different distributions of values over the Bayesian
atoms in the body of the Bayesian clause i. We
define CRy, by:

CRy =

>

J1EN Dy 202 €N,

where CR is the combining rule defined in B.

Proposition: The first theorem stating the equiva-
lence of the semantics for the standard translation of
restricted BLPs still holds if the translation is done with
the latter rules (using e-SLPs and probabilities defined
in definition 4).

Theorem: Given any BLP B, its standard transla-
tion S, obtained as defined above, and a ground Bayesian
query G,. Let us associate to G, the logical query G(v),
v € dom(G,). Then: P.(G(v)/Se) = Pp.g,(Ga = v).

3.2 BN Translations

It is a well-known result that BNs can be formulated in
terms of SLPs. The next subsection recalls Cussens’ sug-
gestion of encoding. Since Herbrand bases of the BLPs
define (possibly infinite) Bayesian networks, a possible
way of translating a BLP into an SLP is to encode the
corresponding Bayesian net.

From Bayesian Nets to SLPs:

According to Cussens, unnormalised SLPs can conve-
niently represent Bayesian nets.

The encoding is presented throughout an example. Let
us take the following Bayesian net.

z
CR(h, 1y 25 )% | [ e
t=1

a ground instance of the predicate symbol world
is exactly the probability of the associated possi-
ble world.

The next clauses encode the values that are con-
tained in the CPTs. They are unary stochas-
tic clauses groundterm associated to the parameter
P(groundatom).

From Cussens’ point of view the translation from BN
to SLP seems obscure in that the directionality of BN
is obscured. Indeed, the labels of the clauses in the re-
sulting SLP encode conditional probabilities, while the
predicate symbols don’t seem to make any distinction
between the head and the other variables the head de-
pends on. However one can argue that the structure of
the BN is encoded in the first stochastic clause, the query
clause as defined above. This approach works pretty well
and will be used in the next section as the basis for the
translation of BLPs.

Lifting this approach to BLPs:

The resulting SLP falls into two parts: a data part
(consisting of several stochastic clauses which encode the
knowledge in the conditional probability tables) and a
query part (consisting of only one stochastic clause with
the parameter 1.0).

Data Part

In order to mimic the global approach that was pre-
sented in the previous section, we propose to use the
following clauses to encode the knowledge in the condi-
tional probability tables of our example:

0.99 holdsi(alarm(A, yes), burglary(A, yes), tornado( A, yes))
0.8 holdsy (alarm(A, yes), burglary(A, yes), tornado(A, no)).
o 0.4 .i;old32 (burglary(A, yes), neighborhood( A, bad)).
B '
0.99 holdsy(tornado(tom, no)).

Figure 4: A simple Bayesian net

The following SLP encodes this Bayesian network:

1: world(A,B,C,D) :-
b(B), c(C),
a(a,B,0),
d(D,A).

0.05: b(bl).

0.95: b(b2).

0.07: a(al,b2,cl).
The first stochastic clause® permits the possible-worlds
approach, since the probability of the refutation of

5This clause is obviously different from all other clauses
in the SLP. We will call it the query clause of the SLP.
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Note that alarm, burglary... were predicate symbols
in the last standard translation, while we consider them
as functors from now on.

Query Part

Let us recall that a BLP defines a (possibly infinite)
Bayesian network whose chance nodes are the atoms
in the least Herbrand model associated to the set of
Bayesian clauses (this set can indeed be identified to a
DCL (Prolog-like) program). Now there are two options:

e A) Either the least Herbrand model HM is fi-
nite: in that case the query clause can contain all atoms
in HM , and the probability of the refutation of a ground
instance of the query clause is exactly the probability of
the corresponding possible world.

In the alarm example, the
brand model HM is finitee HM

Her-

{alarm(tom), burglary(tom), neighborhood(tom), tornado(tom)}.

Thus the query clause will be:



holds(
tornado(tom, A),
alarm(tom, B),
burglary(tom, C),
neighborhood(tom, D) ) «—
holdsz(neighborhood(tom, D)),

holdsz(burglary(tom, C), neighborhood(tom, D)),

holdsy(tornado(tom, A)),
holdsi (alarm(tom, B), burglary(tom, C),
tornado(tom, A).

Implementations have been carried out in Prolog, so
that it is possible to query the resulting SLP (data part
+ query clause) by asking Prolog:

? — query( holds( tornado(tom, A), alarm(tom, B),

burglary(tom, C), neighborhood(tom, D) ) ).

The variables A, B, C' or D can be replaced by con-
stants (yes, no, good, bad or avg when appropriate),
whenever evidence must be taken into account.

e B)... Or the least Herbrand model HM is in-
finite: then we don’t know what a possible world will
consist of, since it clearly depends on the query. Further-
more, we don’t even know what evidence can be declared
(the actual chance nodes of the Bayesian net depend on
the query). Thus we need some additional stage to
query the SLP, which can replace the -cumbersome-
construction of the Bayesian net with KBMC.

To construct the query clause, we need to have an
idea of the corresponding Bayesian net that would be
generated in the BLP with the same query. In KBMC,
all relevant Bayesian atoms are determined by calculat-
ing the and-or trees of the query and the evidence, and
by merging these trees. We use a slightly different ap-
proach: given a query (assimilated to a ground Bayesian
atom), we use the structure of the Bayesian clauses to
determine: - all influencers of the query: this is a kind of
deductive approach, since the influencers are the atoms
that appear in the refutation of the query, when assimi-
lating the BLP with a LP. - all influenced atoms of the
query: this is a kind of abductive approach, since we will
look for the Bayesian clauses whose body contain the

query.

4 From SLPs to BLPs

In | ], Kersting and de Raedt
show that any logic program can be formulated in terms
of BLPs: they assign the domain {true, false} to every
atom in the Herbrand base of the logic program, and
associate the naive conditional probability tables to the
clauses, which is defined as follows:

e the probability that the head takes the value true
given that all atoms in the body have the value true
is 1.0.

e the probability that the head takes the value true
given any other distribution of values over the atoms
in the body is 0.0.
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Kersting and de Raedt claim that this BLP (together
with the noisy-or or the maz combining rule) mimics the
original logic program. How can we lift this translation
mechanism to SLPs?

In order to shift the approach from a possible-worlds
to a domain-frequency perspective (which is essentially a
single-world perspective), the idea is to assign non-zero
probabilities to only one set of values of the body. Here
we propose a way to translate into a BLP: the resulting
BLP can compute the same probabilities as the distri-
butional semantics defined in |

Definition (translation of an SLP):

Let P denote a complete, range-restricted and non-
recursive SLP.

e For each stochastic clause p head «— by,...,b,
in P, identify each atom to a Bayesian atom whose
domain is {true, false}.

Construct the Bayesian clause having the same
head, the same body, and the following conditional
probability table:

head
by bn, true false
true true true P 1—»p
true true false 0 1
l l l 0 1
false false false 0 1

To complete the definition of the BLP, we need to
define a combining rule C' R. Suppose that we have
to combine n conditional probability tables CPT;
(1 < i < n). Each CPT; defines the probabili-
ties P(head | B;), where B; is the set of ground
Bayesian atoms in the body of the associated clause.
Thus to define CR( (CPT;)1<i<n ), and by us-
ing normalization, we only have to set the val-
ues of P(head = true | U, B;) for all possi-
ble instantiations of the ground Bayesian atoms in
(U, B;). The value of P(head = false|Ul_ B;) =
1 — P(head = true| U, B;) can then be deduced.

of

For each possible instantiation (U?; Inst;)
(U, B;), we take the sum ) !  P(head
true | B; = Inst;) and assign it to P(head
true | U, B;). Since the SLP is complete, this
sum will never be greater than 1, and the CR is well
defined.

Theorem: Given a complete, range-restricted and
non-recursive SLP S, its translation into a BLP B ob-
tained as defined above , and a ground query G. Let
us associate to G the Bayesian atom G,, whose do-
main is {true, false}, and which is itself associated to
a chance node in the Bayesian net BNp g,. Then:
P(G/S) = Ppg, (G, = true).

We will now examine two examples.

Example (nbiased coin): Let us recall the coin ex-
ample. The SLP is complete, range-restricted and not

recursive.
0.5

0.5

coin(0) —
coin(1) «



In the coin problem, the very simple BLP that we con-
struct doesn’t make use of any combining rule. It only
contains 2 Bayesian clauses. Using the Prolog formal-
ism introduced in the second chapter, the BLP will be
written:

coin(0).
coin(1).
coin(0) coin(1)
true false true false
| 0.5 0.5 ] | 0.5 0.5 ]

If we query this BLP with, for example, "7 — coin(1).”,
the KBMC will result in the Bayesian net containing the
single chance node coin(1), whose probability of being
true will be 0.5 as required by the distributional seman-
tics in [

We will finally present some more complex example.

Example:

Let P be the complete, range-restricted SLP consisting
of the following stochastic clauses:

0.4 $(X) « p(X),q(X). 0.3 q(a).
0.6 s(X) «— r(X). 0.7 q(b).
0.3 p(a). 0.2 r(a).
0.7 p(b). 0.8 r(b).

If we follow the method presented above, we obtain
the BLP:

s(X) | pX), qX). qa).
sX) | rX). q(b).
p(a). r(a).
p(o). r(b).
s(X)
p(X) q(X) | true false
true true | 0.4 0.6
true false | 0.0 1.0
false true | 0.0 1.0
false false | 0.0 1.0
s(X)
r(X) | true false
true | 0.6 0.4
false | 0.0 1.0
p(a
true false
| 0.3 0.7 |

The CPTs for p(b), q(a), q(b), r(a) and r(b) are not
detailed.

Now, if we query this BLP with ”? — s(a).”, the re-
sulting Bayesian network will contain 4 chance nodes:
p(a), ¢(a) and r(a) directly influence s(a). The combin-
ing rule gives the combined conditional probability table
as follows.

128

p(a) q(a) r(a) | true false
true true true | 1.0 0.0
true true false | 0.4 0.6
true false true | 0.6 0.4
true false false | 0.0 1.0
false true true | 0.6 0.4
false true false | 0.0 1.0
false false true | 0.6 0.4
false false false | 0.0 1.0

By using any standard inference algorithm in this BN
(e.g. Pearl’s message passing), we obtain the probabil-
ity P(s(a) = true) 0.156, which is the result we
were looking for (since the distributional semantics gives:
P(s(a) / P) = (0.4%x0.3%x0.340.6x0.2) 0.156).

5 Conclusion and Further Work

We have demonstrated relations between SLPs’ and
BLPs’ semantics, and we have shown that SLPs aug-
mented with combining functions (namely extended
SLPs) and BLPs can encode the same knowledge, in
that they encode equivalent distributions of probabil-
ities with regards to the latter relations. Since SLPs
need to be augmented with combining rules in order to
be as expressive as BLPs, and BLPs are able to encode
complete, range-restricted and non-recursive SLPs, we
are tempted to conclude that BLPs are more expressive
than strict SLPs.

However, SLPs’ and BLPs’ formalisms are more or
less intuitive, depending on the kind of knowledge we
want to model. It should be noted that BLPs’ query-
answering procedure is cumbersome because of KBMC
and the necessity of using different frameworks (com-
putational logic, Bayesian nets), while inference mecha-
nisms in SLPs are straightforward.

We believe this paper to be a formal basis for several
further studies. In the perspective of inductive learn-
ing, inter-translations of e-SLPs and BLPs can be used
to extend learning techniques designed for BLPs to the
learning of e-SLPs (and vice-versa). We think it could be
interesting to investigate the interests of such extensions.

So far e-SLPs have been introduced in a fairly general
way; the definition of suitable constraints on the combin-
ing functions in e-SLPs is also a precondition for their
learnability.
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Why the Title of This Workshop Should Be
“Learning Relational Statistical Models from Data”

Stuart Russell
Computer Science Division
University of California
Berkeley, CA 94720-1776
russell@cs.berkeley.edu

The assumption underlying the title “Learning Statistical The appropriate level of scepticism depends on the appli-
Models from Relational Data” is that relational data exist.  cation. Data entry software may be such that confusing the
Data are actual observations. The observation of some rabupervisor relation with the Office Number relation is im-
dom variableX gives us a value:; procedurally speaking, possible. The first argumeng™ may be a long identifier,
we obtainz and we assign it (with certainty) as the value of such that the probability of misidentification is negligible pro-
X. We can have certainty in this sense becaXiseay be de- vided the software does not allow assertions about new identi-
fined as the random variable whose value will be obtained b¥iers. (Note, however, that my social security number is some-
the observation procedure (e.qg., “the outcome of the next coitimes used by a small printing company in Indiana, thanks to
flip”). It can, of course, be the case th&tcorresponds to a a transposition of two digits.) Even if the identifiers in one
noisy measurement of some other quantify(e.g.,X isthe  database are never confused, however, we may need to merge
“measured battery charge remaining” didis the “true bat-  (or learn models from) two different databases that use dif-
tery charge remaining”). Again, we typically know the con- ferent identifiers. In that case, there is often uncertainty as
nection betweefl” and X with certainty. Since many obser- to which identifiers are equivalent—e.g., is the owner of ac-
vations are noisy, the ability to distinguish true and measuredount “9999-999999”, whose name is recorded as “Stewart
values is important. Russell” at “263 Hilcrest”, the same person as the owner of
When we observe a tuple(a,b) ” (say, in a database), account “1234-567890", whose name is recorded as “Stuart
of what random variable is this an observation? Here ard. Russell” at “263 Hillcrest Rd."?
some possible answers: The conflation of tuple observations with relational data
has been noticed in the context of Web data. Some projects
; . have viewed the existence of a link between two URLSs (with
R(A, B). That is, we are uncertain as to whether ob-, 5 riate anchor text) as an observation of a particular re-
ject A is related byR to objectB, and the observation | 4iqn hetween objects somehow connected with those URLS.
settles the issue with certainty. This is the sense in whicCly ymentators have observed that this could cause difficul-
relational data exist. ties. The home page of a student may contain “student
e “a”was mistyped, and the observation actually concernsit <A HREF="www.stanford.edu"> Palo Alto Junior
the Boolean random variabR(C, B). College</A> " but of course the preceding words might be
“My chihuahua Tiggy is a” or “There is no truth in the rumor
hat | was once a’.
The discussion above assumes that data are already avail-
e The data entry clerk was confused about the argumerable in tuple form, whether noisy or not. In many actual
order and the observation actually concerns the Booleaapplications, data are gathered not from relational databases
random variabl®(B, A). but from text, Web pages, speech, cameras, instruments, etc.
w - ; Unique identifiers (other than perhaps for the observation ob-
¢ tfze \g/glzlg;snt)?gﬁg,()?(\j/;ngg&szr\glon actually Concem?ects themselves, e.g., the URL as an identifier of a Web page
e (if we neglect time)) are generally unavailable in such data, as
e Both “a” and “b” were mistyped, etc., etc. are relation names. For example, papers have reference lists

Hence, unless the model-builder is absolutely certain that refer” to other papers, but it may require a good deal of

the correctness and uniqueness of the identifiers used in tﬁé’ph'St'Cated. probab|l|§t|c reasoning to work out which pa-
atom—i.e., there is no noise in the observation—it is betteP<'> those might be. Finally, there is the question of the ori-

to view the observation not as a relational datum, but as afn of the “refers’ relation. We cannot address this question

observation of three string-valued random variables. In thedt allif data are already relational.

ory, it could amount to an observation of any of the Boolean
random variables corresponding to relations between pairs of
objects.

e |t is an observation of the Boolean random variable

e “b”was mistyped, and the observation actually concern
the Boolean random variabR(A, D).
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1 Introduction ject and its attributes and calculating the probability through
1e distribution specified. More generally, only the object
keleton might be known, in which case the PRM also needs

o specify a distribution over the relational attribut&k

Now, we extend PRMs to handle the time domain in the
same way that DBNs extend Bayesian networks. Given a re-
tional schemas, we first extend each clags with the re-

Formalisms that can represent objects and relations, as o
posed to just variables, have a long history in Al. Recently,
significant progress has been made in combining them wit
a principled treatment of uncertainty. In particular, proba-
bilistic relational models or PRM§4] are an extension of
Bayesian networks that allows reasoning with classes, oti-;
Iy

jects and relations. Although PRMs have been successful .ti_onal attributeC’.previous W.ith domainC'. As before, we
applied to a lot of different domains, they lack the temporal.mt'a”y assume that the relational skeleton at each time slice

dynamics of the real world. In most real world systems, ob-S known.

jects get created, modified and even deleted over time. SinDefinition 1 A two-time-slice PRM (2TPRMyr a relational
ilarly, the relationships between objects change as time preschemas is defined as follows. For each claSsand each
gresses. For example, consider the problem of predicting theropositional attributed € A(C), we have:

set of research topics that become “hot” (e.g., as measured by A set of parentsPa(C.A) = {Pay, Pas, ..., Pa;}, where
the number of papers published about them) over time, the eachpq; has the fornC.B or f(C.7.B), wherer is a slot

changing distribution of these topics among conferences, and chain containing the attributereviousat most once, and
the interests and collaborations between authors. It would be £() is an aggregation function.

dificult to learn a PRM that modeled this time-varying be- ,  congitional probability modefor P(C.A|Pa(C.4)). O
Currently the most powerful representation available forDefinition 2 A dynamic probabilistic relational model
capturing sequential phenomena is dynamic Bayesian nefDPRM)for a relational schemd is a pair(My, M_.), where
works (DBNs)[1], but DBNs are unable to compactly rep- Mo is a PRM overly, representing the distributioR, over
resent many real-world domains that contain multiple objectghe initial instantiation of5, andM_, is a 2TPRM represent-
and classes of objects, as well as multiple kinds of relation#ng the transition distributiod’(1;|I; ;) connecting succes-
among them. DBNs are even more awkward if one wishesive instantiations of. O
to model objects and relations that appear and disappear ppRMs are extended to the case where only the object
over time. Thus, our research has focused on a new repregeleton for each time slice is known in the same way that
sentationdynamic probabilistic relational model®PRMs)  prMs are, by adding to Definition 1 a set of parents and con-
which combines PRMs with DBNs. Previously, we have ex-gjtional probability model for each relational attribute, where
plored the problem of efficient inferen¢8l; this paper out-  the parents can be in the same or the previous time slice.

lines our thoughts on learning DPRMs. When the object skeleton is not known (e.g., if objects can
. o ] appear and disappear over time), the 2TPRM includes in ad-
2 Dynamic Probabilistic Relational Models dition a Boolean existence variable for each possible object,

We start by briefly summarizing the definition of PRMs and again with parents from the same or the previous time slice.

DPRMs, adapted frorfd; 8. A PRM encodes a probability .
distribution over the set of all possible instantiatidnsf a 3 Inference in DPRMs

schema. In the simplest case, the relational attributes of allust as a PRM can be expanded into a Bayesian network, so
objects are assumed to be known, and the PRM specifies@n a DPRM be unrolled into a DBN. In principle, we can
probability distribution for each propositional attributeof ~ then perform inference using particle filterifig], the most
each clasg¢’. The parents of each attribute (i.e., the variablesvidely used approximate inference algorithm for DBNs. Par-

it depends on) can be other attributes(af or attributes of ticle filtering maintains a set of samples (particles) to ap-
classes that are related € by some slot chain. Thus, by proximate the distribution of any state; the distribution for
knowing the relational attributes one can get the joint probanext state is achieved by importance sampling and resam-
bility distribution by computing the set of parents for each ob-pling. Unfortunately, for DPRMs, particle filtering is likely
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to perform poorly, because the state space will be huge. We
overcome this by adapting Rao-Blackwellisat[@hto the re-
lational setting. Rao-Blackwellisation divides the state vari-
ables into two sets — one in which values are inferred using
a particle filter and the other in which values are calculated,
analytically from the values of the variables in the first set.
We make the major assumption that relational attributes do
not appear anywhere in the DPRM as parents of unobserved

attributes, and that each reference slot can be occupied by at

most one object. Then, a Rao-Blackwellised particle is com-
posed of sampled values for all propositional attributes of all

objects, plus a probability vector for each relational attribute®
of each object which is inferred exactly.

While this technique can vastly reduce the size of the state
space which particle filtering needs to sample, storing and up-
dating all the requisite probabilities can still become quite ex-
pensive. This expense can be ameliorated if context-specific
independences exist. We can then replace the vector of prob-
abilities with a novel tree structure whose leaves represent
probabilities for entire sets of objedig]. o

Our experiments evaluated the efficiency of several infer-
ence schemes applied to an assembly-plan execution moni-
toring task in a simplified manufacturing domain. Even with
hundreds of thousands of particles, standard patrticle filter-
ing failed (i.e. terminated due to inconsistent observations
which could not be explained) on datasets with around 100
objects and 500 time steps. In contrast, our inference algo-
rithm yielded accurate predictions on similar problems with
only 5000 particles, and ran more quickly and with less stor-
agel8].

Much work remains to improve inference. For example,
we will endeavor to lift the assumptions mentioned above and
more effectively use a DPRM’s structure during inference.

4 Learning in DPRMs

PRM is illegal, and this constraint extends to the two parts
of a DPRM. There are additional constraints on a 2TPRM;
specifying these in a way that allows creation of an un-
bounded number of dynamic objects is challenging.

There are several strategies for searching the space of
DPRM structures. The simplest idea is to add and delete
edges in the two components, PRM and 2-TPRM, to gen-
erate candidate DPRMs. One could do the search by first
learning a PRM which gives a good intra-time-slice con-
nectivity, before learning the inter-time-slice connectivity.

An important task is scoring a DPRM, e.g. with a
likelihood-based measure. To compute the likelihood of
the data given a candidate DPRM, fast DPRM inference
is required. While our particle filtering algorithm is quite
fast, we wish to extend it so that we can efficiently explore
the space of DPRMS, incrementally updating the likeli-
hood scores. We believe the two-phase search strategy sug-
gested previously will simplify this task.

Since the space of candidate DPRM models is huge, we are
considering pruning mechanisms. Note that some of the
methods stated above actually prune the space (e.g. learn-
ing the PRM first, followed by time dependencies). One
may also impose priors on the models to bias towards sim-
plicity by limiting the number of edges. We plan to design
priors over DPRM structures by extending the approach of
Heckerman et dl6] who exponentially penalize arc differ-
ences from a "best” prior structure. We will compare the
relative benefits of doing this at the class vs. instance level.

We plan to extend the learning algorithm to work in the
presence of missing values and hidden variables. EM is
easiest to apply when the observations are relational but
the hidden state is not. Solving this problem with full gen-
erality would require an extension of structural E8], but

this needs to be done for PRMs first.

When a DPRM consists of only a single time slice it become%cknowmdgements
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Abstract

PRISM was born in 1997 as a symbolic statistical
modeling language to facilitate modeling complex
systems governed by rules and probabilities [Sato
and Kameya, 1997]. It was the first programming
language with EM learning ability and has been
shown to be able to cover popular symbolic sta-
tistical models such as Bayesian networks, HMMs
(hidden Markov models) and PCFGs (probabilistic
context free grammars) [Sato and Kameya, 2001].
Last year, we entirely reimplemented PRISM based
on a new tabling mechanism of B-Prolog [Zhou
and Sato, 2002]. As a result, we can now deal
with much larger data sets and more complex mod-
els. In this paper, we focus on this recent develop-
ment and report two modeling examples in statisti-
cal natural language processing. One is a declar-
ative PDCG (probabilistic definite clause gram-
mar) program which simulates top-down parsing.
The other is a left-corner parsing program which
describes a bottom-up parsing that manipulates a
stack. The fact that these rather different types of
modeling and their EM learning are uniformly pos-
sible through PRISM programming shows the ver-
satility of PRISM.?

1

PRISM? was born in 1997 as a symbolic statistical model-
ing language to facilitate modeling complex systems gov-
erned by rules and probabilities [Sato and Kameya, 1997;
2001]. The basic idea is to incorporate a statistical learning
mechanism into logic programs for embedded parameters.
The result is a unique programming language for symbolic
statistical modeling. Actually it was the first programming
language with EM learning ability and has been shown to be
able to cover popular symbolic statistical models. Theoreti-
cally it is an embodiment of Turing machines with learning
ability, but the real consequence is that it enables us to build

Introduction

1This paper is partly based on [Sato and Motomura, 2002].
2 URL=http://sato-ww. cs.titech.ac.jp
/prismindex. htm
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arbitrarily complex symbolic statistical models that may go
beyond existing statistical models.

PRISM’s power comes from three independent yet interre-
lated ingredients.

o firm mathematical semantics (distribution semantics)
[Sato, 1995]

o all solution search using memoizing (OLDT [Tamaki
and Sato, 1986] and linear tabling [Zhou and Sato,
2002])

e EM learning of parameters embedded in a program by
the graphical EM algorithm [Kameya and Sato, 2000]

We will not go into the detail of each ingredient, but PRISM
has proved to cover most popular statistical models such as
HMMs (hidden Markov models) [Rabiner, 1989; Rabiner and
Juang, 1993], PCFGs (probabilistic context free grammars)
[Wetherell, 1980; Manning and Schiitze, 1999] and Bayesian
networks [Pearl, 1988; Castillo et al., 1997] with the same
time complexity [Sato and Kameya, 2001]. Moreover, we
have experimentally confirmed that the learning speed of the
graphical EM algorithm [Kameya and Sato, 2000], an EM al-
gorithm for ML (maximum likelihood) estimation employed
in PRISM for parameter learning outperforms that of the stan-
dard Inside-Outside algorithm for PCFGs by two or three or-
ders of magnitude [Sato et al., 2001].

From the view point of statistical modeling, one of the sig-
nificant achievements of PRISM is the elimination of the need
for deriving new EM algorithms for new applications. When
a user constructs a statistical model with hidden variables, all
he or she needs is to write a PRISM program using probabilis-
tic built-ins such as msw/ 2 predicate representing a parame-
terized random switch. The remaining work, namely param-
eter estimation (learning), is taken care of by the graphical
EM algorithm quite efficiently thanks to dynamic program-
ming. Furthermore, as long as certain modeling principles
are observed, it is mathematically assured that the program
correctly performs EM learning (this is not self-evident when
the model gets complicated). One may say that PRISM is a
generic tool for ubiquitous EM learning.

The development of PRISM was gradual because we at-
tempted to fulfill two rather conflicting requirements; exploit-
ing the generality of the semantics and achieving reasonable
efficiency for real applications. After all we decided to com-
promise the generality of semantics and to assume some in-



dependence conditions on programs because while these con-
ditions somewhat restrict the class of acceptable programs,
they greatly simplify probability computations thereby mak-
ing fast EM learning possible.

Our EM learning consists of two phases. In the first pre-
processing phase, all solutions are searched for a given goal
with respect to a program, yielding a hierarchical graph called
an explanation graph (support graph). In the second learning
phase, we run the graphical EM algorithm on the explanation
graph to train parameters in the program. The graphical EM
algorithm is efficient in the sense that it runs in time linear in
the size of the explanation graph in each iteration [Sato and
Kameya, 2001]. In this learning scheme, compared to the ef-
ficiency of the graphical EM algorithm in the learning phase,
all solution search in the preprocessing phase could be a bot-
tleneck. A naive search by backtracking would take exponen-
tial search time. The key technology to efficiency is memoiz-
ing, i.e. to table calls and returns of predicates for later reuse
which often reduces exponential time complexity to polyno-
mial time complexity. However, the early versions of PRISM
were built on top of SICStus Prolog and it was practically
impossible to directly incorporate a full tabling mechanism.

Last year, we replaced the underlying Prolog with B-
Prolog and reimplemented PRISM with a full linear tabling
mechanism [Zhou and Sato, 2002]. As a result, we can now
deal with much larger data sets and more complex models.
In this paper, we focus on this recent development and report
two modeling examples in statistical natural language pro-
cessing. One is a declarative PDCG (probabilistic definite
clause grammar) program which simulates top-down pars-
ing. The other is a left-corner parsing program which pro-
cedurally describes a bottom-up parsing that manipulates a
stack. The fact that these rather different types of modeling
and their EM learning are uniformly possible through PRISM
programming shows the versatility of PRISM.

2 Preiminaries

2.1 A quick review of PRISM

PRISM is a probabilistic extension of Prolog [Sterling and
Shapiro, 1986]. A Prolog program is a set of logical formulas
called definite clauses which take the form H: - By, ..., Bg
(k > 0). H is an atom called the head, and By, ..., By isa
conjunction of atoms called the body. The clause says if By
and - - - and By, hold, then H holds (declarative reading). In
the context of top-down computation however, it should be
read that to achieve goal H, achieve subgoals B; and . .. and
By, (procedural reading). This twofold reading i.e. bottom-up
declarative reading, vs. top-down procedural reading, makes
it possible to write declarative but executable programs that
encodes both declarative and procedural knowledge in a uni-
fied way. When k& = 0, the clause is called a unit clause.
It represents a fact that holds unconditionally. Hence, a col-
lection of ground unit clauses is considered as a relational
database.

The surface syntax of PRISM is just Prolog augmented
with built-in probabilistic predicates, but the semantics is
substantially extended in order to comply with the need of
subsuming statistical information in programs. Our seman-
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tics guarantees the existence of a unique probability measure,
treating every ground atom as a binary random variable.

APRISM program DB is a set of definite clauses. We write
itas DB = F'U R where F'is a set of facts (unit clauses) and
R is a set of rules (non-unit clauses) to emphasize the differ-
ence of role between facts and rules. One of the unique fea-
tures of PRISM is that F' has a basic joint probability distri-
bution Pr.2 Put it differently, the truth of ground unit clauses
A, Ao, ... In F'is probabilistic and their statistical behavior
is specified by Pr. Here we consider ground unit clauses as
random variables taking on 1 (true) or O (false).

What distinguishes our approach from existing approaches
to probabilistic semantics is that our semantics admits infinite
domains and allows us to use infinitely many random vari-
ables (probabilistic ground atoms). Consequently we need
not make a distinction between Bayesian networks where a
finite number of random variables appear and PCFGs where
a countably infinite number of random variables are required.
They are just two classes of PRISM programs. Another con-
sequence is that we can implement a variety of EM algorithms
as PRISM programs as long as they express, roughly speak-
ing, Turing machines with probabilistic choices.

2.2 Grass.wet example

To put the idea of PRISM across, we show a propositional
PRISM program DB, = R, U F,, in Figure 1.* It dose not
include any first-order features of PRISM such as logical vari-
ables and function symbols.

g-wet - s.on.
R,,_{ g-wet - s.ooff, wrain.
g.dry - s.off, wclear.
r _ ] son. s_of f.
P71 wrain. wclear.

Figure 1: Wet grass program DB,

R, expresses our causal knowledge on the events repre-
sented by six propostions: g wet (“grass is wet”), g dry
(“grass is dry”), s_on (“sprinkler is on”), s _of f (“sprinkler
is off”), wr ai n (“it is rainy”) and w.cl ear (“itis clear”).
The first clause says the grass is wet if the sprinkler is on. The
second clause says the grass is wet also if the sprinkler is off
but the weather is rain. The last clause says the grass is dry if
the sprinkler is off and the weather is clear. We assume these
rules hold without uncertainty.

In addition to the causal knowledge described above, we
know that the states of weather and the sprinkler are proba-
bilistic and are statistically independent. We put this knowl-
edge into the program by setting a probability distribu-

3Py actualy is a probahility measure over the Herbrand inter-
pretations of F', but for presentation purpose we prefer to use the
term “distrikution.”

“Thisis for the explanaory purpose and not a complete PRISM
program. We furthermore need various declarations to run the pro-
gram.



tion Pr, over random variables s_on, s_of f, w.rai n and
w.cl ear. When doing so we notice that either s_on or
s_of f is always true but not both, and this is true of wr ai n
and w.cl ear as well. We therefore introduce parameters
6s = prob(s_on = 1) and 6,, = prob(w_rain = 1) and de-
fine Pr, as

Pr,(s_on = x1,s_off = x5, w_rain = r3,w.clear = x4)
{ 071 (1 — 05)%20%3 (1 — 0,,)%*

ifo;+ao=1,234+24=1
Here z; € {0 (false), 1 (true)} (1 <7 < 4).

0 ow.

Once Pr, is given, the program D B, defines a joint distri-
bution Ppp, for the six events as follows. Imagine a sample
from Pr, and let it be

(scon=1,s0ff =0,wrain =0,wclear = 1).

Since the set of true facts F’, is {s_on,w_clear}, it fol-
lows that F/, U R, F gwet and F’', U R, I/ gdry.
In other words, we have (g_wet = 1,g.dry = 0). Now we
generalize. Let (x1,x9,x3,x4) be a truth value vector for
(s_on,s_off,wrain,wclear) sampled from Pp, . Like-
wise let (y1,y2) be a truth value vector for (g_wet, g dry).
As we saw above, (x1,x9,x3,x4) determines (yi,ys)
uniquely, i.e. (y1,y2) is a function of (z1,x9, x3,z4). We
denote this function as ¢ pp, ((z1, 72, 23,24)) = (Y1,¥2).
Define a joint distribution Ppp, by

PDBP (g_wet = y1,8-dry = y2,s_on = x1,s_off = xg,
w_rain = x3,w_clear = x,4)
Pp,(z1, 22, 3, 24)
if QDDBp(<'r13 T2,23, I4>) = <yla y2>
0 otherwise

def

With Ppp, defined now, DB,, becomes a statistical model
incorporating logical knowledge. We can calculate what-
ever probability we need using Ppp,. The parameters 0,
and 6, are estimated by ML (maximum likelihood) estima-
tion from random observations of s on, s .of f , wr ai nand
w.cl ear.

In general, PRISM programs include function symbols,
variables and recursion. As a result, the Herbrand domain
is infinite and defining Ppg is more involved. Ppg should be
understood as a probability measure over the set of Herbrand
interpretations of DB, whose cardinality by the way is that
of real numbers. Also since parameter learning is ML esti-
mation from incomplete data, we rely on the EM algorithm
[Dempster et al., 1977; McLachlan and Krishnan, 1997] for
parameter estimation (learning). Mathematical details are ex-
plained in [Sato and Kameya, 2001].

3 PDCG

One of the most notable phenomena in natural language pro-
cessing over the past decade is the adaptation of statistical
techniques applied to various corpora [Manning and Schiitze,
1999]. In particular probabilistic parsing methods have been
developed to tackle the otherwise intractable problem of iden-
tifying most plausible parses for a given sentence. Although
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there are many statistical language models usable for prob-
abilistic parsing, PCFGs have been appreciated as the most
basic one due to their simplicity. So we first explain briefly
PCFGs [Wetherell, 1980; Manning and Schiitze, 1999].

A PCFG (probabilistic context free grammar) is a proba-
bilistic extension of CFG where a CFG rule has a probability.
Ifthereare N rules A — «q,..., A — ay foranon-terminal
A, a probability 6 is associated with each rule A — a;

(1 < i < N) such that ZLG{‘ = 1. These probabilities
are called parameters in this paper. Then the probability p(¢)
of a parse tree ¢ is equal to the product of parameters of rules
which are used in the (leftmost) derivation of ¢. Let T" be the
set of parse trees for a sentence s. We define the probabil-
ity p(s) of the sentence s as p(s) = >, p(t). When we
emphasize p(s) is dependent on the parameters of rules, we
write p(s | @) where 6 denotes the set of all parameters.

Below is a simple probabilistic top-down parser writ-
ten in PRISM a la DCG which is intended to illus-
trate how easily we can build PCFG like language mod-
els (and perform EM learning). The program defines
a distribution of provable ground atoms over the form
pdcg([s],[wy,...,wW,],[]) which corresponds to
a sentence [w, ..., wW,]. target(pdcg, 3) declares
what we observe is a predicate pdcg/ 3.

val ues/ 2 declares possible choices for each non-
terminal on sentence derivation®.  For example, val -
ues(s,[[ap,vp]l.[pp,Vv]]) tellsusthatthe top cate-
gory s, sentence, has two choices (rules) i.e. s — apvp and
S — pp vsuchthats — ap vp is assigned probability 64
and s — pp Vv probability 85 (61 + 62 = 1) respectively.
vV, n, c, p are terminals and t er mi nal (W) says Wi is a
terminal whereas f i r st ( A, W) says Wi is in the first set
of the category A. A probabilistic choice is simulated by a
built-in predicate msw 2 according to the assigned parame-
ters. For example, when msw( s, RHS) is called in execution
mode, s — ap vp will be chosen with probability 8. Note
that this program is left recursive and would go into an infi-
nite recursion if run by Prolog, but the tabling mechanism of
PRISM prevents infinite recursion and realizes CFG parsing
with O(n?) time complexity where n is the sentence length
[Sato and Kameya, 2001].

Since the precision of probabilistic parsing by a PCFG is
largely determined by the quality of parameters associated
with rules in the backbone CFG, their estimation is quite
important. Usually it is done by ML estimation from a la-
beled corpus, i.e. a collection of parse trees). If the corpus
is just a collection of sentences (or POS(part of speech) tag
sequences), sentences become incomplete data, and it is cus-
tomarily to appeal to the Inside-Outside algorithm [Baker,
1979; Pereira and Schabes, 1992; Schabes et al., 1993]. In
PRISM, the parameters in the above program are estimated
by | ear n/ 1 built-in predicate. It automatically estimates
parameters associated with msw atoms from raw data given

Svalues(s,[v1,...,vx]) declares that a probabilistic switch
named s has k choices [v1,...,vi] wheres andv; (1 < i < k)
areterms. We use this switch s likenmsw( s, X) inaprogram when

we make a probabilistic choicefrom [v1, ..., vg].



t arget (pdcg, 3) .

val ues(s, [[ap,Vvp],[pp,V]]).

val ues(vp, [[ap, V], [pp, Vv]]).

val ues(np, [[ap, np],[n],
[np,c,np],[v,n],[vp,n]]).

val ues(pp, [[n,p].[np.p]]).

val ues(ap, [[ adv],[adv, adv], [adv, np]]).

pdcg([W| R], [Wd]| LO] , L2) : -
term nal (W),
pdcg(R LO, L2).

pdcg([ A R, [W]| LO], L2): -

first(A W),
( values(A [ RHS])
;o values(A [, | 1), mwA RHS) ),

pdcg( RHS, [ Wi| LO], L1),
pdcg(R L1, L2).
pdcg([],L1,L1).

Figure 2: A PDCG parser

a list of goals of the form pdcg([ s], [W1, - - -, W], [])
by first constructing explanation graphs using tabled search
and second running the graphical EM algorithm on them.
The graphical EM algorithm is a generic EM algorithm for
PRISM programs and calculates probabilities from explana-
tion graphs, obeying the principle of dynamic programming.
It is quite fast. When implemented in C and applied to ex-
planation graphs generated from PCFGs, it runs by far faster
than the Inside-Outside algorithm which has been the de
facto standard EM algorithm for PCFGs and also runs faster
than the Stolcke’s EM learning algorithm [Stolcke, 1995], a
much more refined EM algorithm based on the Earley parsing
model. Experimentally, we observed that when all programs
are written in C, the speed ratio® of the graphical EM algo-
rithm to the Inside-Outside algorithm is about 1,000:1 and
that to the Stolcke’s EM learning algorithm is 10:1, depend-
ing on grammars [Sato et al., 2001].7 Unfortunately these
speed ratios do not carry over to the graphical EM algorithm
implemented in PRISM. This is because the data structure
used in PRISM is Prolog terms and hence, we should not ex-
pect EM learning by PRISM can match a specialized EM al-
gorithm implemented in C. Nonetheless, just for the record,
we report that PRISM installed on a PC (Pentium 1V 2.4GHz,
1GB memory, Windows XP) can learn parameters for the
ATR grammars (861 CFG rules, 168 nonterminals, 446 ter-
minals) from explanation graphs (95MB in memory) gener-
ated from 2,000 sentences of the ATR corpus [Uratani et al.,
1994] at a speed of 21 seconds/iteration and the whole learn-
ing takes 6,470 seconds (600 seconds for search) in total. We

5The speed ratio is measured in terms of time required for one
iteration.

"Theoretically the speed gap is anticipated to widen as the gram-
mars becomes less ambiguous
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must add however that in this EM learning experiment, we
did not use the program in Figure 2 but compiled it to take
advantage of Prolog’s indexing mechanism for clause invoca-
tion. By compilation, the specialized clause for the grammar
rule s — ppv looks like

pdcg(s,[AlB], Q) :-

first(s,A), mws,[pp,V]),
pdcg(pp, [Al B], D, D=[v| (.

We feel that PRISM is becoming competitive with the Inside-
Outside algorithm written in C now as far as learning speed
is concerned. This is a bit surprising if one considers the fact
that PRISM is a much higher level programming language
than C. As our implementation still has room for improve-
ment (see our companion paper [Zhou and Sato, 2003] for
implementation details), we are expecting to be able to en-
hance the competitiveness considerably in the near future.

4 Declarativedistributionsvs. procedural
distributions

The language model described by a PCFG is declarative in
the sense that the probability of a sentence is directly re-
lated to CFG rules, and procedural aspects such as how a
parse tree is constructed play no role in calculating the prob-
ability of the sentence. This declarative property makes it
relatively easy to derive an EM algorithm for PCFGs (and
their various extensions like lexicalized PCFGs) and apply
it to existing CFG parsers [Stolcke, 1995; Charniak, 1997;
Carroll and Rooth, 1998].

When it comes to procedurally defined stochastic CFG
parsers, or procedurally defined distributions in general, lit-
tle work has been done on their EM learning. For exam-
ple, the GLR (generalized LR(K)) parser [Tomita, 1986] is
undoubtedly one of the most sophisticated parsers for natu-
ral language processing which performs a sequence of com-
plex stack manipulations while looking up a LR(k) table. Al-
though its probabilistic extension, the PGLR (probabilistic
GLR) parser has been proposed in the past [Briscoe and Car-
roll, 1994; Inui et al., 1997], no EM algorithm is known so
far.

This notable contrast can be presumably attributed to the
difficultly of formalizing a distribution in terms of opera-
tions and their data types employed in the parsing proce-
dure such as stacks, tables, list etc. In the following we
present a PRISM program for probabilistic LC (left cor-
ner) parsing [Manning, 1997; Roark and Johnson, 1999;
Van Uytsel et al., 2001] as an example of the affinity of
PRISM programming for procedurally defined distributions.
Since PRISM is equipped with a formal semantics and the se-
mantics of a PRISM program is mathematically well-defined,
we can be sure of the correctness of EM learning performed
by the program no matter how syntactically complicated it is.

5 Probabilistic LC parser

51 LCparsing

LC (left corner) parsing is sequential bottom-up parsing for
CFG grammars which, like LR(K) parsing, manipulates a



stack to reduce subtrees to a larger tree. A program in Fig-
ure 3 is a skeletal Prolog LC parser®. The top goal is| c( V)
and parsing starts with the subgoal | c( W, [ goal (s)]) in
the first clause such that W is a list of words and s the start-
ing symbol (sentence). The actual parsing is carried out by
process( St ackO, Stack, LO, L) inthe body of second
clause which is tail-recursive.

The parser performs three operations. The shift opera-
tion reads a word from the input sentence and pushes it onto
a stack which holds nonterminals whose subtrees are com-
pleted and subgoals waiting for their corresponding subtrees
to complete. The attach operation attaches a completed sub-
tree to the waiting subgoal indicated by goal / 1. So if a
subtree for B is completed and if it is waited by a subgoal
goal ( B) at the stack top, B is attached to goal ( B) and
the goal ( B) is removed from the stack. The projection op-
eration treats the completed B differently. When B is com-
pleted, it looks for a CFG rule that has B as the left corner
category like A — BCD (see rul e(LHS, [ Bl Rest]) in
the third pr ocess/ 3 clause) and pushes A, goal (D) and
goal (C) onto the stack in this order using pr edi ct/ 3.
Usually top-down pruning is combined with projection and
the operation is performed only when A is waited for by some
subgoal in the stack (this part is not included in the program
for simplicity).

lc(W) :- lc(Ws,[goal(s)]).
I c(LO, St ackO)
process( St ackO, St ack, LO, L),

I c(L, Stack).

% shift operation
process([goal (C)|Rest],

[WI, goal (O) | Rest], [W|L], L).
% attach operation
process([ B, goal (B)| Stack], Stack, L, L).
% proj ect operation
process([B| Goal s], Stack, L, L) :-

rul e(LHS, [ B] Rest],
predi ct (Rest, [ LHS| Goal s], St ack).

predict([],L,L).
predict ([ Al Ls], L2, [goal (A)| NewLs]): -
predict(Ls, L2, NewLs).

Figure 3: A non-probabilistic LC parser

5.2 PraobabilisticLC parsing

Probabilistic LC parsing is just a probabilistic version of LC
parsing but the point is that it parameterizes CFG rules differ-
ently from PCFGs. It assigns probabilities to three operations

8This program is taken from [Manning, 1997] with aslight mod-
ification.
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(shift operation, attach operation and projection operation) in
LC parsing. Hence the resulting language distributions form a
different class of distributions from those allowed by PCFGs
and are expected to be more context sensitive.

Since PRISM programs can be arbitrary Prolog programs,
writing a probabilistic LC parser as a PRISM program
presents no difficulty to us. Furthermore once we finish writ-
ing, it means we have obtained an EM algorithm for LC pars-
ing, provided “due care” is taken to ensure mathematical cor-
rectness. That is, the program is written so that it expresses a
sequential probabilistic sentence generation process in which
every choice is exclusive, independent and made by nsw/ 2
built-in and once a choice is made, it never leads to failure
[Sato and Kameya, 2001].

% shift operation
process([goal (A)| Rest], Stack, [Wi|L],L):-
( termnal (A,
A=W, St ack=Rest
; \+ termnal (A,
( values(first(A,[W]
[

; values(first(A), _,_?_]),
msw(first(A),W) ),
St ack=[ Wi, goal (A | Rest ).

% attach or project operation
process([ Al Rest], Stack, L, L): -

\'+ A=goal (),
Rest =[ goal (C) | St ackO],
==C,

% goal (A) waits for an A-tree
( values(lc(A A, ),
% attach and project are possible
msw(attach(A), Op),
( Op==attach, St ack=St ackO
; Op==pr oj ect,
next St ack(A, Rest, Stack) )
; \+ values(lc(A A, ),
% A is forcibly attached
St ack St ack0 )
7 Al ==C,
next St ack(A, Rest, St ack)

).

% proj ect operation
next St ack(A, [ goal (C)| Rest 2], St ack)
% subtree Ais waited for by g(0O
( values(lc(CA,[_,_|_1),
msw( |l c(C, A), rul e(LHS, [ A] RHS2]))
; values(lc(C A),[rule(LHS, [AIRHS2])]) ),
predi ct (RHS2, [ LHS, goal (C) | Rest 2], St ack) .

Figure 4: A probabilistic LC parser



With this in mind, we replace clauses in Figure 3 for three
operations with corresponding ones as in Figure 4 (PRISM
declarations for t ar get/ 1 and val ues/ 2 are omitted).
Since we have to avoid failure in the generation process, pro-
gram codes are more complicated than the non-probabilistic
LC parser.

In a generation process, the shift operation for which the
first clause is responsible has two cases depending on whether
Ain goal (A) on the stack top is terminal or not. If A is
a nonterminal and if it has a non-singleton first set, we use
msw( first(A), W) to probabilistically select a word Wi
to shift®.

The second clause handles the case where a subtree for
nonterminal A is completed. There are two cases. The first
case is where a subgoal goal ( A) is waiting on the stack.
The other case is where the subtree for A has no such waiting
subgoal on the stack. The first case is further subdivided into
two subcases. In the first subcase, projection is possible'®
as well as attachment. We check this possibility by val -
ues(l c(A A, ) and when possible, make a probabilistic
choice of the operation. The second subcase is where no such
projection is possible and only attach operation is possible.

The project operation is executed in the third clause. When
Cingoal (C) on the stack has left-corner relationship with
the completed A subtree, and if there is more than one rule of
the form A — B- - -, we probabilistically choose one of such
rulesby msw( 1 c(C, A), rul e(LHS, [ A| RHS2])) .

The probabilistic LC parser in Figure 4 has no side effects
and never fails when used as a sentence generator. It logi-
cally describes a sequential decision process where decisions
are made by msw/ 2 built-in. Consequently, we are sure that
the EM learning performed by the program is mathematically
correct!!,

We have successfully tested EM learning by the probabilis-
tic LC parser with a small number of data randomly generated
from the program itself, but a large scale learning experiment
seems difficult because of huge memory requirement. We are
developing yet another way to reduce memory requirement
using a different formulation of probabilistic LC parsing.

We remark that although there is a formulation of prob-
abilistic LC parsing [Manning, 1997; Roark and Johnson,
1999], the parameter learning there assumes a fully annotated
corpus. The only literature we found on the EM learning of
LC parsing is [Van Uytsel et al., 2001] in which a specialized
EM algorithm for (extended) LC parsing is sketched.

9

+X is Prolog’s negation which succeeds if and only if the goal X
fails. A==B succeedsif A and B areidentical Prolog terms whereas
A=B denotes the unification of A and B.

In this subcase A must have left-corner relationship with it-
self. In general A is said to have left-corner relationship with A’
if there is a sequence of CFG rules such that A — B1(1,B1 —
B2B32,...,Bn — A'Bn.

1To be precise, we need to add a condition “if there is no loss of
probability massto infinite generation process,” which is difficult to
verify except simple models like PCFGs.
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6 Conclusion

Relational learning for uncertainty modeling at first order
level is a natural extension of many, if not all, proba-
bilistic approaches and has been developed over the past
decade [Breese, 1992; Sato, 1995; Muggleton, 1996; Sato
and Kameya, 1997; Koller and Pfeffer, 1997; Cussens, 1999;
Friedman et al., 1999; Jaeger, 2001; Sato and Kameya, 2001;
Kersting and De Raedt, 2002]. Yet, there seems little work
that exploits the full power of the generality of predicate logic
combined with statistical learning. Most of work descended
from Bayesian networks assumes domains are finite, and dy-
namic Bayesian networks remain a repetition of the same
template. When logic programs are used as an underlying ve-
hicle, range-restrictedness is often imposed which excludes
common logic programs such as one for merber predicate.

PRISM [Sato and Kameya, 1997; 2001] is a general pro-
gramming language with EM learning ability for modeling
symbolic-statistical phenomena. Syntactically it is Prolog
augmented with parameterized probabilistic built-ins and ac-
cepts any programs regardless of whether they are range-
restricted or not. Semantically it is the first programming
language that can formally define distributions (probability
measures) over infinite Herbrand domains. Practically, re-
cent reimplementation of PRISM [Zhou and Sato, 2002] has
brought about fast and robust EM learning based on tabled
search. The adaptation of B-Prolog’s linear tabling mecha-
nism considerably shortens search time and also allows us
to use recursive clauses which would otherwise cause infi-
nite recursion, thereby providing us with far more freedom of
modeling than previous implementations.

In this paper, we have reported two programming exam-
ples in the area of statistical natural language processing that
take advantage of this new perspective offered by the latest
PRISM. The first one in Figure 2 is a probabilistic DCG pro-
gram for top-down parsing. It uses difference lists as data
structures and accepts left recursive CFG rules. The second
one in Figure 4 defines a bottom-up shift-reduce parser, prob-
abilistic LC parser that manipulates a stack. Note that both
programs are not range-restricted as logic programs, thus can-
not be expressed by those approaches that inhibit non-range-
restricted programs. They are not expressible by a fixed size
network either because we need an indefinitely many number
of random variables that have no upper bound.

Last but not least while we observe that the learning speed
of PDCG in PRISM is catching up with the Inside-Outside
algorithm implemented in C, it is obvious that we have a lot
to do to put PRISM into real use.
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Abstract

This paper organises some general observations on
Relational Learning which arose from research into
classifying Web pages. The motivation for this
piece is to contribute towards developing a broad
overview of the field, so as to understand which
aspects of Relational Learning are common to all
domains, and which aspects are peculiar to specific
domains. Hence the views presented here are nec-
essarily only one piece of the puzzle, and it is hoped
that analogous perspectives from other practition-
ers will improve upon the picture being developed
here. With that in mind, let’s take a whirlwind tour

of Relational Learning as seen through the eyes of
someone interested in classifying Web pages.

1.2 Classifying Nodes

\

-

! \

* Instances ~ ~
Problems like classifying Web pages fall into this category.
Instances are nodes, and paths may or may not exist between
them. The task is to classify an instance using both the prop-

erties of that instance and properties of the “neighbourhood”
of that instance. Since nodes can appear in the neighbour-
hood of more than one instance, thorny independence issues
can arise when trying to evaluate whether such shared neigh-
bours are useful predictors or not.

1 Relational Learning Problems 1.3 Classifying Node Tuples
Relational learning problems, by definition, require data in N e h L 2 .
some relational format. However, there is still some variety A /

in the nature of the classification problems that are consid-
ered. Being aware of these variations can be useful when it
comes to choosing a particular learning algorithm for the task

at hand.

The following general categories of relational learning
problem are encountered when considering machine learning

~ Instances — — ~

on the Web. Do problems from other domains fit into this ~Problems like classifying pairs of Web pages (e.g. is this
categorisation? Are there more categories?

[

_———— - - e

AN

Instances

course being taught by this professor) fall into this category.
Instances are tuples of nodes, normally connected in some
way. The task is to classify an instance using information
about how the nodes relate to each other.

For the moment, I've not broken out edge classification into
a separate section. Edge classification on the Web seems to
be covered well enough by classifying the pair of web pages
linked by the edge as a tuple. Are there compelling exam-
ples from other domains that warrant edge classification be-
ing considered independently?

2 Relational Learning Features

Problems like classifying Web sites fall into this category. Being aware of what kinds of regularity your particular re-
Instances are graphs, but usually not connected to each othiational learning problem may exhibit is important when de-
and the task is to classify the full relational description of ansigning and evaluating algorithms for that problem. This sec-
instance. tion details some classes of predictive regularity found in Web
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page classification problems. Are other forms of regularity3.1 Where to look?
found in other relational learning domains, or by algorithms\yhen instances are nodes or tuples of nodes, the algorithm

different to the one used in my work ¢fi.)? has to determine how much and what parts of the neigh-
bourhood contain predictive regularities. One shortcoming
2.1 Edge Features of the FoIL approach used is the need for a disparity between

positive and negative instances in themberof hyperlinks
to/from them. In fact, even if such a disparity did exist, the

As well as using this predicate to draw neighbouring pageﬁypothess language used can only distinguish between “no

; X . . ¥inks” and “at least one link”. However, without such a dis-
into the hypothesis, the mere existence or non-existence (Hn

h linksi ain situati dtob ful E arity, the algorithm might not have investigated features of
YPETINKS In certain situations provea to be usetul. Orexamhyperlinked pages and not found the interesting regularities
ple, when learning classify course home pages) Hearned

; it did eventually find. A well implemented relational cligh
this rule approach could have neatly solved this probl&itverstein
: - and Pazzani, 1991
course-page(A) : Hﬁ;::g?;:lé(;tyorzgﬁ(),}nnk(ii((;zg?r}%?()d(A))’ Not knowing where to look would seem to imply that a re-
has_assign(B). lational learning algorithm needs to have some kind of search
component, both for building the classification model, and for
This rule uses a binarjnk_to relation to state that course applying that model to new data.
home pages contain a hyperlink to a page to(A,B)) which
contains no hyperlinks to other pagest(link_to(8,?))). The 3.2 What to look for?
has_instructor andhas_assign predicates are simple keyword The potential for relational learning problems to contain,
predicates, testing for the existence of the wdrdgructor  within them, related concepts is an exciting one. If they do

andassignrespectively. exist for the task at hand, then they are only weakly labeled
(e.g. for many course home pages, one of the links from them
2.2 Node Features points to an assignments page) and as such provide an inter-

) o esting challenge for a learning algorithm.
Naturally, properties of individual nodes are also useful fea- one interesting idea for a statistical relational learner is
tures for web page classification. The example in the previoug, yse a latent data approach to label nodes that might be-
section shows that finding the woimstructoron a page, and ong to a new concept. For example, in a training set for

that the page is the home page for a course. pages as negative, and treat as latent data the labels on pages
linked to from course pages. Perhaps Expectation Maximisa-
2.3 Aggregate Features tion followed by some significance tests on the result could

. L “discover” the concept of assignment pages?
Knowing that a node is linked to “a few” or even “many” p 9 pag

nodes which have some feature in common can be useful fo C lusi
classification. For example, index pages of graduate studen onclusion
generally contain many links to Web pages which look likeThis paper presented one view on the world of relational

student home pages. learning based on experience with Web page classification.
We looked at the kinds of classification task encountered,
2.4 Related Concept Features the types of regularity that proved useful, and some thoughts

on what we'd expect from a good relational learner in this
Often for Web page classification tasks, a related concept casiomain (leaving aside practical considerations such as effi-
be found in the data which helps with the primary task. We'veciency in space and time).
already seen an example with the course rule presented ear-Analogous views from practitioners in other relational
lier. To classify course home pages, the related concept aéarning domains might serve to give a better intuitive feel
“page of assignments” (page containing the waskignwith  for relational learning as a whole, and lead us to better under-
no outgoing hyperlinks) exists in the training data and is usestand what tradeoffs we make with particular relational learn-
ful for building a classifier. ing algorithms.
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1 Introduction These generative modeling frameworks provide all the

This brief paper reviews a number of ideas from the statisti—usual advantages of statistical inference, such as:

cal and social networks literature that are potentially of inter- e a language for modeling of specific network character-

est and relevance to computer scientists working in relational  istics, such as reciprocity and transitivity of relations

learning. Pointers to references are provided for further read-  (Wasserman and Faust, 1994);

ing. . . . . .
e modeling techniques for incorporating covariat&s

L. . e.g., via suitably-defined logistic regression models;
2 Statistical Models for Social Network Data . . : .
e inference methods for handling systematic errors in the

The statistical literature on social networks typically assumes  measurement of links (Butts, 2003);
that we are modeling a set afentities or “actors” and their ) )
binary relationships. The data are often represented in the ® hiérarchical Bayes and random effect frameworks that

form of ann x n adjacency matriy” where entryy;; = 1 allow individual-level variation to be modeled (Hoff,
(or 0) indicates the presence (or absence) of some form of 2003);

directed relationship between entitiesnd j, e.g., i con- e general classes of methods for parameter estimation and
siders; to be a friend.” Undirected graphs, wifh; = y;:, model comparison, such as Markov chain Monte Carlo
are obviously also of interest. More generajly can mea- methods (Snijders, 2002);

sure the “value of the relation” from entityto entity j on ) . )
some suitably defined scale. In addition, each entity can have ® incorporation of clusters of nodes in the graph whose

a set of covariates, denotag, e.g., a vector of demographic statistical properties are equivalent, such as the block
measurements, with = {xi,...,x,} being the full set of models of Wang and Wong (1987);
observed covariate data. e methodologies for incorporating specific prior informa-

There is along tradition of developing statistical models for  tion such as desired functional forms on degree distribu-
such data in the social networks literature (a comprehensive  tions (Snijders, 2003); and

survey of early work in the field is provided by Wasserman . o .

and Faust, 1994). Central to these modeling approaches is® interpretability of the resulting model (although the va-

the treatment of the edge data measuremepisas observa- !Idlty of such interpretation for certain types of models

tions from an underlying distribution for a set of binary ran- is debatable: see comments below).

dom variables defined on each of the ordetéd — 1) pairs:

andj. The rationale behind this approach is that the observe@ The Limitations of Current Statistical

n(n — 1) relationsY” are noisy indicators as to whether a link Network Models

truly exists or not. The goal of statistical modeling in this

context is to infer a parsimonious model f8(Y | X) thatre-  Unfortunately these models are far from a panacea for all sta-

quires a relatively small number of parameters to explain théistical modeling involving network and graph data. Com-

pattern of observed relations (and non-relations), as a fungutational issues are a major concern. Parameter estimation

tion of both local network properties (such as the indegreen general for Markov random fields is a well-known problem

and outdegree of individual nodes) as well as the covariatedue the intractability of computing the normalization constant

X. in such distributions (which requires, in this context, a sum
Various forms of Markov random fields (MRFs) (Frank over all possible graphs with nodes).

and Strauss, 1986) and exponential graph models (sometimesPerhaps even more troubling is the fact that there are es-

referred to ap* models in the social networks literature; sential and fundamental identifiability problems in the esti-

Wasserman and Pattison, 1996) have been used to modwiation of parameters in many of these models—these estima-

P(Y|X). Much of this work builds on the earlier classic work tion problems have only become apparent in relatively recent

of Besag in spatial statistics (1974). times. To quote Hoff, Raftery, and Handcock (2002):
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“...commonly used models are more global than lo- 5 Conclusion

calin structure and this contributes to model degen- ¢ js not yet clear how the classes of statistical models men-
eracy and instability problems ... These issues are  {joned ahove are related to other types of models and learning
not resolved by alternative forms of estimation but  555rithms that have been proposed in the relational learning
represent defects in the models themselves.... literature—probabilistic relational models are clearly of par-

Elsewhere, Besag (2002) comments that: ticular relevance. In principle, the intersection of statistical
_ . modeling and machine learning techniques appears to be a
“A particularly blatant use of MRFs occurs in the useful area for further exploration. Leveraging the strengths

analysis of social networks, where the parameters  of each approach should produce new classes of models and
in Markov random graphs are often ascribed sub- applications for rich relational domains.
stantive interpretations that are meaningless....”
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This model is also reminiscent of multi-dimensional scal-
ing (MDS), a well-known technique for “projecting” pairwise
similarity data into a multi-dimensional vector space. How-
ever, this latent-variable graph model is more powerful than
MDS in that the full spectrum of techniques for probabilistic
modeling (such as incorporation of covariates) can be brought
to bear.
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Abstract

Many real-world domains are relational in nature, con-
sisting of a set of entities linked to each other in complex
ways. Two important tasks in such data are predicting
entity labels and links between entities. We present a
flexible framework that builds on (conditional) Markov
networks and successfully addresses both tasks by cap-
turing complex dependencies in the data. These mod-
els can compactly represent probabilistic patterns over
subgraph structures and use them to predict labels and
links effectively. We show how to train these models,
and how to use approximate probabilistic inference over
the learned model for collective classification of multi-
ple related entities and links. We evaluate our framework
on several relational datasets, including university web-
pages and social networks. Our approach achieves signif-
icantly better performance than flat classification, which
attempts to predict each label and link in isolation.

1 Introduction

The vast majority of work in statistical classification methods
has focused on “flat” data — data consisting of identically-
structured entities, typically assumed to be independent and
identically distributed (11D). However, many real-world data
sets are innately relational: hyperlinked webpages, cross-
citations in patents and scientific papers, social networks,
medical records, and more. Such data consist of entities of
many types, where each entity type is characterized by a dif-
ferent set of attributes. Entities are related to each other via
different types of links, and the link structure is an important
source of information.

Consider a collection of hypertext documents that we want
to classify using some set of labels. For example, for a uni-
versity website, we would like to predict which pages be-
long to a student, a professor, a course, etc. Most naively,
we can use a bag of words model, classifying each webpage
solely using the words that appear on the page. However,
hypertext has a very rich structure that this approach loses
entirely. One document has hyperlinks to others, typically in-
dicating that their topics are related. Each document also has
internal structure, such as a partition into sections; hyperlinks
that emanate from the same section of the document are even
more likely to point to similar documents. When classify-
ing a collection of documents, these are important cues, that
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can potentially help us achieve better classification accuracy.
Therefore, rather than classifying each document separately,
we want to provide a form of collective classification, where
we simultaneously decide on the class labels of all of the enti-
ties together, and thereby can explicitly take advantage of the
correlations between the labels of related entities.

Another challenge arises from the task of predicting which
entities are related to which others and what are the types of
these relationships. For example, we might also want to pre-
dict not just which page belongs to a professor and which to
a student, but also which professor is which student’s advi-
sor. In some cases, the existence of a relationship will be
predicted by the presence of a hyperlink between the pages,
and we will have only to decide whether the link reflects an
advisor-advisee relationship. In other cases, we might have to
infer the very existence of a link from indirect evidence, such
as a large number of co-authored papers. In a very differ-
ent application, we might want to predict links representing
participation of individuals in certain terrorist activities.

One possible approach to this task is to consider the pres-
ence and/or type of the link using only attributes of the po-
tentially linked entities and of the link itself. For example,
in our university example, we might try to predict and clas-
sify the link using the words on the two webpages, and the
anchor words on the link (if present). This approach has the
advantage that it reduces to a simple classification task and we
can apply standard machine learning techniques. However, it
completely ignores a rich source of information that is unique
to this task — the graph structure of the link graph. For ex-
ample, a strong predictor of an advisor-advisee link between a
professor and a student is the fact that they jointly participate
in several projects. In general, the link graph typically re-
flects common patterns of interactions between the entities in
the domain. Taking these patterns into consideration should
allow us to provide a much better prediction for links.

A somewhat more sophisticated approach might be to
build a link predictor that explicitly takes into consideration
other relevant links in the graph. We can implement this
either by converting graph features into attributes [10], or
by explicitly learning a relational classifier, using techniques
such as inductive logic programming [8]. Unfortunately, this
approach is limited to cases where we are trying to predict
a single link at a time, and the other links in the graph are
given. In practice, only some or none of the links in the graph



are known, and we are trying to simultaneously predicta large
number of links in the graph.

We propose the use of a joint probabilistic model for
an entire collection of related entities and links. Following
the approach of Lafferty [7], we base our approach on dis-
criminatively trained undirected graphical models, or Markov
networks [11]. We introduce the framework of relational
Markov network (RMNs), which compactly defines a Markov
network over a relational data set. The graphical structure of
an RMN is based on the relational structure of the domain,
and can easily model complex patterns over related entities.
For example, we can represent a pattern where two linked
documents are likely to have the same topic. We can also
capture patterns that involve groups of links: for example,
consecutive links in a document tend to refer to documents
with the same label. We can also represent “transitive” pat-
terns, where the presence of links A to B and B to C and
increases (or decreases) the likelihood of an A to C link. As
we demonstrate, RMNs allow tremendous flexibility in rep-
resenting complex patterns.

Undirected models lend themselves well to discriminative
training, where we optimize the conditional likelihood of the
labels given the features. Discriminative training, given suf-
ficient data, generally provides significant improvements in
classification accuracy over generative training [13]. We pro-
vide an effective parameter estimation algorithm for RMNs
which uses conjugate gradient combined with approximate
probabilistic inference (belief propagation [11]) for estimat-
ing the gradient. We also show how to use approximate prob-
abilistic inference over the learned model for collective clas-
sification of multiple related entities. We provide experimen-
tal results on classification and relation type prediction tasks
in web data and a link prediction task in a social network
dataset, showing significant gains in accuracy arising from
the modeling of relational dependencies.

2 Reéational Domains

Consider hypertext as a simple example of a relational do-
main. A relational domain is defined by a schema, which de-
scribes entities, their attributes and relations between them. In
our domain, there are two entity types: Page and Hyperlink.
If a webpage is represented as a bag of words, Page would
have a set of boolean attributes Page.HasWord,, indicating
whether the word & occurs on the page. It would also have the
label attribute Page.Label, indicating the topic of the page,
which takes on a set of categorical values. The Hyperlink en-
tity type has three attributes: Hyperlink.Type, indicating the
type of relationship between the two pages, Hyperlink.From
and Hyperlink.To, both of which refer to Page entities.

In general, a schema specifies of a set of entity types
& ={E,...,E,}. Eachtype E is associated with three sets
of attributes: content attributes £.X (e.g. Page.HasWord},),
label attributes E.Y (e.g. Page.Label), and reference at-
tributes E.R (e.g. Hyperlink.To). For simplicity, we restrict
label and content attributes to take on categorical values. Ref-
erence attributes include a special unique key attribute E.K
that identifies each entity. Other reference attributes E.R re-
fer to entities of a single type ' = Range(E.R) and take val-
ues in Domain(E'.K). Following [4] in addressing link ex-
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istence prediction, we introduce into our schema object types
that correspond to potential links between entities. Thus, if
we want to reason about all possible links between entities in
the model, we can introduce a potential link between every
pair of entities in the domain. Each link object has a binary
existence attribute Exists, which is true if the link between the
associated entities exists and false otherwise.

An instantiation Z of a schema & specifies the set of en-
tities Z(E) of each entity type E € £ and the values of all
attributes for all of the entities. For example, an instantiation
of the hypertext schema is a collection of webpages, specify-
ing their labels, words they contain and links between them.
We will use Z.X, Z.Y and Z.R to denote the content, label
and reference attributes in the instantiation Z; Z.x, Z.y and
Z.r to denote the values of those attributes. The component
Z.r, which we call an instantiation graph, specifies the set
of entities (nodes) and their reference attributes (edges). A
hypertext instantiation graph specifies a set of webpages and
links between them, but not their words or labels.

3 Redational Markov Networks

In this section, we present the framework of undirected graph-
ical models, also known as Markov Networks [11] or Markov
Random Fields, and their extension to relational domains.

Markov Networks. Let V denote a set of discrete random
variables and v an assignment of values to V. A Markov
network for V defines a joint distribution over V. It consists
of an undirected dependency graph, and a set of parameters
associated with the graph. For a graph G, a clique is a set
of nodes V. in G, not necessarily maximal, such that each
Vi, V; € V. are connected by an edge in G. Note that a
single node is also considered a clique.

Definition 1: Let G = (V, E) be an undirected graph with
a set of cliqgues C(G). Each ¢ € C(G) is associated with
a set of nodes V. and a clique potential ¢.(V.), which is
a non-negative function defined on the joint domain of V..
Let ® = {$.(V¢)}eeo(q)- The Markov net (G, @) defines

the distribution P(v) = % [T.co(q) 9e(Ve), where Z is the
standard normalizing partition function. lI

Each potential ¢. is simply a table of values for each
assignment v that defines a “compatibility” between val-
ues of variables in the clique. The potential is often rep-
resented compactly by a log-linear combination of a small
set of indicator functions, or features, of the form f(V.) =

(V. = v.). In this case, the potential can be written as:
¢c(vc) - eXp{E wzfz(vc)} - exp{wc ) (vc)} .

For classification, we are interested in constructing dis-
criminative models using conditional Markov nets (or con-
ditional random fields [7]), which are simply Markov net-
works renormalized to model a conditional distribution of
some set of target variables Y given observed variables X:
Py | x) = ﬁncec(g) $c(ye,xc), Where Z(x) is the
partition function, now dependent on x.

Relational Markov Networks. A relational Markov net-
work (RMN) [12] specifies the cliques and potentials between
attributes of related entities at a template level, so a single



model provides a coherent distribution for any collection of
instances from the schema. RMNs specify the cliques using
relational clique templates to identify tuples of variables in
the instantiation in a relational query language.

Definition 2: A relational clique template C = (F, W, S)
consists of three components:

e F = {F;} — a set of object variables, for which e(F;)
denotes the entity type of F;.

e W(F.R) — a boolean formula using conditions of the
form F;.R; = F},.R;.
e F.S C F.X UF.Y — asubset of attributes in F.

For example, if we want to define cliques between the class
labels of linked pages, to capture the tendency of pages with
the same label tend to link to each other, as in Fig. 1, we
might define: F to be the set pagel,page2 and link of types
Page, Page and Hyperlink, respectively; W(F.R) to be
link.From = pagel.Key A link.To = page2.Key; and
F.S to be pagel.Category and page2.Category.

A cligue template specifies a set of ground cliques in an
instantiation Z:

C(Z)={c=eS:ecZ(F) ANW(er)},

where e is a tuple of entities {e;} in which each e; is of type
e(F;); Z(F) = Z(e(F1)) x ... x Z(e(F,)) denotes the cross-
product of entities in the instantiation; the clause W (e.r) en-
sures that the entities are related to each other in specified
ways; e.S selects the appropriate attributes of the entities.

Definition 3: A Relational Markov network (RMN) M =
(C, ®) specifies a set of clique templates C and correspond-
ing potentials ® = {@¢}cec to define a conditional distri-
bution:

1
PILY|IX,IR)= II II ¢c@Y.z.X)
CeCceC(T)

where Z = Z(Z.X,Z.R) is the partition function . Il

Using the log-linear representation of potentials,
dc(Ve) = exp{we-fc(Ve)}, we can write

log P(ZY | IZ.X,I.R) = w-f(Z.Y,T.X,T.R) — log Z

where fo(Z.Y,Z.X,IZ.R) = Y} .coq) fc(ZT. Y, I.X,) is
the sum over all appearances of the template C(Z) in the in-
stantiation, and f is the vector of all fo.

Given a particular instantiation Z of the schema, the RMN
M produces an unrolled Markov network over the attributes
of entities in Z, in the obvious way. The cliques in the un-
rolled network are determined by the clique templates C'. We
have one clique for each ¢ € C(Z), and all of these cliques
are associated with the same clique potential ¢¢.

Probabilistic Models of Graph Structure. The combination
of a relational language with a probabilistic graphical model
provides a very flexible framework for modeling complex
patterns common in relational graphs. First, as observed by
Getoor et al. [4], there are often correlations between the at-
tributes of entities and the relations in which they participate.
For example, in a social network, people with the same hobby
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Figure 1: An unrolled Markov net over linked documents.
The links follow a common pattern: documents with the same
label tend to link to each other more often.

I

are more likely to be friends. More interestingly, we have cor-
relations between the labels of entities and the relation type.
For example, in a computer science department website, only
students can be teaching assistants in a course. We can easily
capture such correlations by introducing cliques that involve
these attributes. Importantly, these cliques are informative
even when attributes are not observed in the test data. For
example, if we have evidence indicating an advisor-advisee
relationship, our probability that X is a faculty member in-
creases, and thereby our belief that X participates is a teach-
ing assistant in a course Z decreases.

We can also represent much richer patterns over the link
graph. Consider, for example, a professor X and two other
entities Y and Z. If X’s webpage mentions Y and Z in the
same context, it is likely that there is correlation between the
type of relationship for X-Y and the type for Y-Z. For ex-
ample, if Y is Professor X’s advisee, then probably so is Z.
Our framework accommodates these patterns by introducing
pairwise cliques between the appropriate relation variables.

Interactions are not limited to pairs of relations. “Tran-
sitive” patterns are also common, where the presence of an
A-B link and of a B-C link increases (or decreases) the like-
lihood of an A-C link. For example, students often assist in
courses taught by their advisor. Note that this type of interac-
tion cannot be accounted for just using pairwise cliques. By
introducing cliques over triples of relations, we can capture
such patterns as well. We can incorporate even more compli-
cated patterns, but of course we are limited by the ability of
belief propagation to scale up as we introduce larger cliques
and tighter loops in the Markov network.

We note that our ability to model these more complex
graph patterns relies on our use of an undirected Markov net-
work as our probabilistic model. In contrast, the approach
of Getoor et al. uses directed graphical models (Bayesian
networks and PRMs [6]) to represent a probabilistic model
of both relations and attributes. While their approach cap-
tures the dependence of link existence on attributes of enti-
ties, the constraint that the probabilistic dependency graph be
a directed acyclic graph prevents them from representing the
more interesting correlations described above.

4 Learningthe Models

We focus on the case where the clique templates are given;
our task is to estimate the clique potentials, or feature



weights. Thus, assume that we are given a set of clique tem-
plates C which partially specify our (relational) Markov net-
work, and our task is to compute the weights w for the po-
tentials ®. In the learning task, we are given some training
set D where both the content attributes and the labels are ob-
served. Any particular setting for w fully specifies a proba-
bility distribution Py, over D, so we can use the likelihood as
our objective function, and attempt to find the weight setting
that maximizes the likelihood (ML) of the labels given other
attributes. However, to help avoid overfitting, we assume a
“shrinkage” prior over the weights (a zero-mean Gaussian),
and use maximum a posteriori (MAP) estimation. More pre-
cisely, we assume that different parameters are a priori inde-

pendent and define p(w;) = \/2;7 exp {—w?/20%}.

Both the ML and MAP objective functions are concave
and there are many methods available for maximizing them.
Our experience is that conjugate gradient and even simple
gradient perform very well for logistic regression and rela-
tional Markov nets.

Learning Markov Networks. We first consider discrimi-
native MAP training in the flat setting. In this case D is
simply a set of 11D instances; let d index over all labeled
training data D. The discriminative likelihood of the data
is [1; Pw(ya | xq). We introduce the parameter prior, and
maximize the log of the resulting MAP objective function:

L(w,D) = > (w-f(ya,xq) — log Z(xq4)) —
deD

W-W

252 +C.

The gradient of the objective function is computed as:
W

VIL(w,D) =Y (f(ya,xa) — Ep, [f(Ya,%xa)]) — = -
deD g

The last term is the shrinking effect of the prior and the other
two terms are the difference between the expected feature
counts and the empirical feature counts, where the expecta-
tion is taken relative to Py :

Ep, [f(Ya, xa)] = Y £(y},%a) Pw (4l | Xa) -

Thus, ignoring the effect of the prior, the gradient is zero
when empirical and expected feature counts are equal.® The
prior term gives the smoothing we expect from the prior:
small weights are preferred in order to reduce overfitting.
Note that the sum over 4’ is just over the possible catego-
rizations for one data sample every time.

Learning RMNs. The analysis for the relational setting is
very similar. Now, our data set D is actually a single instan-
tiation Z, where the same parameters are used multiple times
— once for each different entity that uses a feature. A par-
ticular choice of parameters w specifies a particular RMN,
which induces a probability distribution Py, over the unrolled
Markov network. The product of the likelihood of Z and the

IThe solution of maximum likelihood estimation with log-linear
models is actually also the solution to the dual problem of maximum
entropy estimation with constraints that empirical and expected fea-
ture counts must be equal [3].

parameter prior define our objective function, whose gradi-
ent VL(w,7) again consists of the empirical feature counts
minus the expected features counts and a prior term:

f(Zy,I.x,T.x) — E[f(L.Y,T.x,T.x)] —
ag

where the expectation Ep, [f(Z.Y,Z.x,Z.r)] is

Y Ty, ITx,Tx)Py(Ty' | T.x,Tx) .
.y’

This last formula reveals a key difference between the re-
lational and the flat case: the sum over Z.y' involves the ex-
ponential number of assignments to all the label attributes in
the instantiation. In the flat case, the probability decomposes
as a product of probabilities for individual data instances, so
we can compute the expected feature count for each instance
separately. In the relational case, these labels are correlated
— indeed, this correlation was our main goal in defining this
model. Hence, we need to compute the expectation over the
joint assignments to all the entities together. Computing these
expectations over an exponentially large set is the expensive
step in calculating the gradient. It requires that we run infer-
ence on the unrolled Markov network.

Inference in Markov Networks. The inference task in our
conditional Markov networks is to compute the posterior dis-
tribution over the label variables in the instantiation given
the content variables. Exact inference algorithms in graph-
ical models can compute this distribution efficiently for spe-
cific graph topologies such as sequences, trees and other low
treewidth graphs. However, the networks resulting from do-
mains such as hypertext are very large (in our experiments,
they contain tens of thousands of nodes) and densely con-
nected. Exact inference is intractable in these cases.

We therefore resort to approximate inference. There is a
wide variety of approximation schemes for Markov networks.
We chose to use belief propagation for its simplicity and rela-
tive efficiency and accuracy. Belief Propagation (BP) is a lo-
cal message passing algorithm introduced by Pearl [11]. It is
guaranteed to converge to the correct marginal probabilities
for each node only for singly connected Markov networks.
Empirical results [9] show that it often converges in general
networks, and when it does, the marginals are a good approx-
imation to the correct posteriors. As our results in Section 5
show, this approach works well in our domain.

5 Experiments

We tested our framework on the standard WebKB dataset [2]
as well as two new real-world datasets which we selected be-
cause of interesting relational structure not common to many
publicly available datasets. The first new dataset is a WebKB-
inspired collection of webpages from several university web
sites labeled by rich set of entity and relation categories. The
second dataset is a database of university students, including
their personal information and lists of their friends.

51 WebKB

The data set contains webpages from four different Computer
Science departments: Cornell, Texas, Washington and Wis-
consin. Each page has a label attribute, representing the type
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of webpage which is one of course, faculty, student, project
or other. The data set is problematic in that the category other
is a grab-bag of pages of many different types. The number
of pages classified as other is quite large, so that a baseline al-
gorithm that simply always selected other as the label would
get an average accuracy of 75%. We could restrict attention
to just the pages with the four other labels, but in a relational
classification setting, the deleted webpages might be useful
in terms of their interactions with other webpages. Hence,
we compromised by eliminating all other pages with fewer
than three outlinks, making the number of other pages com-
mensurate with the other categories.? For each page, we have
access to the entire html of the page and the links to other
pages. Our goal is to collectively classify webpages into one
of these five categories. In all of our experiments, we learn
a model from three schools and test the performance of the
learned model on the remaining school, thus evaluating the
generalization performance of the different models.

Flat Models. The simplest approach we tried predicts the
categories based on just the text content on the webpage. The
text of the webpage is represented using a set of binary at-
tributes that indicate the presence of different words on the
page. We found that stemming and feature selection did not
provide much benefit and simply pruned words that appeared
in fewer than three documents in each of the three schools
in the training data. We also experimented with incorporat-
ing meta-data: words appearing in the title of the page, in
anchors of links to the page and in the last header before a
link to the page [14]. Note that meta-data, although mostly
originating from pages linking into the considered page, are
easily incorporated as features, i.e. the resulting classifica-
tion task is still flat feature-based classification. Our first ex-
perimental setup compares three well-known text classifiers
— Naive Bayes, one-against-others linear support vector
machines (Svm), and logistic regression (Logistic) — using
words and meta-words. The two discriminative approaches
outperform Naive Bayes by an average of nearly 10%. Lo-
gistic and Svm give very similar results. The average error
over the 4 schools was reduced by around 4% by introducing
the meta-data attributes.

Relational Models. Incorporating meta-data gives a signif-
icant improvement, but we can take additional advantage of
the correlation in labels of related pages by classifying them
collectively. We want to capture these correlations in our
model and use them for transmitting information between
linked pages to provide more accurate classification. We
experimented with several relational models. Recall that lo-
gistic regression is simply a flat conditional Markov network.
All of our relational Markov networks use a logistic regres-
sion model locally for each page.

Our first model captures direct correlations between labels
of linked pages. These correlations are very common in our
data: courses and research projects almost never link to each
other; faculty rarely link to each other; students have links to

2The category distribution is: course (237), faculty (148), other
(332), project (82) and student (542). The numbers of pages/links
are: Cornell (280/574), Texas (292/574), Washington (315/728) and
Wisconsin (454/1614).
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Figure 2: Flat versus collective classification on WebKB:
flat logistic regression with meta-data, and three different
relational models: Link, Section, and a combined Sec-
tion+Link.
all categories but mostly courses. The Link model, shown in
Fig. 1, captures this correlation through links: in addition to
the local bag of words and meta-data attributes, we introduce
a relational clique template over the labels of linked pages.
A second relational model uses the insight that a webpage
often has internal structure that allows it to be broken up into
sections. For example, a faculty webpage might have one
section that discusses research, with a list of links to all of the
projects of the faculty member, a second section might con-
tain links to the courses taught by the faculty member, and a
third to his advisees. We can view a section of a webpage as a
fine-grained version of Kleinberg’s hub [5] (a page that con-
tains a lot of links to pages of particular category). Intuitively,
if we have links to two pages in the same section, they are
likely to be on similar topics. To take advantage of this trend,
we need to enrich our schema with a new relation Section,
with attributes Key, Page (document in which it appears), and
Category. We also add the attribute Section to Hyperlink to
refer to the section it appears in. In the RMN, we have two
new relational clique templates. The first contains the label
of a section and the label of the page it is on:

SELECT page.Category, sec.Category
FROM Page page, Section sec
WHERE sec.Page = page.Key

The second clique template involves the label of the section
containing the link and the label of the target page.

SELECT sec.Category, page.Category
FROM Section sec, Hyperlink link, Page page
WHERE link.Sec = sec.Key and link.To = page.Key

The original dataset did not contain section labels, so we
introduced them using the following simple procedure. We
defined a section as a sequence of three or more links that
have the same path to the root in the html parse tree. In the
training set, a section is labeled with the most frequent cat-
egory of its links. There is a sixth category none, assigned
when the two most frequent categories of the links are less
than a factor of 2 apart. In the entire data set, the breakdown
of labels for the sections we found is: course (40), faculty
(24), other (187), research.project (11), student (71) and none
(17). Note that these labels are hidden in the test data, so the
learning algorithm now also has to learn to predict section la-
bels. Although not our final aim, correct prediction of section



labels is very helpful. Words appearing in the last header be-
fore the section are used to better predict the section label by
introducing a clique over these words and section labels.

We compared the performance of Link, Section and Sec-
tion+Link (a combined model which uses both types of
cliques) on the task of predicting webpage labels, relative to
the baseline of flat logistic regression with meta-data. Our ex-
periments used MAP estimation with a Gaussian prior on the
feature weights with standard deviation of 0.3. Fig. 2 com-
pares the average error achieved by the different models on
the four schools, training on three and testing on the fourth.
We see that incorporating any type of relational information
consistently gives significant improvement over the baseline
model. The Link model incorporates more relational interac-
tions, but each is a weaker indicator. The Section model ig-
nores links outside of coherent sections, but each of the links
it includes is a very strong indicator. In general, we see that
the Section models performs slightly better. The joint model
is able to combine benefits from both and generally outper-
forms all of the other models. The only exception is for the
task of classifying the Wisconsin data. In this case, the joint
Section+Link model contains many links, as well as some
large tightly connected loops, so belief propagation did not
converge for a subset of nodes. Hence, the results of the in-
ference, which was stopped at a fixed arbitrary number of it-
erations, were highly variable and resulted in lower accuracy.

5.2 Extended WebKB

We collected and manually labeled a new relational dataset
inspired by WebKB [2]. Our dataset consists of Computer
Science department webpages from 3 schools: Stanford,
Berkeley, and MIT.

A total of 2954 of pages are labeled into one of eight cat-
egories: faculty, student, research scientist, staff, research
group, research project, course and organization (organiza-
tion refers to any large entity that is not a research group).
Owned pages, which are owned by an entity but are not the
main page for that entity, were manually assigned to that en-
tity. The average distribution of classes across schools is: or-
ganization (9%), student (40%), research group (8%), faculty
(11%), course (16%), research project (7%), research scien-
tist (5%), and staff (3%).

We established a set of candidate links between entities
based on evidence of a relation between them. One type of
evidence for a relation is a hyperlink from an entity page or
one of its owned pages to the page of another entity. A sec-
ond type of evidence is a virtual link: We assigned a number
of aliases to each page using the page title, the anchor text
of incoming links, and email addresses of the entity involved.
Mentioning an alias of a page on another page constitutes a
virtual link. The resulting set of 7161 candidate links were
labeled as corresponding to one of five relation types — Ad-
visor (faculty, student), Member (research group/project, stu-
dent/faculty/research scientist), Teach (faculty/research sci-
entist/staff, course), TA (student, course), Part-Of (research
group, research proj) — or “none”, denoting that the link does
not correspond to any of these relations.

The observed attributes for each page are the words on the
page itself and the “meta-words” on the page — the words
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Figure 3: Top: Relation prediction with entity labels given.
Bottom: Relation prediction without entity labels.

in the title, section headings, anchors to the page from other
pages. For links, the observed attributes are the anchor text,
text just before the link (hyperlink or virtual link), and the
heading of the section in which the link appears.

Our task is to predict the relation type, if any, for all the
candidate links. We tried two settings for our experiments:
with page categories observed (in the test data) and page cat-
egories unobserved. For all our experiments, we trained on
two schools and tested on the remaining school.

Observed Entity Labels. We first present results for the set-
ting with observed page categories. Given the page labels,
we can rule out many impossible relations; the resulting label
breakdown among the candidate links is: none (38%), mem-
ber (34%), part-of (4%), advisor (11%), teach (9%), TA (5%).

We tried several models. Link-Flat is our baseline model:
it assumes relations are independent of each other, so we use
multinomial logistic regression as our classifier. The features
used by this model are the labels of the two linked pages and
the words on the links going from one page and its owned
pages to the other page. The number of features is ~ 1000.

The relational models try to improve upon the baseline
model by modeling the interactions between relations and
predicting relations jointly. The Section model introduces
cliques over relations whose links appear consecutively in a
section on a page. This model tries to capture the effect that
similarly related entities (e.g., advisees, members of projects)
are often listed together on a webpage. The Triad model tries
to capture higher order patterns involving triples of related
entities, as discussed in Section 3. Specifically, we introduce
cliques over sets of three candidate links that form a triangle
in the link graph. The Section + Triad model includes the
cliques of the two models above.

As shown in Fig. 3 (top), both the Section and Triad mod-



els outperform the flat model, and the combined model has an
average accuracy gain of 2.26%, or 10.5% relative reduction
in error. As only a subset of all candidate links is affected by
the section or triad cliques, we also computed the average ac-
curacy gain on just the links involved in these richer cliques.
We obtained an improvement of 3.78% on the 50% of links
affected by Section.

As an example of the interesting inferences made by the
models, we found a student-professor pair that was misclas-
sified by Flat model as none (there is only a single hyperlink
from the student’s page to the advisor’s) but correctly iden-
tified by both the Section and Triad models. The Section
model utilizes a paragraph on the student’s webpage describ-
ing his research, with a section of links to his research groups
and the link to his advisor. Examining the parameters of the
Section model clique, we found that the model learned that it
is likely for people to mention their research groups and advi-
sors in the same section. By capturing this trend, the Section
model is able to increase the confidence of the student-advisor
relation. The Triad model corrects the same misclassification
in a different way. Using the same example, the Triad model
makes use of the information that both the student and the
teacher belongs to the same research group, and the student
TAed a class taught by his advisor. It is important to note that
none of the other relations are observed in the test data, but
rather the model bootstraps its inferences.

Unobserved Entity Labels. When the labels of pages are
not known during relations prediction, we cannot rule out
possible relations for candidate links based on the labels of
participating entities. Thus, we have many more candidate
links that do not correspond to any of our relation types (e.g.,
links between an organization and a student). This makes
the existence of relations a very low probability event, with
the following breakdown among the potential relations: none
(71%), member (16%), part-of (2%), advisor (5%), teach
(4%), TA (2%). In addition, when we construct a Markov
network in which page labels are not observed, the network
is much larger and denser, making the (approximate) infer-
ence task much harder. Thus, in addition to models that try
to predict page entity and relation labels simultaneously, we
also tried a two-phase approach, where we first predict page
categories, and then use the predicted labels as features for
the model that predicts relations.

For predicting page categories, we compared two mod-
els. Entity-Flat model is multinomial logistic regression that
uses words and “meta-words” from the page and its owned
pages in separate “bags” of words. The number of features is
roughly 10, 000. The Neighbors model is a relational model
that also exploits regularities in web site organization: pages
with similar urls often belong to the same category or tightly
linked categories (research group/project, professor/course).
For each page, two pages with urls closest in edit distance are
selected as “neighbors”, and we introduced pairwise cliques
between “neighboring” pages. The Neighbors model out-
performs the Flat model across all schools by an average of
4.9% accuracy gain.

Given the page categories, we can now apply the different
models for link classification. Thus, the Phased (Flat/Flat)
model uses the Entity-Flat model to classify the page la-

bels, and then the Link-Flat model to classify the candidate
links using the resulting entity labels. The Phased (Neigh-
bors/Flat) model uses the Neighbors model to classify the
entity labels, and then the Link-Flat model to classify the
links. The Phased (Neighbors/Section) model uses the
Neighbors to classify the entity labels and then the Section
model to classify the links.

We also tried two models that predict page and relation la-
bels simultaneously. The Joint + Neighbors model is simply
the union of the Neighbors model for page categories and the
Flat model for relation labels given the page categories. The
Joint + Neighbors + Section model additionally introduces
the cligues that appeared in the Section model between links
that appear consecutively in a section on a page. We train the
joint models to predict page and link labels simultaneously.

Since the proportion of relation “none” is so overwhelm-
ing, we use the following decision rule to classify relations:
If the probability of “none” is less than a given threshold, pre-
dict the most likely label (other than none), otherwise predict
the most likely label (including none). We report precision re-
call breakeven point using this rule with the threshold set to a
value where precision of actual relations (of all types except
none) equals recall on the test data. Fig. 3 (bottom) com-
pares the resulting breakeven points achieved by the different
models on the three schools. Relational models, both phased
and joint, did better than flat models on the average. How-
ever, performance varies from school to school and for both
joint and phased models, performance on one of the schools
is worse than that of the flat model.

5.3 Social Network Data

The second dataset we used has been collected by a portal
website at Stanford university that hosts an online commu-
nity for students [1]. Among other services, it allows stu-
dents to enter information about themselves, create lists of
their friends and browse the social network. Personal infor-
mation includes residence, gender, major and year, as well
as favorite sports, music, books, social activities, etc. We fo-
cused on the task of predicting the “friendship” links between
students from their personal information and a subset of their
links. We selected students living in sixteen different resi-
dences or dorms and restricted the data to the friendship links
only within each residence. Each residence has about 15-25
students and an average student lists about 25% of house-
mates as friends.

We used an eight-fold train-test split, where we trained on
fourteen residences and tested on two. Note that the students
in the training and test set are disjoint and no links between
them exist. Predicting links between two students from just
personal information alone is a very difficult task, so we tried
a more realistic setting, where some proportion of the links
is observed in the test data, and can be used as evidence for
predicting the remaining links. We used the following pro-
portions of observed links in the test data: 10%, 25%, and
50%. The observed links were selected at random, and the
results we report are averaged over five folds of these random
selection trials.

Using just the observed portion of links, we constructed
the following features: for each student, the proportion of stu-
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25%, 50% observed links.

dents in the residence that list him/her and the proportion of
students he/she lists; for each pair of students, the proportion
of other students they have as common friends. The values
of the proportions were discretized into four bins. These fea-
tures capture some of the relational structure and dependen-
cies between links: Students who list (or are listed by) many
friends in the observed portion of the links tend to have links
in the unobserved portion as well. More importantly, having
friends in common increases the likelihood of a link between
a pair of students.

The Flat model uses logistic regression with the above
features as well as personal information about each user. In
addition to characteristics of the two people, we also intro-
duced a feature for each match of a characteristic, e.g. both
people are computer science majors or both are freshmen.

The Compatibility model (which resembles our Section
model above) introduces cliques between each pair of links
emanating from each person. Similarly to the Flat model,
these cliques include a feature for each match of the charac-
teristics of the two potential friends. This model captures the
tendency of a person to have friends who share many charac-
teristics (even though the person might not possess them). We
also tried models with triad cliques, but the belief propagation
often failed to converge, producing erratic results.

Fig. 4 compares the average precision/recall breakpoint
achieved by the different models at the three different settings
of observed links. The Compatibility model outperforms the
flat with p-values 0.0036, 0.00064 and 0.054 respectively, ac-
cording to a paired t-test.

6 Discussion and Conclusions

We address the novel task of collective label and link clas-
sification, where we are simultaneously trying to predict and
classify an entire set of labels and links in a link graph. Our
approach provides a coherent probabilistic foundation for this
task, by defining a joint probabilistic model over objects and
links. Our framework allows us to represent a very rich set
of relational patterns in the probabilistic model, and use them
in prediction. The resulting models significantly improve the
classification accuracy over flat models.

Our results in this paper are only a first step toward un-
derstanding the power of relational classification, and many
extensions are possible. On the representational side, we can
gain significant power from introducing hidden variables (that
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are not observed even in the training data). In a different ex-
tension, one of the problems limiting the applicability of ap-
proach is the reliance on belief propagation, which often does
not converge in more complex problems. \We believe that this
issue can be addressed if we consider a tighter integration of
learning and inference.

Our results use a set of relational patterns that we have
discovered to be useful in the domains that we have consid-
ered. However, many other rich and interesting patterns are
possible. Thus, in the relational setting, the issue of feature
construction is critical. It is therefore important to explore the
problem of automatic feature induction, as in [3].

Finally, we believe that this framework can provide a prin-
cipled approach for addressing a wide range of applications,
including predicting communities of people and hierarchical
structure of people and organizations, based on both the local
attributes and the patterns of static and dynamic interaction.
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Abstract

We present in this paper a state-of-the-art imple-
mentation of PRISM, a language based on Prolog
that supports statistical modeling and learning. We
start with an interpreter of the language that incor-
porates a naive learning algorithm, and then turn to
improve the interpreter. One of the improvements
is to refine the learning algorithm such that it works
on explanation graphs rather than flat explanations.
Tabling is used to construct explanation graphs so
that variant subgoals do not need to be considered
redundantly. Another technique is compilation.
PRISM programs are compiled into a form that
facilitates searching for all solutions. The imple-
mented system is, to our knowledge, the first of its
kind that can support real-world applications. The
implemented system, which will be available from
http://sato-www.cs.titech.ac.jp/prism/index.html, is
being applied to several problem domains ranging
from statistical language processing, decision sup-
port, to game analysis.

1 Introduction

PRISM (PRogramming In Statistical Modeling) [Sato, 1995;
Sato and Kameya, 2001] is a new language that integrates
probability theory and Prolog, and is suitable for the descrip-
tion of computations in which randomness or uncertainty is
involved. PRISM provides built-ins for describing experi-
ments 1. A PRISM program can be executed in three differ-
ent modes, namely sample execution, probability calculation,

1An experiment is defined by a sample space and a probabil-
ity distribution for the outcomes in the sample space. For example,
tossing a coin is an experiment where the sample space is {head,
tai | } and the probability distribution is uniform (this means that
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and learning. In sample execution mode, a goal may give dif-
ferent results depending on the outcomes of the experiments.
For example, it is possible for a goal to succeed if a coin
shows the head after being tossed and to fail if the coin shows
the tail. The probability calculation mode gives the proba-
bility of a goal to succeed. In the learning mode, the system
estimates the probabilities of the outcomes of the experiments
from given observed data. The PRISM system adopts the EM
(Expectation and Maximization) algorithm [Dempster et al.,
1976] in probability estimation.

PRISM, as a symbolic statistical modeling language, sub-
sumes several specific statistical tools such as HMM (Hid-
den Markov Models) [Rabiner, 1989], PCFG (Probabilis-
tic Context Free Grammars) [Wetherell, 1980] and descrete
Bayesian networks [Castillo et al., 1997; Pearl, 1987]. Com-
pared with numeric models where mathematical formulas are
used, PRISM offers incomparable flexibility by allowing the
use of arbitrary logic programs to describe probability distri-
butions. PRISM can be used in many areas such as language
processing, decision making, bio-informatics, and game the-
ory where randomness or uncertainty is essential.

This project aims at implementing an efficient system for
PRISM in B-Prolog. For most applications, learning is time-
consuming especially when the amount of observed data is
large. The EM learning algorithm estimates the probabilities
of outcomes through two phases: the first phase searches for
all explanations for the observed facts, and the second phase
estimates the probabilities. The first phase is the neck of the
learning algorithm. We have made several efforts to speed-up
this phase. One is to tabulate partial explanations for subgoals
such that explanations for variant subgoals are searched only
once. With tabling, this phase gives an explanation graph that
facilitates the estimation of probabilities. The tabling mecha-

theeventshead andt ai | have the samelikelihood to occur) if the
coinisfair.



nism of B-Prolog is improved such that copy of data between
the heap and the tabling area is reduced significantly. This
improved version demonstrates a big speed-up when complex
goals with structured data need to be tabulated. Another tech-
nique used in the system is compilation. PRISM programs
are compiled into a form that facilitates searching for all so-
lutions.

The main part of this paper is devoted to the implemen-
tation techniques. To make the paper self-contained, we start
with an interpreter of PRISM in the next section. The descrip-
tion of the operational semantics is informal and is based on
examples. The reader is referred to [Sato and Kameya, 2001]
for a formal description of the semantics and the EM learning
algorithm adopted in PRISM.

2 PRISM: ThelLanguage and its
Implementation

PRISM is an extension of Prolog that provides built-ins for
statistical modeling and learning.

2.1 Built-ins

The built-in msw( | , V) describes a trial of an experiment,
where | is the identifier of an experiment, and V is the out-
come of the trial?. The identifier | can be any complex term,
but I must be ground when the trial is conducted. In the
sample-execution mode, the built-in nsw( | , V) succeeds if
the trial of the experiment | gives the outcome V. If V is a
variable, then the built-in always succeeds, binding V to the
outcome of the experiment.

For each experiment, the user must specify the sample
space by defining the predicate val ues( |, Space) , where
| is the identifier and Space is a list of possible outcomes
of the experiment. A probability distribution of an exper-
iment tells the probabilities of the outcomes in the sample
space. The sum of the probabilities of the outcomes in any
experiment must be 1.0. Probability distributions are either
given by the programmer or obtained through learning from
given sample data. The predicate set .sw( |, Probs) sets
the probabilities of the outcomes in the experiment | , where
Pr obs is a list of probabilities (floating-point numbers). The
length of Pr obs must be the same as the number of outcomes
in the sample space and the sum of the probabilities must be
equal to 1.0.

The following shows an illustrative example:

direction(D): -
msw( coi n, Face),
(Face==head—>D=l eft; D=ri ght).

val ues(coin,[head,tail]).

2The name msw is an abbreviation for multi-outcome switch. In
the version presented in [Sato and Kameya, 2001], the built-in takes
another argument called trial number. The same tria of the same
experiment must give the same outcome. In the new version, all
trials are considered independent by default. If the outcome of a
trial needs to be reused, the programmer must have it passed as an
argument or have it saved in the global database.
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The predicate di r ect i on( D) determines the direction to
go by tossing a coin; D is bound to | ef t if the head is
shown, and tor i ght if the tail is shown. To set uniform dis-
tribution, we use set sw(coi n,[ 0.5, 0. 5]) to set the
probabilities to the two outcomes. Notice that the following
gives a different definition of di r ect i on:

direction(left):-
nmswW( coi n, head) .
direction(right):-
msw(coin,tail).

While for the original definition, the query di r ect i on( D)
always succeeds, binding D to either | eft or right.
The same query may fail for the new definition since
msw( coi n, head) and nsw(coi n,tail) are two sep-
arate trials. If the first trial gives t ai | and the second trial
gives head, then the query di r ect i on( D) fails.

In addition to msw 2, PRISM provides several other built-
ins, including pr ob( Goal , Pr ob) for computing the prob-
ability of a goal, sanpl e( Goal ) for sample executing a
goal, and | ear n( Fact s) for estimating the probabilities
of the switches in the program from the observed facts. These
built-ins will be explained in the subsequent subsections.

A predicate is said to be probabilistic if it is defined in
terms of msw or predicates that are probabilistic. Predicates
that do not use (either directly or indirectly) msw in its def-
inition are said to be non-probabilistic. This terminology is
extended naturally to goals. A goal is said to be probabilistic
if its predicate is probabilistic.

2.2 Sampleexecution

The subgoal sanpl e( Goal ) starts executing the program
with respect to Goal in the sample execution mode. If Goal
is the built-in mew( 1, V), then sanpl e( Goal ) succeeds
if the trial of the experiment | gives the outcome V. The out-
come of an experiment is chosen randomly, but the proba-
bility distribution is respected such that those outcomes that
have the highest probabilities have the most chances to be
chosen. Trials of experiments are independent regardless of
whether or not the experiments are the same.

If Goal is non-probabilistic, then sanpl e( Goal ) be-
haves in the same way as cal | ( Goal ) . Otherwise, if Goal
is probabilistic, then a clause H: - Body is selected from its
predicate such that Hunifies Goal , and sanpl e( Goal ) is
reduced to sanpl e( Body) .

The following shows a simplified version of the interpreter
for sample execution:

sample((A B)): -1,
sampl e(A),
sanpl e(B).
sampl e(msw(1l,V)):-1!,
R is randon( 0.0, 1.0),
% R is a random number in the range of 0.0..1.0
prob.di stribution(l, Val ues, Probs),
% probability distribution assigned to the experiment
choose_out come( R, Val ues, Probs, V).
sampl e(Goal ) : - prob_predi cate(CGoal ), !,
cl ause( Goal , Body),
sanpl e( Body) .



sampl e( Goal ) : -
call (Goal).

% non-probablistic

choose_out conme( R, Val ues, Probs, V): -
choose_out come(R, 0. 0, Val ues, Probs, V).

choose_out come(R, Sum [ V|Val ues], [ P|Probs], V):

Sunl is SumtP,
R=<Suml, !.

choose_out cone(R, Sum [ |Val ues], [ P|[Probs], V) : -

Suml is SumtP,
choose_out come( R, Sumt, Val ues, Probs, V).

For an experiment whose sample space is

[V1,V2,...,Vn] and whose probability distribution

iIs[P1, P2,..., Pn],thecall

choose_outcone(R [V1,V2,...,Vn],[P1,P2,...,Pn],

selects the outcome Vk such that ¢ Pi > R and
Ykl Pi<R

The real interpreter handles other constructs including
negation, disjunction, if-then-else, and the cut operator in ad-
dition to conjunction.

2.3 Calculating the probabilities of goals

In statistical modeling, it is often necessary to calcu-
late the probability of events. In PRISM, the built-in
pr ob( Goal , Pr ob) calculates the probability Pr ob with
which Goal becomes true. It is assumed that all probabilis-
tic ground atoms in the Herbrand base of a program are prob-
abilistically independent and exclusive. With these assump-
tions, the probability of the conjunction ( A, B) is computed
as the product of the probabilities of A and B (independent),
and the probability of the disjunction ( A; B) is computed as
the sum of the probabilities of A and B (exclusive). For a
switch nsw( | , V), the probability is 1.0 if V is a variable,
and the probability assigned to the outcome V if V an element
is the sample space.

For example, recall the illustrative example di r ect . As-
sume the distribution of the coi n experimentis uniform. The
probability of di recti on(l eft) is 0. 5 since the prob-
ability of nsw( coi n, head) is 0. 5. The probability of
di rection(D) is 1.0 sine the sum of the probabilities of
mswW( coi n, head) and msw( coi n, tail) is1.0.

The programmer must bear the above assumptions in mind
when writing programs. Programs that violates this assump-
tion will give wrong results. For example, the conjunction
(A, A, which makes sense logically, is not allowed proba-
bilistically since the conjuncts are not independent. Likewise
the disjunction ( A; A) is not allowed. If the disjuncts are not
independent, the probability of a goal may exceed 1.0.

One question arises: if events are assumed to be indepen-
dent, then how to represent conditional events in PRISM? Let
B and C be two experiments. Assume C' has the possible
outcomes {ci, ...,¢, }. The conditional event (B|C') can be
represented by using n switches: msw(b(c;), Vi) (i=1,...,n).
Consider, for example, the following problem taken from
[Stirzaker, 1994], which is a typical example of Bayesian rea-

soning.

You have a blood test for some rare disease which occurs
by chance in 1 in every 100,000 people. The test is fairly
reliable; if you have the disease it will correctly say so

- with probability 0.95; if you do not have the disease, the
test will wrongly say you do with probability 0.005. If the
test says you do have the disease, what is the probability
that this is a correct diagnosis?

Let D be the event that you have the disease, D’ the event
that you do not have the disease, and T the event that the test
says you do. Then the probability P(D|T) is calculated as
follows based on the Bayes’ Theorem:
P(T|D)P(D

P(DIT)= A e
P(T|D)P(D)

PO D e 7"

0.95x%0.000014-0.005x0.99999
= 0.1896

The Bayesian network for this problem consists of two
nodes, called di sease and t est. The outcomes of both
nodes are {yes, no}. The node t est is dependent on
the node di sease. The following clause represents the net-
work:

di seasetest(D T): -
msw( di sease, D),
nsw(test (D), T).

The sample spaces of all the experiments are [ yes, no] .
The switch msw( di sease, yes) says that you have the
disease, and the switch nsw( di sease, no) says no. The
switch msw( t est (D), T), which depends on the outcome
of the node di sease, says that the diagnostic result is T if
the outcome of di sease is D. For the problem, the given
probabilities are set as follows:

set _sw(di sease, [ 0. 00001, 0. 99999] ),
% P(D)=0.00001

set sw(test(yes),[0.95,0.05]),
% P(T|D)=0.95

set _sw(test(no),[0.005,0.995])
% P(T|D’)=0.005

If the test says you do have the disease, then the probability
that this is a correct diagnosis is calculated by the query:

prob(di sease_test(yes, yes), P1),
prob(di seasetest(_ yes), P2),
Pis P1/P2.

The goal prob(diseasetest(yes,yes), P1)
gives the probability of the event that you have
the disease and is also diagnosed so, and the goal
prob(di seasetest(_ yes), P2) gives the prob-
ability of the event that you are diagnosed of the disease
regardless whether or not you have the disease. The query
gives the same result 0.1896 as the one obtained by using
Bayes’ Theorem directly.

Since new switches can be created when needed, it is pos-
sible to represent in PRISM any Bayesian networks and per-
form Bayesian reasoning on them.
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24 Learning

The built-in | earn( Facts) takes Facts, a list of
observed facts, and estimates the probabilities of the
switches that explain Fact s. While sanpl e( Goal ) and
pr ob( Goal , Prob) are deductive, using the current dis-
tributions of switches to deduct Goal , | ear n( Fact s) is
abductive, which finds the explanations for Fact s and use
the explanations to estimate the distributions of the switches.

PRISM adopts the EM learning algorithm to learn distribu-
tions. It first finds all the explanations for the observed facts.
Then it repeatedly estimates and maximizes the likelihood of
the observed facts until the estimation is stable.

An explanation for an observed fact is a set of switches that
occur in a path of the execution of the fact. The following is
an interpreter that searches for explanations for a goal:

expl s( G Exs): - %Exs is a list of explanations for G
findall (Ex, expl (G Ex,[]), Exs).
expl ((Gl, @), Ex, ExR): -1,
expl (GL, Ex, Ex1),
expl (&, Ex1, ExR) .
expl (msw(l,V),[nmse(l,V)| ExR,ExR): -1,
val ues(1, Val ues), % sample space is Values
menber (V, Val ues) .
expl (G Ex, ExR): -
prob_predicate(Q,!, %G isa probabilistic
cl ause(G, B),
expl (B, Ex, ExR).
expl (G Ex, Ex): -
call (Q.
Recall our illustrative example directi on. For
the fact direction(left), the interpreter finds
[msw( coi n, head)], and for the fact direc-
tion(right) it finds [nmew(coin,tail)] as the
explanations. In general, there may exist multiple execution
paths for an observed fact and each execution path may
contain multiple switches.

After all the explanations are found, the EM algorithm
turns to estimate the probabilities of the switches in the ex-
planations. Let I be the set of switches, and V; be the sample
space of switch 7. For each switch msw(i,v), 6;, denotes
the probability of the outcome v. The following assertion
must hold

VierXvevilin = 1.0.

Let F' be a set of observed facts. For each fact f € F, E;
denotes the set of explanations. Lete € E be an explanation.
The probability of e is the product of the probabilities of all
the switches in the explanation:

0 11

msw(i,v

(Hi,v)

)Ee

The probability of fact f is the sum of the probabilities of all

its explanations:
O = Z (0c)
EGEf
The log likelihood of fact f is defined as In(6;). For each

explanation e € Ey, let §; ,,(e) denote the number of occur-
rences of the switch msw(i, v) in e. Figure 1 shows the EM
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procedureem(F) begin
initialize ¢ to a small positive number;
foreach i € I, v € V; initialize 6; ,;
A= > rer(In(0y)); /* initial likelinood */

repeat
20 = /\1;
foreachie I,veV;
Z (eeX‘si,v(e))
R eehy
Nijv = ZfeF( = 07

* expected count of msw(i, v) */
foreachie I,veV;
ei b = Mi,v

Zulevi(ni,u’)
AL =3 p(In(8y));
until A1 — X0 < ¢
end

Figure 1: The EM algorithm

algorithm. The algorithm repeats the estimation until the like-
lihood of the observed facts becomes stable.

The use of the term #, ,,, which estimates the number of
occurrences of the switch msw(i, v) that contribute to the ob-
served facts, is essential in the algorithm. The probability of
msw(i,v) is estimated as the ratio of its count to the count of
all the outcomes of the switch.

Mi,v

PO EVi (1i,07)

For our illustrative example, the algorithm converges in
a few iterations. If only di recti on(l eft) is observed,
then the estimated probability of head is close to 1.0 and that
of tail iscloseto 0.0; if direction(left) anddi -
rection(right) each occupy half of the observed facts,
then the estimated distribution is close to uniform. For more
complicated programs, more iterative steps are required to
obtain a stable estimation.

ei,v =

3 Improvements of the Implementation

The interpreters and the EM learning algorithm presented in
the previous section are naive and inefficient. The number of
explanations for a set of observed facts may be exponential.
Therefore, it is expensive to find explanations and it is also
expensive to go though the explanations to estimate the prob-
abilities of the switches in the explanations. In this section,
we propose several techniques for improving the implemen-
tation, especially the learning algorithm.

3.1 Explanation Graphs

It is not hard to notice that explanations differ from each other
by only a small number of switches. Just as it is important
to factor out common sub-expressions in evaluating expres-
sions, it is important to factor out common switches among
explanations. Actually, a logic program provides a natural
structure for factoring out common switches. Instead of con-
sidering explanations as lists of switches, we consider expla-
nations as a graph.



An explanation path for a fact H is defined as (H —
By & B,) where By is a set of facts and B, is a set of
switches. H is called the root of the path. An explanation
path corresponds to an instance of a clause where B, is the
set of probabilistic subgoals, and B the set of switches in
the body. An explanation tree for a fact consists of a set of
explanation paths that have the fact as the root. The root of
the paths is also called the root of the tree. An explanation
tree corresponds to an instance of a predicate. An explana-
tion graph consists of a set of explanation trees whose roots
are all distinct.

a,b a,b

Figure 2: An example HMM.

Consider, for example, the following program that repre-
sents the two-state HMM? in Figure 2,
hnmm( L, N)
msw(init,Si),
hmm(1, N, Si, L).

% Current state is S, current position is I.
hmm(1, N, S, [1) I >N, !.
hm(1, N, S, [CIL]) : -

msw(out (S), O,

mw(tr(S), NextS),

I1is |+1,

hmm(11, N, Next S, L).

val ues(init,[s0,s1]).
val ues(out () ,[a, b]).
val ues(tr(.),[s0,s1]).

The predicate hrm{ L, N) analyses or generates a string L of
length N. The explanation graph for hrm( [ a, b, a] , 3) is
shown in Figure 3.

It is assumed that explanation graphs are acyclic, i.e., a
fact cannot be used to explain the fact itself. This assump-
tion, however, does not rule out left recursion. Consider, for
example, the following CFG rule,

s(l,3):-s(I,11),a(11,3).
Although s(1,J) and s(1,11) are variants as subgoals,

they are instantiated to different instances and thus no fact is
used to explain the fact itself.

3.2 Constructing Explanation Graphs Using
Tabling

If goals were treated independently in constructing explana-
tion graphs, the computation would still be exponential in

3An HMM is a probabilistic automaton in which the selections
of the initial state, output symbols, and transitions on the symbols
are al probabilistic.
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hm([a, b, a], 3)

— hm(1,3,s0,[a,b,a]) & msw(init,s0)

—hm(1,3,s1,[a,b,a]) & mwinit,sl)
hm( 1, 3,s0,[a, b, a])

—hm{2,3,s0,[b,a]) & mew(tr(s0),s0), msw(out(s0), a)

—hm(2,3,s1,[b,a]) & mew(tr(s0),sl), msw(out(s0), a)
hm( 1, 3,s1,[a, b, a])

—hm{(2,3,s0,[b,a]) & mew(tr(sl),s0), msw(out(sl), a)

—hm(2,3,s1,[b,a]) & mew(tr(sl),sl), msw(out(sl), a)
hm( 2, 3,s0,[b,a])

— hm(3,3,s0,[a]) & mew(tr(s0),s0), nsw(out(s0), b)

—hm(3,3,s1,[a]) & mew(tr(s0),sl), nswout(s0),b)
hm( 2, 3,s1,[b,a])

—hm(3,3,s0,[a]) & mewm(tr(sl),s0), msw out(sl),b)

—hm(3,3,s1,[a]) & meWm(tr(sl),sl), mswout(sl),b)
hm( 3, 3,s0,[a])

— hm(4,3,s0,[]) & mew(tr(s0),s0), nsw(out(s0),a)

—hm(4,3,s1,[]) & nmew(tr(s0),sl), nsw out(s0), a)
hm( 3, 3,s1,[a])

— nmewW(tr(sl),s0), msw out(sl), a)

—nmewW(tr(sl),sl), mswout(sl), a)

Figure 3: The explanation graph for hnm( [ a, b, a] , 3) .

general. Recall the explanation graph in Figure 3. The size
of the graph is O(N x S) where N is the length of the string
and S is the size of the largest sample space. If shared goals
in different paths, such as the two underlined ones, are con-
sidered only once, then it takes only linear time to construct
the explanation graph.

Tabling or memoization [Tamaki and Sato, 1986; Warren,
1992; Zhou et al., 2000] can used to avoid redundant com-
putations. The idea of tabling is to memorize the answers to
subgoals and use the answers to resolve subsequent variant
subgoals. The table area is global and answers stored in it
can survive over backtracking. Therefore, variant subgoals
can share answers regardless where they occur in execution.
They can occur in the same execution path or different paths.

The following gives an interpreter for constructing the ex-
planation graph for a goal.

expls(Q: -
expl (G - [],-[]),fail.
%backtrack to find all paths
expl s( Q.

expl ((Gl, &), Bg, BgR, Bs, BsR): - !,
expl (Gl, Bg, Bgl, Bs, Bs1),
expl (&, Bgl, BgR, Bs1, BsR).
expl (msw(1, V), Bg, Bg, [mse(l, V) |Bs],Bs):-!,
val ues(|, Val ues), % sample space is Values
nmenber (V, Val ues) .
expl (G [GBg], Bg, Bs, Bs) : -
prob_predicate(Q,!,
%G is a probabilistic predicate
expl _prob_goal (G .
expl (G Bg, Bg, Bs, Bs) : -
call (Q.

:-tabl e expl _prob_goal / 1.
expl _prob_goal (Q: -
cl ause( G, Body),
expl (Body, Bg, [],Bs, []),
add_t o_dat abase(pat h(G Bg, Bs)).



The expl (G Bg, BgR, Bs, BsR) is true if Bg- BgR is
the list of probabilistic subgoals and Bs- BsR is the list
of switches in G For each probabilistic subgoal G the
expl _prob_goal (G finds the explanation paths for G
The predicate expl _prob_goal /1 is tabled. So vari-
ant probabilistic subgoals share explanation paths. The
add_t o_dat abase( pat h( G Bg, Bs) ) adds the path to
the database if the path is not there yet.

The naive EM learning algorithm is reformulated such that
it works on explanation graphs. Since explanation graphs are
acyclic, it is possible to sort the trees in an explanation graph
based on the calling relationship in the program. The refined
algorithm is able to exploit the hierarchical structure to prop-
agate probabilities over sorted explanation graphs efficiently.

3.3 Compilation

The interpreter presented above is inefficient since it intro-
duces an extra level of interpretation. The interpreter version
of the PRISM system is used in debugging programs. For
learning from a large amount of data, it is recommended that
the compiler version be used. The PRISM compiler trans-
lates a program into a form that facilitates the construction of
explanation graphs.

Let p( X1, ..., Xn):-B be a clause in a probabilistic
predicate. The compiler translates it into:
expl p(X1,...,Xn):-
B,
add_t o_dat abase(pat h(p(X1, ..., Xn), Bg, Bs)).

where B’ is the translation of B, Bg is the list of probabilis-
tic subgoals in B' , and Bs is the list of switches in B. For
each subgoal Gin B, if Gis msw( |, V), then it is trans-
lated into val ues( I, Val ues), nenber (V, Val ues) .
Otherwise, it is copied to B’ , renaming each predicate p to
expl _p. The translated predicate is declared as a tabled
predicate, so explanation trees need to be constructed only
once for variant subgoals.
For example, the predicate

ham( 1, N, S, [])
hm(1, N, S, [CIL] )
msw(out (S), O),
mw(tr(S), NextS),
I1is |+1,
hmm( 11, N, Next S, L) .

is translated into:

:-tabl e expl _.hm 4.

expl .hnmm(1, N, S, [])

expl .hm( I, N, S, [ CIL] )
val ues(out (S), Val uesl), % msw(out(S),C),
menber ( C, Val uesl),

I >N, I.

>N, .

val ues(tr(S), Val ues2), % msw(tr(S),NextS)

menber ( Next S, Val ues2),

I1is |+1,

expl _hmm( 11, N, Next S, L),

add_t o_dat abase(pat h(hmm{1, N, S, [ C|L])
[hm( 11, N, NextS, L)],
[mswout (S), O,
mw(tr(S), NextS)])).
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Table 1. Learning times for a corpus (seconds).

# sentences | all-solution-search | EM learning
1000 268 2022
1500 445 3938
2000 855 5542

Notice that no path is added to the database for the first clause
since the body does not contain switches nor probabilistic
subgoals.

4 Experience

The PRISM system has been fully implemented in B-Prolog,
a CLP system that supports tabling. The tabling system in
B-Prolog was first implemented in 1999 [Zhou et al., 2000]
and was recently re-implemented to meet the requirements of
PRISM. The new implementation inherits the linear tabling
idea, and incorporates new strategies and optimization tech-
niques for fast computation of fixpoints [Zhou and Sato,
2003]. As a tabling system for parsing, B-Prolog is twice as
fast as and consumes an order of magnitude less stack space
than XSB, a Prolog system developed at SUNY Stony Brook.

The current version of PRISM is, to our knowledge, the
first of its kind that can support real-world applications. Sev-
eral application projects are going on at the moment [Sato
and Zhou, 2003]. One of the projects is to use PRISM to learn
probabilities of the Japanese grammar rules from corpora. Ta-
ble 1 shows the times spent in learning from various numbers
of sentences on Windows XP (1.7GHz CPU, 760M RAM).
The first phase of learning, i.e., finding explanations has im-
proved significantly thanks to the adoption of the new tabling
system in B-Prolog. The EM learning phase dominates the
learning time now. In the current version, explanation graphs
are represented as Prolog terms. The EM learning phase can
be improved if better data structures are used.

5 Redated Work

PRISM was first designed by Sato [Sato, 1995] who pro-
posed a formal semantics, called distribution semantics, for
logic programs with probabilistic built-ins, and derived an
EM learning algorithm for the language from the semantics.
The need for structural explanations was envisioned in [Sato
and Kameya, 2001], but this paper presents the first serious
implementation of the EM learning algorithm that works on
explanation graphs.

Poole’s abduction language [Poole, 1993] incorporates
Prolog and Bayesian networks, in which probability distribu-
tions are given as joint declarations. Muggleton’s stochastic
logic language [Muggleton, 1996] is an extension of PCFG
where clauses are annotated with probabilities. In both lan-
guages, probability distributions are specified by the users,
and learning from sample data is not considered.

Non-logic based languages have also been designed to sup-
port statistical modeling (e.g., [Pfeffer et al., 1999; Ram-
sey and Pfeffer, 2002]). The built-in function choose in
the stochastic lambda calculus [Ramsey and Pfeffer, 2002]
is similar to msw in PRISM, which returns a value from the



sample space randomly. Non-logic languages do not support
nondeterminism. Therefore, it would be difficult to devise an
EM like learning algorithm for these languages.

Tabling shares the same idea as dynamic programming in
that both approaches make full use of intermediate results
of computation. Using tabling in constructing explanation
graphs is analogous to using dynamic programming in the
Baum-Welch algorithm for HMM [Rabiner, 1989] and the
Inside-Outside algorithm for PCFG [Baker, 1979].

6 Concluding Remarks

This paper has presented an efficient implementation of
PRISM, a language designed for statistical modeling and
learning. The implementation is the first serious one of its
kind that integrates logic programming and statistical reason-
ing/learning. The high performance is attributed to several
techniques. One is to adopt explanation graphs rather than flat
explanations in learning and use tabling to construct explana-
tion graphs. Another technique is compilation. Programs are
compiled into a form that facilitates searching for all solu-
tions.
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RESEARCH STATEMENT

My current research interests are focused on designing and implementing accurate and
efficient algorithms for learning from relational databases.

There have been several approaches proposed in the literature for knowledge discovery in
this setting. One of them, called multi-relational data mining, exploits structured query
language (SQL) to gather the information needed for constructing classifiers (e.g.,
decision trees) from multi-relational data. This approach has several advantages. Firstly,
it explicitly exploits the semantics of the data stored in relational tables. Secondly, it uses
database primitives for efficient storing and querying the data.

We have implemented MRDTL -- a multi-relational decision tree learning algorithm
proposed in this framework. Our experiments with this algorithm revealed that

the execution of some queries was a major bottleneck in terms of the running time of the
algorithm. Hence, we have developed an approach for significantly speeding up some of
the most time consuming components of this algorithm, and other algorithms based on
the multi-relational data mining framework, thus, enhancing the applicability of multi-
relational data mining algorithms.

My future work is aimed at:

e Developing and incorporating techniques for handling missing values and noise in
multi-relational data mining algorithms.

e Developing and incorporating more sophisticated pruning techniques in MRDTL
algorithm.

e Developing and incorporating techniques for ontology-guided variants of multi-
relational data mining algorithms.

e More extensive experimental evaluation of the multi-relational data mining
algorithms on real world data sets.
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Abstract

This research summary describes some work in
progress on using graphical models to represent
relational data in computational science portals
such as myGrid. The objective is to provide a
integrative collaborative filtering (CF) capability
to users of data, metadata, source code, and
experimental documentation in some domain of
interest. Recent systems such asResearchindex /
CiteSeer provide collaborative recommendation
through citation indexing, and systems such as
SourceForge and the Open Bioinformatics
project provide similar tools such as content-
based indexing of software. Our current research
aims at learning probabilistic relational models
(PRMs) from data in order to support intellignet
retrieval of data, source code, and experimental
records. We present a system design and a
précis of a test bed under development that
applies PRM structure learning and inference to
CF in repositories of bioinformatics data and
software.

Keywords: probabilistic relational models, collaborative
filtering, information retrieval, source code repositories,
structure learning

1 INTRODUCTION

Collaborative filtering is the problem of analyzing the
content of an information retrieval system and actions of
its users, to predict additional topics or products a new
user may find useful. Developing this capability poses
several challenges to machine learning and reasoning
under uncertainty. The research described in this
summary addresses the problem of formulating tractable
and efficient problem specifications for probabilistic
learning and inference in this framework. It describes an
approach that combines learning and inference algorithms
for relational models of semi-structured data into a
domain-specific collaborative filtering system. Recent
systems such as Researchindex / CiteSeer have succeeded
in providing some specialized but comprehensive indices
of full documents. The collection of user data from such
digital libraries provides a test bed for the underlying IR
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technology, including learning and inference systems.
The authors are therefore developing two research indices
in the areas of bioinformatics (specifically, functional
genomics) and software engineering (digital libraries of
source codes for computational biology), to experiment
with machine learning and probabilistic reasoning
software recently published by the authors and a
collaborative  filtering  system  currently  under
development.

The overall goa of this research program is to
develop new computational techniques for discovering
relational and constraint models for domain-specific
collaborative filtering from scientific data and source
code repositories, as well as use cases for software and
data sets retrieved from them. The focus of this project is
on statistical evaluation and automatic tuning of
algorithms for learning graphical models of uncertain
domains from such data. These include probabilistic
representations, such as Bayesian networks and decision
networks, that have recently been applied to a wide
variety of problems in intelligent information retrieval
and filtering. The primary contribution of this research
shall be the novel combination of algorithms for learning
the structure of relational probabilistic models with
existing techniques for constructing relational models of
metadata about computational science experiments, data,
and programs. The technical objectives center around
statistical experiments to evaluate this approach on data
from the domains of gene expression modeling and
indexing of bioinformatics repositories.

1.1 Rationale

Recent systems such as Researchindex / CiteSeer
[LGB99] have succeeded in providing cross-indexing and
search features for specialized but comprehensive citation
indices of full documents. The indexing technologies
used by such systems, as well as the general-purpose
algorithms such as Google PageRank [BP98] and HITS
[KL99], have several advantages. They use a simple
conceptual model of document webs. They require little
specialized knowledge to use, but organize and present
hits in a way that allows a knowledgeable user to select
relevant hits and build a collection of interrelated
documents quickly.  They are extremely popular,



encouraging users to submit sites to be archived and
corrections to citations, annotations, links, and other

content. Finaly, some of their content can be
automatically maintained.
Despite these benefits, systems such as

Researchindex have limitations hat hinder their direct
application to IR from bioinformatics repositories:

Over-generality: Citation indices and
comprehensive web search engines are designed for
the generic purpose of retrieving all individual
documents of interest, rather than collections of data
sets, program source codes, models, and metadata
thaa meet common thematic or functional
specifications.

Over-selectivity: Conversely, IR systems based on
keyword or key phrase search may return fewer (or
no) hits because they check titles, keywords, and tags
rather than semi-structured content.

Lack of explanatory detail: A typical user of an
integrated collaborative filtering system has a
specific experimental objective, whose requirements
he or she may understand to varying degree
depending upon his or her level of expertise. The
system needs to be able to explain relationships
among data, source codes, and models in the context
of abioinformatics experiment.

1.2 Objectives and Hypothesis

How can we achieve the appropriate balance of generality
and selectivity? How can we represent inferred
relationships among data entities and programs, and
explain them to the user? Our thesisis:

Probabilistic representation, learning, and reasoning
are appropriate tools for providing domain-specific
collaborative filtering capability to users of a
scientific computing repository, such as one
containing  bioinformatics  data, metadata,
experimental documentation, and source codes.

Toward this end, we are developing DESCRIBER a
research index for consolidated repositories of
computational genomics resour ces, along with machine
learning and probabilistic reasoning algorithms to refine
its data models and implement collaborative filtering.
The unifying goal of this research is to advance the
automated extraction of graphical models of use cases
for computational science resources, to serve a user base
of researchers and developers who work with genome
data and models. We present recent results from our own
work and related research that suggest how this can be
achieved through a novel combination of probabilistic
representation, algorithms, and high-performance data
mining not previously applied to collaborative filtering in
bioinformatics. Our project shall aso directly advance
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gene expression modeling and intelligent, search-driven
reuse in distributed software libraries.

2 CFIN COMPUTATIONAL SCIENCES
2.1 Collaborative Filtering Objectives

We seek to take existing ontologies and minimum
information standards for computational genomics and
create a refined and elaborated data model for decision
support in retrieving data, metadata, and source codes to
serve researchers. A typical collaborative filtering
scenario using a domain-specific research index or portal
is depicted in Error! Reference source not found. 1.
We now survey background material briefly to explain
this scenario, then discuss the methodological basis of our
research: development of learning and inference
components that take records of use cases and queries
(from web server logs and forms) and produce decision
support models for the CF performance element.

As a motivating example of a computational
genomics experiments, we use gene expression modeling
from microarray data. DNA hybridization microarrays,
also referred to as gene chips are experimenta tools in
the life sciences that make it possible to model
interrel ationships among genes, which encode instructions
for production of proteins including the transcription
factors of other genes. Microarrays simultaneously
measure the expression level of thousands of genes to
provide a “snapshot” of protein production processes in
the cell. Computational biologists use them in order to
compare snapshots taken from organisms under a control
condition and an alternative (e.g., pathogenic) condition.
A microarray is typically a glass or plastic slide, upon
which DNA molecules are attached at up to tens of
thousands of fixed locations, or spots. Microarray data
(and source code for programs that operate upon them)
proliferate rapidly due to recent availability of chip
makers and scanners.

A major challenge in bioinformatics is to discover
gene/protein interactions and key features of a cellular
system by analyzing these snapshots. Our recent projects
in computational genomics focus on the problem of
automatically extracting gene regulatory dependencies
from microarray data, with the ultimate goa of building
simulation models of an organism under external
conditions such as temperature, cell cycle timing (in the
yeast cell), photoperiod (in plants), etc. Genomes of
model organisms, such as S cerevisiae (yeast), A.
thaliana (mouse ear cress or weed), O. sativa (rice), C.
elegans (nematode worm), and D. melanogaster (fruit
fly), have been fully sequenced. These have also been
annotated with the promoter regions that contain binding
sites of transcription factors that regulate gene



expression. Public repositories of microarray data such as
the Saccaromyces Genome Database (SGD) for yeast
have been used to develop a comprehensive catalog of
genes that meet analytical criteria for certain
characteristics of interest, such as cell cycle regulation in
yeast. We are using SGD data and a synthesis of existing
and new algorithms for learning Bayesian networks from
data to build robust models of regulatory relationships
among genes from this catalog. Most data resources we
plan to use in developing DESCRIBER are in the public
domain, while some are part of collaborative work with
the UK myGrid project (Goble).
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The next two figures depict our design for DESCRIBER.
Figure 2 is the block diagram for the overall system,
while Figure 3 elaborates Module 1 as shown in the lower
left hand corner of Figure 3. Our current and continuing
research focuses on algorithms that perform the learning,
validation, and change of representation (inductive bias)
denoted by Modules 2 and 4. We choose probabilistic
relational models as a representation because they can
express constraints (cf. Figure 1) and capture uncertainty
about relations and entities. We hypothesize that this will
provide more flexible generalization over use cases. We
have recently developed a system for Bayesian network
structure learning that improves upon the K2 [CH92] and
Sparse Candidate [FLNPOQ] algorithms by using
combinatorial optimization (by a genetic algorithm) to
find good topological orderings of variables. Similar
optimization wrappers have been used to adapt problem
representation in supervised inductive learning for
classification, using decision trees and instance-based
learning.

Other relevant work includes BiolR, a digital library
for bioinformatics and medical informatics whose content
is much broader than that of this test bed for genome
analysis. BiolR emphasizes phrase browsing and cross-
indexing of text and data repositories rather than
experimental metadata and source codes. Other systems
such as CANIS, SPIDER, and OBIWAN also address
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intelligent search and IR from bioinformatics digital
libraries, emphasizing categorization of text documents.
We view the technologies in these systems as
complementary and orthogonal to our work because of
this chief difference.
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3 LEARNING BN STRUCTURE

3.1 Classifier System for Learning BN Structure

Learning the structure, or causal dependencies, of a
graphical model of probability such as a Bayesian
network (BN) is often a first step in reasoning under
uncertainty. In many machine learning applications, it is
therefore referred to as a method of causal discovery
[PV9l1]. Finding the optimal structure of a BN from data
has been shown to be NP-hard [HGC95], even without
considering latent (unobserved) or irrelevant (extraneous)
variables. Therefore, greedy score-based agorithms



[FG98] have been developed to provide more efficient
structure learning at an accuracy tradeoff. In this paper
we examine a general shortcoming of greedy structure
learning — sensitivity to variable ordering — and develop a
genetic algorithm to mitigate this problem by searching
the permutation space of variables [HH98] using a
probabilistic inference criterion as the fitness function.

We make the case in this paper that the probabilistic
inference performance element, in the absence of a
known gold standard network or any explicit
constraints, can provide the feedback needed to search for
a good ordering. We then derive a heuristic based on
validation by inference (exact inference [LS88, Ne90] for
small networks, approximate inference by stochastic
sampling [CDOQ] for larger ones). Our primary objective
isinferential accuracy using the learned structure.

Diyrain (Structure Learning)

D: Training Data

[2] Representation Evaluator
for Bayesian Network
Structure Learning Problems

Dia (Inference)

.7 Evidence Specification

! [1] Permutation Genetic Algorithm

Genetic Wrapper for Variable Ordering a
In Bayesian Network Structure Learning

Optimized
Ordering:

Figure4. System Design Overview.

Toward this end, we have developed a genetic wrapper,
similar to a classifier system [BGH89], to search the
space of variable orderings in score-based structure
learning.  This wrapper adapts a composite fithess
measure used in other wrappers based upon best-first
search [KJ97] and automatically tunes parameters of the
learning system [HL99] such as the ordering of input
variables. We present the system shown in Figure 1, a
genetic algorithm-based wrapper [CS96, RPG+98, Hs03],
and show how it provides a parallel stochastic search
mechanism for inferential loss-minimizing variable
orderings. We demonstrate that, used in tandem with K2,
it produces structures whose loss under importance
sampling is nearly as low as any found by exhaustive
enumeration of orderings. Finally, we discuss how this
wrapper provides a flexible method for tuning
representation biases [Mi97] in Bayesian network
structure learning using different fitness criteria.

Consider a typical probabilistic reasoning environment, as
shown in Figure 2, where structure learning [A] is afirst
step. Theinput to this system includes a set D of training
datavectorsx = (xq, ..., Xn) €ach containing n variables. If
the structure learning algorithm is greedy, an ordering a
on the variables may also be given asinput. The structure
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learning component of this system produces a graphical
model B = (V, E, Q) that describes the dependencies
among X;, including the conditional probability functions.
The inferential performance element [B] of this system
takes B and a new data set Dy Of vectors drawn from the
desired inference space, where only a subvector Eof X =
(X1, ..., Xp) is observable, and infers the remaining
unobserved values X \ E. We denote the indicator bit
vector for membership in E by l.. The performance
criterion f is the additive inverse of the (inferential or
utility) loss of [B].

4 CONTINUING WORK

Our current research focuses on structure learning of
relational models by adapting traditional score-based
search agorithms for flat graphical models [Pe03] and
constrain-based structure search over hierarchical models.

Entity and reference slot uncertainty present new
challenges to PRM structure learning. Three of the
guestions that we are looking into are:

1. How much relational data is needed? How can
we estimate the sample complexity of PRMs
under specified assumptions about entity
existence and reference slot distributions?

2. What constraint-based approaches can be usedf?
Learning reference slot and entity structure in
PRMs presents a task beyond flat structure
learning.

3. Can this cut down on the amount of data to learn
the low-level model (versus the flat version)?
How can we establish and test sufficient
conditions for conditional independenc, and
context -specific independence, in PRMs?

5 References

[BGH89] L. B. Booker, D. E. Goldberg, and J. H.
Holland. Classifier Systems and Genetic Algorithms.
Artificial Intelligence, 40:235-282, 1989.

[BP98] S. Brinand L. Page. The anatomy of alarge-scale
hypertextual web search engine. Computer Networks and
ISDN Systems, 30(1-7):107-117.

[CDOO] J. Cheng and M. J. Druzdzel. AIS-BN: An
adaptive importance sampling algorithm for evidential
reasoning in large Bayesian networks. Journa of
Artificial Intelligence Research (JAIR), 13:155-188,
2000.

[CH92] G. F. Cooper and E. Herskovits. A Bayesian
Method for the Induction of Probabilistic Networks from
Data. Machine Learning, 9(4):309-347, 1992.

[CS96] K. J. Cherkauer and J. W. Shavlik. Growing
Simpler Decision Trees to Facilitiate Knowledge
Discovery. In Proceedings of the Second International
Conference of Knowledge Discovery and Data Mining
(KDD-96), Portland, OR, August, 1996.

[FG98] N. Friedman and M. Goldszmidt. Learning
Bayesian Networks From Data. Tutorial, American



National Conference on Artificial Intelligence (AAAI-
98), Madison, WI. AAAI Press, San Mateo, CA, 1998.
[FLNPOO] N. Friedman, M. Linial, I. Nachman, and D.
Pe'er, Using Bayesian networks to analyze expression
data. In Proceedings of the Fourth Annual International
Conference on Computational Molecular Biology
(RECOMB 2000), ACM-SIGACT, April 2000.

[HGC95] D. Heckerman, D. Geiger, and D. Chickering,
Learning Bayesian networks. The combination of
knowledge and statistical data. Machine Learning,
20(3):197-243, Kluwer, 1995.

[HH98] R. L. Haupt and S. E. Haupt. Practical Genetic
Algorithms. Wiley-Interscience, New York, NY, 1998.
[HL99] G. Harik and F. Lobo. A parameter-less genetic
algorithm. Illinois Genetic Algorithms Laboratory
technical report 99009, 1999.

[HsO3] W. H. Hsu. Control of Inductive Bias in
Supervised Learning using Evolutionary Computation: A
Wrapper-Based Approach. In J. Wang, editor, Data
Mining: Opportunities and Challenges, p. 27-54. IDEA
Group Publishing.

[KI99] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. Journal of the ACM,
46(5):604-632.

[KJ97] R. Kohavi and G. H. John. Wrappers for Feature
Subset Selection. Artificial Intelligence, Special 1ssue on
Relevance, 97(1-2):273-324, 1997.

[Mi97] T. M. Mitchell. Machine Learning. McGraw
Hill, New York, NY, 1997.

[LGB99] S. Lawrence, C. L. Giles, and K. Bollacker
Digital libraries and autonomous citation indexing. |EEE
Computer, 32(6):67-71.

[LS88] S. L. Lauritzen and D. J. Spiegelhalter. Local
computations with probabilities on graphical structures
and their application to expert systems. Journal of the
Royal Statistical Society, Series B 50, 1988.

[Ne90] R. E. Neapolitan. Probabilistic Reasoning in
Expert Systems. Theory and Applications.  Wiley-
Interscience, New York, NY, 1990.

[Pe03] B. B. Perry. A Genetic Algorithm for Learning
Bayesian Network Adjacency Matrices from Data. M.S.
thesis, Department of Computing and Information
Sciences, Kansas State University, 2003.

[PV91] J. Pearl and T. S. Verma, A theory of nferred
causation. In Principles of Knowledge Representation
and Reasoning: Proceedings of the Second International
Conference. Morgan Kaufmann, San Mateo, CA, 1991.
[RPG+97] M. Raymer, W. Punch, E. Goodman, P.
Sanschagrin, and L. Kuhn, Simultaneous Feature
Extraction and Selection using a Masking Genetic
Algorithm, In Proceedings of the 7" International
Conference on Genetic Algorithms, pp. 561-567, San
Francisco, CA, July, 1997.

165



Statement of Interest
Gwendolyn E. Campbell, Ph.D., Amy E. Bolton, Wendi L. Bolton
NAVAIR Orlando Training Systems Division
Orlando, FL 32826-3275
{gwendolyn.campbell, amy.bolton , wendi.buff} @navy.mil

For the past five years we have been conducting a program of research investigating alternative techniques for
identifying and interpreting patterns in human performance data collected during sessions in training simulators.
Our three primary research questions have been:

(1) How closely can each technique fit human performance data?

(2) How well does each technique identify patterns that are consistent with the subjective reports of the

human participants?

(3) How effective is training feedback that is based on a critique of the performance patterns derived with

each technique?

To date, we have investigated the application of multiple linear regression, nonlinear regression, fuzzy logic, and
classification and regression trees (CART). We are currently investigating discrete choice analysis and several
“fast and frugal” algorithms (ala Gigerenzer).

A number of the potential topics of this workshop would be of interest to us. Obviously, we are interested
in learning about new techniques and gaining insight into the representational power of different techniques. In
addition, within a training simulator, events unfold over time, and thus we need to find effective ways to
incorporate background knowledge (or history information) when modeling performance data. Finally, our work
has a strong focus on the application of models to support training goals. It is our hope that identifying
performance patterns in data collected from a training simulator should help the trainer determine a student’s
strengths and weaknesses, and thus support the development of adaptive and tailored feedback, instruction and
scenario exercises. We would welcome the opportunity to talk to other researchers who are interested in similar
applications.
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I first began studying extensions to traditional graphical probabilistic models in 1997. At that time I was
working on applying Bayesian networks to the DARPA Dynamic Databases Program (DDB). The back-
ground domain knowledge was clearly modular, and organized around entities and their relationships. This
information was often noisy and uncertain, and so a probabilistic extension to traditional Al frame-based rep-
resentation languages seemed an obvious solution. Over the next few years we (IET, Inc) developed a prob-
abilistic frame-based knowledge-representation language (JPF java probabilistic frames) that supports uncer-
tainty over the existence and type of frame instantiations and relationships among them, as well as over
primitive attributes. Of particular interest in that project was the problem of specifying role expectations, dis-
tributions over attributes of reference slot fillers. We successfully applied JPF in both DDB and in the
DARPA Information Assurance and CyberPanel programs. Issues in representation, dynamic construction,
and inference in probabilistic relational models remain a continuing interest.

More recently, my groups at OSU (Oregon State University) and CleverSet, Inc have been studying the dis-
covery of dynamic statistical relational models from data. This arises in two contexts. The submitted paper
describes applications in scientific data analysis. Here the primary goal is the learned model itself, and the
insights gained from examining it. A second focus, the topic of a UAI submission in preparation, is the dis-
covery of dynamic models of on-line user behavior. Web log entries are not IID. A complex relational struc-
ture exists among users, sessions, page requests, and web-site content. This is especially true for ecommerce
sites, where content dimensions include both functional dimensions (is a page a search page, a directory
page, a product page, &) and product attribute dimensions. In this application, the primary focus is on appli-
cation of learned models for real-time interpretation of user intent. The relationship between the PRM lan-
guage we use in these projects at CleverSet, JPF, the variations on PRM reported in the literature, and other
statistical relational models, in terms of expressivity, convenience for knowledge engineering, and support
for efficient inference, are open issues of great interest.
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Introduction and Background

Over the past six years, NASD’s Market Regulation
department has built and operates two major “break
detection” systems [Senator 2002] — the Advanced
Detection System (ADS) and Securities Observation,
News Analysis, and Regulation (SONAR) - for
surveillance of the Nasdaq and several other markets.
These systems rely for their effectiveness on the detection
of instances of scenarios of regulatory interest — episodes
in market activity where some violation may have occurred
— many of which comprise relationships among
transactions, market participants, securities, issuers, and
other subject entities. I will discuss these systems in a bit
more detail and then describe some of the kinds of
scenarios for which statistical learning would be most
beneficial.

Advanced Detection System (ADS)

ADS monitors trades, quotations, and orders in the
Nasdaq, Over the Counter (OTC), and Nasdaq-Liffe
(futures) stock markets to identify patterns and practices of
behavior of potential regulatory interest. [Kirkland 1999]
ADS has been in operational use at NASD since summer
1997 by several groups of analysts, processing roughly 25
million transactions per day, generating several thousand
breaks per day. More important, it has greatly expanded
surveillance coverage to new areas of the market and to
many new types of behavior of regulatory concern. It’s
technology has been expanded to surveillance of the
corporate and municipal bond markets and to NASD’s new
Alternative Display Facility. ADS combines detection and
investigative components in a single system which
supports multiple regulatory domains and which share the
same market data. ADS makes use of a variety of Al
techniques, including visualization, pattern recognition,
and data mining, in support of the activities of regulatory
analysis, alert and pattern detection, and knowledge
discovery. ADS relies on a rule pattern matcher and a
time-sequence pattern matcher. Data and market
visualizations allow analysts to see the market context of

*The author of this paper is an employee of NASD. The
views expressed herein are those of the author and do not
represent an official policy statement of NASD.
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breaks and temporal relationships of events in large
amounts of data.

Temporal/Sequence Relationships in ADS

ADS relies heavily upon heuristic, manually coded
patterns  describing temporal sequences of market
transactions. These patterns are input to a sequence
matcher which finds instances of the patterns in databases
of market transactions. The sequence matcher algorithm is
similar to a regular expression matcher. It maintains a list
of potential match states. At each step, a row is fetched
and a new state is started for each pattern. Existing states
are advanced if they match data constraints on the current
transaction. When a state reaches the end of a pattern, it is
a match. The sequence matcher may be in increasing or
decreasing time order depending on whether the triggering
event for the sequence occurs before or after the other
necessary conditions. In a single pass, multiple tables may
be scanned for several patterns concurrently.  The
sequence pattern language uses a syntax and precedence
similar to the C programming language.

The sequence match has several problems. It is
extremely brittle, in the sense that patterns and data
constraints must be very carefully drawn not to
inadvertently exclude a potentially valued match. A single
failed match kills the entire chain. As a result, break
detection errors are usually allowed to run heavily towards
the false positives. Pattern discovery is limited to a semi-
automated, iterative process in which patterns are carefully
refined in an attempt to achieve the desired results and
error rates.[Senator 2000] However, this refinement is, of
necessity, haphazard and incomplete in its ability to model
the variability in the data. Finally, there is a critical need
to detect what market analysts call a “pattern and practice”
— a set of similar or related matches from which one may
infer intention violation of rules.

It is likely that statistical modeling can help to address
all three problems. Models which produce a likelihood
that an episode belongs to the modeled population are less
brittle.  Pattern refinement through statistical method
would be more consistent and a comprehensive in dealing
with data variability. =~ And a model which describes a
population of sequence episodes is a promising step
towards defining “pattern and practice” detection.



Securities Observation, News Analysis, and
Regulation (SONAR)

SONAR was developed by NASD to monitor the
Nasdaq, Over the Counter (OTC), and Nasdaq-Liffe
(futures) stock markets for potential insider trading and
fraud through misrepresentation. [Goldberg 2003] SONAR
has been in operational use at NASD since December
2001, processing approximately 10,000 news wires stories
and SEC filings, evaluating price/volume models for
25,000 securities, and generating 40-50 alerts (or “breaks™)
per day for review by several groups of regulatory analysts
and investigators. SONAR makes use of several Al and
statistical techniques, including NLP text mining,
statistical regression, rule-based inference, uncertainty, and
fuzzy matching. Sonar combines these enabling
technologies in a system designed to deliver a steady
stream of high-quality breaks to the analysts for further
investigation. Additional components including
visualization, text search agents, and flexible displays add
to the system’s utility.

Entities, Relationships, and Events

SONAR mines news wire stories and SEC filings for
entities such as companies which issue securities, company
officers, brokers, the securities themselves, regulatory
bodies such as the FDA which have an impact on stock
values, and others. It also finds material events: product
announcements,  earnings  reports, mergers and
acquisitions, etc. Finally, SONAR mines for relationships
both explicit and implicit among the entities and events.
The results of the text mining stage are contained in the
top-level predicates output by a linguistic rule-base used
by SONAR NLP component (from ClearForest). These
entities, relationships, and events form particular episodes
or scenarios, with specific identifiers and values which
may be incompletely mined. Learning statistical models
of these episodes would improve detection, especiallyin
dealing with stories where the “components” of a scenarios
are not all present.

News Stream Segmentation

Insider Trading is defined as trading upon inside
information of a “material” nature — information which a
reasonable investor would take as a reason to buy or sell a
security. Thus, two crucial events in an insider trading
break are the appearance of material news and a movement
in the market in response to it. It is critical that SONAR is
able, therefore, to determine when a news item is material,
but also when it is first made public. The drawing of
relationships among entities and events mined from several
news stories is currently performed by a fairly simple
template match. But, clearly, news is re-written, expended
upon, and interpreted. Any failure of this match will
“create” a new trigger for an insider trading break.
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Membership in the same model, drawn from a broad
population of multiple story events, seems to be better way
to detect truly “new” news.

Misrepresentation Fraud

Fraud by misrepresentation is another critical target
activity of SONAR. While we currently mine for several
dozen “flags”, likely indicators of stocks which are being
falsely touted, much more could be done with the ability to
draw comparisons across stories and sources (e.g. compare
an announcement of $50M dollars in contracts with an
SEC filing indicating the company has a staff of 2 with no
assets.) Linking such evidence across text sources and
learning statistical models of misrepresentation seems to be
a promising approach.

Break Detection and Fraud

Break Detection Systems are powerful tools for
detecting errors, violations, or other anomalous conditions
and activities. [Senator 2002] However, they are limited to
the immediate activities which they find in the input data
stream. Background knowledge, aggregation of detection
over a priori identifiers (brokers, issuers, etc.) can start to
draw a picture of an underlying intentional pattern and
practice. ~ Without powerful but tractable models of
populations of breaks, we are limited to counts and
percentages as a decision tool for investigators. As target
activities become more complex and varied, and as the cost
of regulation continues to rise, NASD feels increased need
for such models to cull and derive the greater benefit from
its break detection systems.
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Abstract

In this research statement, | begin by briefly de-
scribing the connection between relational and
multi-view learning, and then | summarize my
main results on multi-view learning. Finally, | ex-
plain how these results are relevant in the more gen-
eral framework of relational learning.

1 Introduction

By definition, in multi-view learning tasks [Blum and
Mitchell, 1998] the target concept can be independently
learned within different views; i.e., from disjoint sets of fea-
tures, each of which is sufficient to learn the target concept.
For instance, Web pages can be classified either based on
words in the documents or based on words in the hyperlinks
pointing to them [Blum and Mitchell, 1998]; similarly, voice
recognition can be performed based on either sound or leap
motion features [de Sa and Ballard, 1998].

Existing multi-view learners [Blum and Mitchell, 1998;
Nigam and Ghani, 2000; Ghani, 2002; Pierce and Cardie,
2001] are semi-supervised algorithms (i.e., they learn from
a few labeled and many unlabeled examples) that work as
follows: first, they use a few labeled examples to learn a
hypothesis in each view; then they use a large number of
unlabeled examples to bootstrap the views from each other.
Such algorithms, which typically perform statistical learn-
ing in each view, were successfully applied to a variety of
real-world domains, from Web page classification [Blum and
Mitchell, 1998] to statistical parsing [Sarkar, 2001] to named
entity classification [1999].

Note that a domain with two views (such as the
ones mentioned above) can be seen as a relational do-
main that is defined over the binary relation ”IsDe-
scriptionOfSameObject()”;  that is, for each instantiation
IsDescriptionOfSameObject(es, e2), the entities e; and ex repre-
sent the description of the same object in the two views.! At
the same intuitive level, multi-view bootstrapping algorithms
can be seen as simplified versions of statistical relational
learners such as the ones described in [Taskar et al., 2002;
Getoor et al., 2001].

1The idea generalizes in a straightforward manner to k-ary rela-
tionships.
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2 Resultsin Multi-view Learning

In my recent work, | focused primarily on minimizing the
amount of labeled data required for learning in multi-view
domains. In order to reduce the need for labeled data, I used
active learning algorithms that detect and ask the user to label
only the most informative examples in a domain.

First, | introduced Co-Testing [Muslea et al., 2000;
Muslea, 2002; Muslea et al., 2003], which is a family of
multi-view active learners that are based on the idea of learn-
ing from mistakes. Co-Testing starts with a few labeled and
many unlabeled examples, and it uses the few labeled exam-
ples to learn a hypothesis in each view. Then these hypotheses
are applied to the unlabeled examples, and the user is asked to
label one of the examples on which the views make different
predictions (if two views disagree, one of them is guaranteed
to make a mistake); finally, the entire process is repeated for
a number of iterations. Under assumptions [Muslea, 2002],
I proved that this “learning from mistakes” strategy leads to
faster convergence than competing approaches.

I also showed that existing multi-view learners perform un-
reliably if the views are inadequate (e.g., if the views are
highly correlated, or if they are insufficiently expressive to
accurately learn the target concept). To cope with this prob-
lem, | introduced two complementary solutions. First, by in-
terleaving active and semi-supervised multi-view learning, |
obtained a novel multi-view learner that has a robust behavior
over a wide spectrum of domains that have inadequate views
[Muslea et al., 2002a]. Second, | introduced a meta-learning
algorithm that is first trained on several solved learning tasks
and then predicts whether or not the views are "sufficiently
adequate” for solving new, unseen learning tasks [Muslea et
al., 2002b].

| have evaluated these three novel algorithms on a vari-
ety of real-world domains, from information extraction and
text classification to advertisement removal and discourse tree
parsing. These experiments show that compared with exist-
ing state-of-the-art approaches, my algorithms require up to
two orders of magnitude fewer training examples.

3 Multi-view and Relational L earning

All the three issues discussed above in the context of multi-
view learning also apply to statistical relational learning:



- active learning: how can one exploit the domain’s rela-
tional structure in order to detect and ask the user to
label only the most informative examples? In a recent
paper [Muslea et al., 2003], | have taken a first step in
this direction by proposing a framework for active learn-
ing with strong and weak views (i.e., views in which one
can learn the target concept or a concept that is strictly
more general/specific than the target one, respectively).

- robust learning: how can one minimize the effect of fea-
ture correlation and features that provide contradictory
evidence? | conjecture that the idea of interleaving ac-
tive and semi-supervised learning [Muslea et al., 2002a]
can be successfully applied to statistical relational learn-
ing.

- meta-learning: for one new, unseen learning task, how
can one know whether the relational domain is “suffi-
ciently rich” to benefit from statistical relational learn-
ing (rather then simply “flattening” the dataset and per-
forming learning in the resulting propositional, feature-
vector dataset)? | believe that training a meta-learner
from tasks that are labeled as sufficiently or insuffi-
ciently “rich” for relational learning would represent an
interesting starting point for such an investigation.
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We do statistical relational learning by incrementally extracting data from a relational database, and computing
features of that data which are then used in a classical discriminative statistical model component. Candidate features
for the model are generated by a structured search in the space of relational database queries and selected using
statistical information criteria. The structuring of the search space is inspired by techniques in inductive logic
programming (ILP), but the use of statistical modeling relaxes the necessity of limiting the search space to logical
expressions. We use a rich feature space that includes clusters, which can be generated incrementally and used to
augment the basic relational schema. Current areas of research include determining optimal model selection criteria
for use in this setting where an infinite sequence of features can be incrementally generated and the use of intelligent
search heuristics to focus search on more promising subspaces.

A growing numberof machindearningapplicationf high interestinvolvestheanalysisof datawhichis bothnoisy
andis of comple relationalstructure. This dictatesa naturalchoicein suchdomains: the useof statisticalrather
than deterministicmodelingandrelationalratherthan propositionalrepresentatiofPopescukt al., 2004. Classical
statisticallearnersprovide powerful modelingcomponentout are often limited to a “flat” file propositionaldomain
representationvhere potentialfeaturesare fixed-sizeattribute vectors. Often the manualprocessof preparingsuch
attributesis costly andnot obvious whenmorecomple regularitiesareinvolved. We are developinga methodology
which combinesthe strengthsof classicalstatisticalmodelswith the higher expressiity of featuresautomatically
generatedrom arelationaldatabase.

Our interestin statisticalrelationallearningdevelopedwhile working on modelingin CiteSeet, an online digital
library of computersciencepapers.CiteSeercontainsa rich setof relationaldata,including citation information,the
text of titles, abstractsand documentsauthornamesand affiliations, conferenceor journal names. Applicationswe
have addressednclude: i) predictionin social networks, e.g. link prediction: given two papersestimatewhether
they cite eachother[PopesculhndUngar 2003, ii) documentlassificationmodelingof morecomplex featureshan
traditionalword countsimprovesclassificationaccuray [Popescukt al., 2003. We areplanningto apply statistical
relationallearningin bioinformaticsdomains;n particularfor predictionof protein-proteininteractions.

Figurel highlightsthe maincomponent®f ourlearningsetting. Two main processes—relationfdaturegeneration
andstatisticalimodeling—arecoupledinto a singleloop. Knowing which featureshave beenselectedy the statistical
modelerallows the query generationcomponento guideits searchfocusingon promisingsubspacesf the feature
space.

Our statisticakelationallearningapproacthasseveralkey featuresvhich distinguishit from eitherpureprobabilistic
modelingor inductive logic programming.

e We assumean applicationdomainin which thereare mary entitiesconnectedy mary relations(e.g. a patient
databasé ahospital),in whichcomple featurege.g.asetof patientclusteredy thesimilarity of thesymptoms,
andtreatedby doctorsworkingin thesameclinic) arehighly predictive of outcomef interest(e.g. expectedstay
in the hospital). In suchareasijt is generallynot feasibleto build a large generatie model(e.g. a PRM) of the
world, anda morefocussedxplorationof the spaceof possiblerelationsis needed.

e Oursearchin thequeryspaceés aninstanceof propositionalizationasproposedn theinductivelogic programming
community;however, the useof statisticsratherthanlogic allows theformulationof rich featurespacesextending
farbeyondboolean-aluedfeatures Thisrichersearchspacecanincludestatisticalsummarie®r aggreyatesmore

*http://citeseer.org/
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oneatatimeto beconsideredy the statisticalmodelselectioncomponentThe procesgesultsin a statisticaimodelwhereeachselectedeature
is theevaluationof a databasgueryencodinga predictive datapatternin a givendomain.

expressve substitutionghroughnestingof intermediateaggreates(e.g., how mary timesdoesthis publication
cite the mostcited authorin conferenceo which it was submitted?) A key questionis how bestto definethe
searchspaceandhow to controlthe searctspacecompleity andsearctspacebias.

e We useclusteringto extendthe setof relationsgeneratingnew features. Clustersimprove modelingof sparse
data,improve scalability and producericher representationfFosterand Ungar 2004. New clusterscanbe de-
rived using the samefeaturesusedin the statisticalmodeling. For example, one can clusterwords basedon
co-occurrencan documentsgiving “topics”, or authorsbasedon the numberof papersthey have published
in the samevenues,giving “communities. Once clustersare formed, they represeninew relationships(e.g.
on_t opi c_3( paper 1798) ori n_conmuni ty_5(aut hor 7)), whichcanbeaddedo therelationaldatabase
schemaandthenusedinterchangeablyith the original relations.

e |Learningtakesplacewith an exponentialnumberof potentialfeaturecandidatespnly relatively few of which
are expectedto be useful. Featureselectionmethodsrecentlyderived by statisticiangyive promisingresultsfor
handlingthis potentiallyinfinite streamof featureswith only afinite setof obsenations.

e Ourformulationsupportssophisticategrocedure$or determiningwhich subspacesf thequeryspaceo explore.
Intelligentsearchtechniquesvhich combinetherelationalstructureof thedata feedbackrom thefeatureselection
algorithm, and otherinformation suchas samplingfrom featuresubspace$o determinetheir promisewill help
scaleto truly large problems.

e We userelationaldatabasananagemensystemgRDMSs) and SQL ratherthan Prolog. Most real datalie in
RDMSs,which have specifiedschemandmeta-informatiorwhich we canuse.RDMSsalsoincorporatedecades
of work on optimization,providing betterscalability
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My research has been (and will be) revolving around the integration
of logic (programming) and (statistical) learning, including (1)probabilistic
semantics for logic programs as an extension of the traditional fixed point
semantics, (2) developing a symbolic-statistical modeling language PRISM
with tabling and EM learning for defining arbitrarily complex distributions
by programs, (3) a divide-and-conquer approach to first order decision trees
for inducing logic programs, using First Order Compiler, a deterministic
program synthesis algorithm based on unfold/fold program transformation,
and (4) applying symbolic-statistical modeling techniques to new fields such
as game playing.
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My research interests are in the design and implementation of program-
ming languages and systems, including logic, constraint, and object-oriented
programming languages and systems. Modern programming languages have
been progressing towards higher levels of abstractions that allow program-
mers to model the complex world of objects and their interactions, and to
describe more about ”"what” to do than about "how” to do it. We have
witnessed a gradual switch from structured programming to object-oriented
programming in certain sectors of industry. Constraint languages allow pro-
grammers to describe the relations that must be satisfied, not the algorithms
to satisfy them. The declarative feature of the new generation programming
languages can greatly improve the productivity of software development and
its maintainability.

The higher a language’s description level is, the bigger the gap is be-
tween its execution model and the real machines. My research has focused
on how to narrow the gap by designing efficient abstract machines and de-
veloping smart compilation techniques. I have authored thirty papers in my
area and have served on the program committees of several international
conferences. I have developed the B-Prolog system, a fast constraint logic
programming system which has several thousands users world-wide in both
academia and industry: many universities (for example, UCLA, Harvard,
Science University of Tokyo, Nangoya Institute of Technology, Shizuoka Uni-
versity, Fukuoka Institute of Technology, The University of Mississippi, and
The University of Alberta) use the system in their logic and constraint pro-
gramming courses; and several companies, including Microsoft, Toyota in
Japan, and JCatalog in Germany, have purchased commercial licenses of
the system.

My more recent research effort has been on the design and implemen-
tation of (1) linear tabling, a method for efficient evaluation of recursive
logic programs; (2) action rules, a new language for constructing interactive
systems including constraint propagators; (3) CGLIB, a constraint-based
high-level graphics library for constructing dynamic and interactive graph-
ics; and (4) PRISM, a statistical modeling and learning system (joint work
with Professor Taisuke Sato of Tokyo Institute of Technology).
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Linear Tabling

Tabling is a technique that can get rid of infinite loops for bounded-term-
size programs and redundant computations in the execution of recursive
logic programs. The main idea of tabling is to memorize the answers to
subgoals and use the answers to resolve their variant descendents. Tabling
not only is useful in the problem domains that motivated its birth, such
as program analysis, parsing, deductive database, and theorem proving, but
also has been found essential in several other problem domains such as model
checking, learning, and data mining.

Early resolution mechanisms proposed for tabling such as OLDT rely
on suspension and resumption of subgoals to compute fixpoints. I, together
with Yi-Don Shen, invented a new resolution framework called linear tabling
which has received considerable attention because of its simplicity, ease of
implementation, and good space efficiency. The idea of linear tabling is
to use depth-first iterative deepening rather than suspension to compute
fixpoints. Linear tabling is still immature compared with OLDT and a
great of potential remains to be exploited. The objective of this project is
to analyze possible strategies and work out a cutting-edge implementation
of the tabling method.

Action Rules (AR)

The lack of facilities for programming “active” sub-goals that can be reac-
tive to the environment has been considered one of the weaknesses of logic
programming. AR is an extension of Prolog designed to overcome this weak-
ness. A program in AR consists of a sequence of action rules. Each action
rule specifies a pattern for agents, an action that the agents can carry out,
and an event pattern for events that can activate the agents. AR com-
bines goal-oriented execution model of logic programming with even-driven
execution model. This hybrid execution model facilitates constructing in-
teractive systems such as constraint propagators, interactive user interfaces,
and multi-agent systems.

This project aims at an efficient implementation of AR. It investigates
implementation techniques including memory architectures and activation
mechanisms for agents, compilation of agent conditions, parallel execution of
action rules, and optimization techniques tailored to constraint propagators.

CGLIB: A Constraint-Based Graphics Library

The widespread use of window systems has made a graphics package in-
dispensable for any programming languages. The objective of this project
is to develop a high-level constraint-based and efficient graphics library for
B-Prolog. The library provides primitives for creating and manipulating
graphical objects and a set of constraints that facilitates the specification of
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the layouts of objects. It also provides constructs and built-in events for cre-
ating agents and programming interactions among agents or between agents
and the user. A prototype of the library has been developed but several
challenging tasks remain to be conducted. One task is to extend the base
shapes to include three-dimensional ones, and another task is to develop
effective heuristics and constraint reasoning techniques for fast packing.

PRISM: A Statistical Modeling and Learning Tool

PRISM, a logic-based language designed originally by Taisuke Sato, supports
statistical modeling and learning. In PRISM, tabling is used to find expla-
nations for sample data and the EM learning algorithm is adopted to learn
probabilities. As a symbolic statistical modeling language, PRISM sub-
sumes several specific statistical tools such as HMM (Hidden Markov Mod-
els), PCFG (Probabilistic Context Free Grammars) and discrete Bayesian
networks. Compared with numeric models where mathematical formulas are
used, PRISM offers incomparable flexibility by allowing the use of arbitrary
logic programs to describe probability distributions. PRISM can be used in
many areas such as language processing, decision-making, bio-informatics,
and game theory where randomness or uncertainty is essential. This project
is closely related to the project on linear tabling. In addition to an efficient
tabling method, this project also entails the development of PRISM-specific
compilation and optimization techniques.
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Abstract

Thefield of relationaldatamining/learningwhich

traditionally has been dominatedby logic-based
approacheshasrecently beenextendedby “rela-

tional upgrades”of traditional learning methods
suchas naive Bayes,Baysiannetworks and deci-
sion trees. One aspectinherentto all suchmeth-
ods of modelinductionfrom relationaldatais the
constructiorof featuresvia theaggreyationof sets.
The theoreticalpart of this work (1) presentsan
ontologyof relationalconceptof increasingcom-
plexity, (2) derives classesof aggreyation opera-
tors that are neededto learn theseconcepts,and
(3) classifiegelationaldomainshasednrelational
schemaharacteristicsuchascardinality We then
presenta new classof aggraeyation functionsthat
are particularly well suitedfor relational classifi-
cation and classprobability estimation. The em-
pirical part of this paperdemonstratesn a noisy
businesslomaintheeffectsof differentaggreyation
methodn predictive systenperformanceThere-
sultssuggesthatmore-compl& aggreyationmeth-
odscansignificantlyincreaseyeneralizatiomperfor

manceandthat, in particular task-specificaggre-
gationcansimplify relationalpredictiontasksinto

well-understoogropositionalearningproblems.

1 Motivation and Introduction

Relational learning has attractedsignificant attention due
to the expressie power of relational modelsand the tech-
nigues’ ability to incorporaterelationalbackgroundknowl-
edge. Until recently relational learning researchhas
beendominatedoy Inductive Logic ProgrammingILP)[15].
Otherapproachescludedistance-baseohethod$7], binary
propositionalizatiofl.0], SQL-basedumericaggreyatior 8],
and upgradedpropositionallearnerssuch as rule learners
[11], Structuralogistic Regressior] 16], RelationaDecision
Treed[5] andProbabilisticRelationalModels(PRM)[9]. The
aggrejationof setsof relatedobjectsinto singleattributesis
anessentiatomponenbf relationalmodelinduction,andhas

significantimpactongeneralizatioperformancéor domains
with important1-to-n relationships. However, with the ex-

ceptionof [8], aggreyationhasrecevedlittle directattention.
Aggregation methodscan be characterizedlong a number
of dimensionsncludingthe underlyingcalculus(numericor

logical), the cardinality of the set,andthe compleity of the
objectsbeing aggreyated(atomic valuesor featurevectors,
single-typeor multi-type objects).

The objective of this paperis to shednew light ontherole
of aggreationmethodsin relationallearning. We presenta
hierarchyof classe®f relationalconceptsdifferentaggreya-
tion operatorsare appropriatefor differentclasses.We also
evaluaterelationallearnerson a noisy businessdomainand
draw conclusionsaboutthe applicability andperformanceof
differentaggreyationoperators—includingomenovel ones.
For this papemwe have chosertherelationaldatabaséormal-
ismfor expressingelationaldataandconceptsHowever, the
ideasandmethodscarry over directly to learningfrom graph
or first-orderlogic representations.

The paperis organizedasfollows: Section2 presentsan
ontology of increasinglymore comple relationalconcepts,
anddiscussethe compleity of domainsandtherelationship
betweerdomainpropertiesandconceptcomplexity. Section
3 presentanoverview of existing aggreyationmethodstheir
limitations, andsystemshatapply them. We alsoproposea
novel target-dependeraggrayationmethod. The subsequent
empirical study in section4 comparesa numberof aggre-
gation methodson a relationalbusinessdomain and shows
evidenceof the superiorityof more complex methods(viz.,
target-dependergetaggrayation). We concludewith sugges-
tionsfor future work with particularfocuson morecomplex
aggreationmethodghancurrentlyareused.

2 Hierarchy of Relational Concepts

We considera predictive (ratherthan clusteringor unsuper
vised)relationallearningtaskasfinding a mapping

M : (t,RDB) — y wheret is a row of the target table
T,* including a target variabley (either numericfor a re-
gressiontaskor categorical for classification)and RDB is
a relationaldatabasecontainingadditionaltablesof related
backgroundknowledge.Figurel shovs a simpleexampleof

1T is a tableof traditionalfeaturevectors,including cateyorical
variablespossiblywith large numbersf possiblevalues.
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arelationaldatabasechemawith threetables thetamgettable
Customer with target attribute y andthe backgroundables
Transaction, Returnedltems andProducts, relatedthrough
the keys Customerldand Productld. We will usethis exam-
ple to illustrate the examplesin the following sections.The

Customer Transaction
Customerld I Customerld
Gender Date
y o Price

i Productld

I T

Returnedltems | !
u |
= Products
Customerld | ______ -
Productld Productld
ProductType

Figurel: TransactiorDatabase

databaseR DB canvary from simpleto comple, in terms
of the numberof tables the numberof relationshipsetween
tableshroughsharedtatagyoricalvariablegkeys), andthecar
dinality of thoserelationshipg1-to-1,1-to-n,or n-to-m).

Similar to RDBs, relational conceptscan have various
compleities. In this paperwe adoptthe view that a re-
lational concept(¢t, RDB) — 1y is a function F' includ-
ing asinput ¢t and a fixed numberof aggreatesa; of ob-
jects that are relatedto the target casethrough keys. In
this paperwe assumeF’ to be deterministicgiven a vector
of n aggreates,but the target obsenationsmay be noisy:
ij = F(t, A(RDB)) + ¢ whereaggrayationfunction A4 is a
mappingRDB — (ag,ai1,---,ay).

More generally the compleity of a relationalconceptis
determineddy

o the compleity of therelationshipge.g. cardinalities),
o thecompleity of theaggreyationfunction A,
e andthe complexity of F'.2

The complexity of the relationshipss determinedby the
domain and the predictiontask. The relatve compleity
of different functions F' is comparatiely well understood
(and we have methodscapableof learning very complex
functionsF'). The compleity of aggreyations,however, has
recevedcomparatiely little treatment.Considetthreelevels
of aggreationcomplexity:

Definition 1: A simple aggregation A; isamappingx x 1 —
a thattakes asinput a bag of zero or more (deontedby x)
atomicvalues(eithernumericalor cateyorical).

2Thereis aninterestingradeof betweeraggreationcompleity
andfunction compleity sincepartsof F' canbe integratedinto A.
However, it is generallynot possibleo make up for lack of complex-
ity in A throughamorecomplex functionsinceaggr@ationalways
involveslossof informationthatcannotberecovered.

Examplesof simple aggreyation operationsfor numeric
valuesarecount,meanandmaximum. Typical aggreyatesof
catgyorical valuesarethe mostcommonvalue (mode)or the
countof themostcommonvalue.

Definition 2: A multidimensional aggregation 4,, is a map-
ping* x N — qa thattakesasinputabagof zeroor moreob-
jectswith n attributesin form of afeaturevector(zy, ..., ).

Theimportantdifferencebetweerthe useof multiple sim-
ple aggreationsand a multidimensionalaggreationis that
theattributesin the vectorscannotbetreatedasindependent,
but mustbe aggreyatedjointly. A commoncaseof this type
is: booleanconditioningon oneattribute (selection)andthen
a simple aggreyation of a differentattribute of all selected
objects.More generallyamultidimensionabggreationcap-
turesary relationshipbetweentwo or moreattributes,for in-
stancethe slope of pricesover time (explaining whethera
customeris buying increasinglymore expensve products).
Time seriesdataoftenharborconceptsvherethe obsenation
clearlyis dependenbn atemporalfield andindependenag-
gregationwould not be meaningful.

Next let us consideraggreyationsthat cannotbe achieved
with a multidimenisonalggeationor ary function thereof.
For example,considerfinding the total valueof the products
that a customerhas returned. This aggreyation has to
incorporatetwo bags: the productsboughtby the customer
alongwith their prices,andthe productsreturned.

Definition 3: A multi-type aggregation A,, ,,.... isamapping
x X N,x x M,... — a thattakesasinput two (or more)
bagsof objectsof differenttypes. The objectsin bagone
have featurevectorsof lengthn, the objectsin bagtwo have
featurevectorsof lengthm.

Given thesedefinitions,we now can presenta hierarchy
of relationalconceptclasses. A conceptclassC4 is more
comple than classCg if ary concepte, in Cp can be
expressedn C4 andthereareconceptsn C4 thatcannotbe
expressedn C'g. We will assumetargettableT” with target
columny, andbackgroundablesB, C, and D thatarere-
latedto T' andpotentiallyto eachothervia keys. A lowercase
expressiont denotesnerow in atableT. Objectst in T' and
b in B arerelatedby keys: kr, g, appearsn T ascolumn
1 andin B as column j, andis commonly a categorical
variablewith alargenumberof possiblevalues.Theoperator
TB.(f,..l) (T%B) denotesa left outerjoin > of ta-
blesT andB undertheconditiont; = b; andthesubsequent
projectionof columnsf, ... ,I from B. Thenotationl:n(join
cardinality)declareghatfor every valuet; therecanbe zero
or morerows in B fulfilling the equalityconditiont; = b;.
Given the compleity of notationwe will keepthe simple
form of singlejoins; however notethatit is straightforward
to extendthe hierarchyreplacingn g 1,..., ) (T%B)
by a chain of suchoperatorgoining acrossmultiple tables
TO.(.rsf) (T tiZbI:](lzn) B bkzclzl(lzn) C) '

The following list presentsrelational conceptclassesin

180



order of increasingcomplexity. For the sale of simplicity,
whearepossiblewe only includeoneaggraationin afunction
F. However, the distinction betweenclasseds not in the
number of aggreyations neededto express a particular
concept,but ratherin the complexity of the most complex
aggrejationused.

1. Propositional:

y=F(t) ory = F(t, (mp.,...» (T 7= B))

A relationshipof cardinality 1:1 returnsexactly one object
(feature vector) for eachobjectin T. Thereis no need
for aggreyation and the featuresof objectsin B can be
concatenatedlirectly to the featurevectorin T'. A typical
caseis a Customettable7T anda Demographic$able B that
containsadditional information for each customer If the
relationshiphasa cardinalityof n:1therewill alsobeexactly
oneobsenationin B for eachobsenationin T'.

y = F(t,(mp.,..» T5=, my B))) An exampleis the
abstractiorhierarg in the ProducttablewhereProductTpe

is an abstractionof a particular productinto a class, for
instancebook’.

2. Bags of independent attributes:

y = F(t, Av(mp.n(T = mmy B)> Av(ma (T o=, @y B)))
or

y = Ft, A (75.0(T =177 B)), A (0 k(T i=25.C)))
The least complex relational conceptclass requiresonly
simple aggreyations. The object of a 1-to-n relationship
may have a number of attributes, each of which can be
aggrejatedndependentlyFor example,simpleconceptdike
‘the averageprice of productsbought’fall into this category.
An examplethatrequiresmultiple simple aggreyationsfrom
differenttablesis ‘the proportionof productsreturnedby the
customer’usingthe countof the productsin the Transaction
table and the count of productsin the Returneditemgable
for this customer Calculatingthe proportionwould be part
of thefunction F', nottheaggreyation.

3. Bags of dependent attributes within one table:

y=F(t, An(mB.(,...) (T 5=, 7y B)))

The attributesfrom the objectsin table B cannotbe aggre-
gated independentlyas before but have to be considered
jointly usingamultidimensionabggreyation. The numberof
productsboughton DecembeR2"? is an examplethatcould
be expressedusing conditioning (on Date), selectionand
thena simpleaggreyation. A more complex exampleis the
slopeof the price overtime explainingwhethera customeis
buying increasinglymore-expensve products.

4. Multiple bags across tables:
y=F(t, Anm(TB.($,...0) (T%B),

70 (kyeoe) (T gz @y ©)))
The total amount spent on items later returned requires
informationfrom both tables(TransactionsReturneditems)
during the aggreyation. Since the two tables may have
differenttypesthey cannotsimply be memgedinto one. Note
thatevenif they have the sametype (the joins endingin the
sametable)it may be importantto know from which join a

particularobject hascome. This informationis lost if the
resultsaresimply memged3

5. Global graph features:

Q= TC(Bibk:clj(lzn) c,..., Didi:b::(l:n) B)

TC standsfor transitve closure. Such a global concept
couldfor instancebe a function of customerreputation.The
aggreyationA,, ,, for reputatiormayrequiretheconstruction
of anadjaceng matrix andthe calculationof its eigervalues
andeigervectors.

It should be noted that within the five conceptclasses
there are mary sublevels of conceptcompeity. We will
discusssome on them for level 2 throughoutthe paper
For instance,relational autocorrelationhas beenidentified
as a common property of relational domain$6]. Aggre-
gationstaking adwvantageof relational autocorrelationcan
be considereda special caseof the single-set-alue con-
cept class, where the joins link back to the tamget re-
lation and the target variable, if known, is aggreyated
A]_(TFT.y(T B,...,D

> X
ti=bg,(1:n) dn=ty,(1:n) )

3 Relational Aggregation

We now discussexisting aggrejationmethodsandhow they
relateto the conceptclasseghat canbe learnedby different
approaches.Relationallearninghastaken two approaches:
(1) aggreyation-baseteatureconstruction/imentionandsub-
sequentmodel estimationand (2) direct learningof a rela-
tional mapping M. Aggregation musttake placein either
approachthemaindifferencebetweerthetwo is whetherthe
aggreyationis optimizedjointly with the estimatiorof F' (of-
tenrenderingheaggreyationmorecomplex) or whetherthey
areperformedndependentlyAs shavn for somecasesn the
presentatiorof the ontology, thereare interactionsbetween
the aggreyationandthe function. That notwithstandingfor
theremainderof this papemwe focusontheaggreyationoper
atorsA, assumingheexistenceof somestratey for theiden-
tification of relatedobject$ aswell asanappropriatdearner
for F.

The following sectionspresenthreecommonapproaches
to aggreyationin relationallearningandonenovel approach
that combinesset-distancesvith target-dependenaggreja-
tion.

3.1 First-order Logic

Thefield of relationallearningfor yearshasbeendominated
by Inductive Logic Programming(ILP)[15], focusing on

classificatiortasks.Thesefirst-orderlogic-basedapproaches
searchfor setsof clausesthat identify positive examples.

The questionof whethertwo equal-typebagscan be meged
prior to aggregationin combinatiorwith asimplermultidimensional
aggeyation dependson whetherthe aggr@ationis transitve under
the bag-meging operation.The minimum for instanceis transitive,
sincethe minimum of the minimumsof two setsis the sameasthe
minimumof thememgedset.

4For example, graphtraversalusing foreign keys as links and
tablesasnodes.
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For instancea clauselearnedto characterize rich customer
might be:

RichCustomer(x- Customer(X,YZ),
Transaction(X,\AW), P>100

The predictionof an ILP modelis positive if at leastone of

theclausess truefor the particularcase Binary proposition-
alization[19],[10] alsolearnssetsof (first-order)clausesbut

rather than using them directly for predictionit constructs
binaryfeatureghataregivenasinputto atraditionallearning
method(e.g.,decisiontreeinduction)to learnthefunction F'.

Both ILP andbinary propositionalizatioruseexistentialuni-

ficationof first-orderlogic clausedor aggreyation.Giventhe

tablesfrom section2, the exampleclauseCustomer(X,YZ),

Transaction(X,YAW), P>100is 1 for a particularcustomer
X if heboughta productthatcostmorethanUSD 100. The

bagof productsthat arerelatedto a customeiis aggrejated
into a single binary value (0 or 1) basedon the condition
P>100. The major advantageof logic-basedaggreyation
is its ability to addressall levels of compleity as outlined
in section2, including dependenbagsacrosstables. The

taskof identifying customerghatboughta productthatwas
returnedby anothercustomerwho boughtit after 2001 can
beexpressedn FOL as:

Customer(X), Tansaction(X,W,W),Returnettem(Y,W),
Transaction(YB,C,W),B>2001

The disadwantageof logic-basedaggreationis the common
lack of supportfor numeric aggreation. In particular it
is impossiblein purelogic to expressthat the productwas
returnedmorethan20 times. A clausecantestwhetherthe
maximumof a numericsetis larger thana particularvalue
but it cannot estimatethe meanor the cardinality of the set.
In orderfor anILP systemto apply numericaggrgyateshey
have to be declaredby the userof the systemasintensional
backgroundknowledge (as for instanceproposedby Mug-
gleton[14]) andonly a few systemssupportsuchintensional
declarations.

ILP is currentlythe only approachthat exploresconcepts
up to level 4. However, without the explicit numericsup-
port throughintensionalbackgrouncknowledge, ILP meth-
odsareseverelylimited in expressve powerin comparisoro
themethoddiscussedbelow.

3.2 Simple Numeric Aggregation

A numberof relational approachesncluding Probabilistic
RelationalModels (PRM)[9] and ‘upgraded’ propositional
learnerssuchas RelationalDecision Trees[5] rely on a set
of simple(mostly SQL-basedpggreyationoperatorsuchas

mean,min, max,countfor numericalvaluesandproportions
and mostcommonvaluefor categorical variables. Numeric

aggregjatesn combinationwith logic-basedeatureconstruc-
tion were proposedoy Knobbeet al. ([8]). Theseoperators
applyonly to bagsof singleattributesandcannotexpresscon-

ceptsabove level 2 thatrequiredependenaggreyation.

3.3 Set Distances

Kirsten, Wrobel andHorwath [7] proposeda distance-based
methodfor relationallearning. The approachclassifiesob-
jectsusingak-nearest-neighbanethodwith a predefinede-
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lational distancemetric. This metric aggreyatestwo bagsof

objectsrelatedto two casedy calculatingthe minimumdis-

tanceof all possiblepairsof objects,choosingonefrom one
bagandonefrom theother Thedistancebetweertwo objects
is the sum of squareddistancedor numericvaluesand edit
distancedor cateyoricalvalues normalizedby the numberof

attributes. If anattribute is a key, ratherthantaking the edit
distancehealgorithmproceedsecursvely andestimateshe
distanceof all objectsrelatedto the currentvectorusingthat
key. This form of aggreationimplicitly assumesttribute
independencanddoesnot take advantageof numericaggre-
gatedike countor average.

3.4 Target-Dependent Bag Aggregation

We now presenta novel aggregationmethodologyfor level 2
conceptghatintegratesthe ideaof vectordistancesand uti-
lization of the targetvariable. It alsoillustratesthe different
levels of conceptcomplexity within a class(level 2) in the
concepthierarchy

Ourmethodologywasmotivatedby theobsenationthatre-
lationaldatabasesommonlyhave attributeswith large num-
bersof possiblevalues—andheseattributesoftenareunsuit-
ablefor learning. A commonmethodto aggreyatea single
categorical attribute with numerousraluesis the selectionof
a subsetof valuesthat appeamost often and corvert them
into dummyvariablesor counts.Howeverthe mostcommon
valuesmay not be the mostpredictive for a givenrelational
learningtask. We presentan approachthat examinesdistri-
butions of valuesconditionedon the classesf the training
cases.

Definition 4: Given an arbitrary order (pairs of value v:
index i) over the possiblevaluesof a categorical attribute
B.j, a case vector CVé_j(wB,j(TmB)) at posi-
tion i is equalto the numberof valuesv (v : i) in the
bagreturnecdby thejoin andprojectiomrB_j(TmB)
for the caset in the tamget table 7. The bag of Product-
Types{book,CD,CD,book,WD,book} for a specificcaset
underthe order (watch:1,book:2,CD:3,8D:4) would result
inCvt=(0,3,2,1).

Definition 5: Givenan order(v:i) over the valuesof the at-
tribute B.j, arefgrence vectolr.RVgt.j (7B.j (T%B))
underthe conditionc at positions is equalto the sumof val-
uesCVt[i] for all caseg for which ¢ wastrue.

Definition 6: Given an order (v:i) the variance vector
VVg_j(wB,j(TmB)) at position s is equalto the

. cvE L[i))? .
varlance% over all caset for which ¢ wastrue. N,

is the numberof casedor which the conditionc wastrue.

Target-Dependent Categorical Values
Ratherthanselectingvaluesthataremostcommonacrossall
relatedobjects,a target-dependerspproachwill selectcat-
egorical valuesthat are most commonlyrelatedto positive
trainingcasegy=1) andanalogouslyhosethataremostcom-
monly relatedto negative cases.To createpositive dummies,

5The methodologyis easily extendedto numericvaluesusing
discretizatiorandcodingnumericalvaluesascateyoricaldummies.



Table1: Summaryof AggregationMethodsfor single cate-
goricalvalues

we selectgiven RV ¥=! thosevaluesv giventheorder (v : i)
for which the RV¥=[i] is maximalacrossall entriesin RV'.
Similarly we selectthosevaluesv for which the RV¥=0[4]
is maximal. A morecomplex, comparatie approactselects
catgyoricalvaluesthatarecommonfor oneclassbut notcom-
mon for the other In particularwe selectthe values: for
which the absolutevalue of RVY=1[i] — RV¥=0[i] is maxi-
mal. The Mahalanobigdistance[12] improvesover this ap-
proachby normalizingthe scoreshy the variancedeforese-
lectingthemaximum:

RVY=1[{]—RVY=C[4]

VVV=I[|+VVv=0[j]
Table 3.4 summarizeghe five stratgjiesto selectdummies
from single catayorical values groupedinto three groups
of increasingcompleity: targetindependentmostcommon
(first row), target-dependennostcommonpositive or nega-
tive value(secondow andthird row), andthe valuethathas
the maximumdifferencebetweenthe positive and negative
referencevectors(fourth row andfifth row).

Vector Distances
Usingvectordistancesllowsthesummarizatiorof all entries
in the referencevectors ratherthanusingonly a subsetwith
the largestcountsin the referencevectors. From eachcase
vectorV C andareferencevectorRV we estimateour vector
distancesedit distance(ED), Euclideandistance(EU), Ma-
halanobisdistance(MA), and Cosinedistance(COS).Since
it is not cleara priori which of thedistancewill bestcapture
theunderlyingconceptall of themarecalculatecandit is left
to thefunctionestimatorfor F' to selectamongthem.

In additionto thesedistancesve alsocalculatefor eachof
thefour measureshe differencebetweerthe distancego the
positive andnegative referencevectors:

EDD = ED(RVY=',CV) — ED(RVY=',CV)
EUD = EU(RVY=!,CV) — EU(RVY=1,CV)
COSD = COS(RVY=L,CV) - COS(RVY=L,CV)

MAD = MA(RVY=,CV) — MA(RVY=L,CV)
Combiningthe optionsfor distanceandtargetconditionswe
have a three-by-fourmatrix of vectorbasedaggreyationsin
table3.4. Thevectordistancesanbe groupedsimilarly into
threeincreasinglymore complex groups:targetindependent
(first row), dependenbn eitherpositive or negative reference
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Method | Definition Reference | Euclidean | Edit | Cosine | Mahalanobis

MOC CV[i] wherei is the index with maximum Vector
valuein unconditionareferencevector RV All EU ED COS MA

MOP CV[i] wherei is the index with maximum Positve EUP EDP | COSP | MAP
valuein positive referencevectorRV¥=1 Negative EUN EDN | COSN | MAN

MON CV[i] wherei is the index with maximum Positvevs. | EUD EDD | COSD | MAD
valuein negative referencevector RV ¥=° Negative

MOD CVTi] wheres is theindex inth maxirr(}umab—
solutevaluein vectorRVY=' — RVY= . ;

MON CV1i] wheres i the index with maximumab- Table2: Summaryof VectorBasedAggregationMethods
solutevaluein vector V2=, m;"f‘éz;z[[ﬂ]

vector (secondandthird row), and dependenbn the differ-
encebetweerthe classdistancegfourth row).

It shouldbenotedthatsincetheseaggreyationsusethetar
getto estimatefeaturesthe subsequentnodelcanbe overly
optimistic aboutthe value of the feature,which canleadto
overfitting whenthesefeaturesare usedfor learning. There-
fore, for the resultsthat follow, the referencevectors,vector
distancesndspeciakateyoricalvaluesareestimatedn 50%
of thetraining setandthe modelis estimatedusingthe other
50% of thetrainingset.

4 Experimental Results

In this sectionwe presentesultscomparinghepresenteég-
gregationmethodsn arelationallearningproblemin thedo-

main of initial public stock offerings. We includethe com-
paratve performanceof four logic-basedrelationallearners
(FOIL[18], Tilde[1],Lime[13],Progo[14]) sincethey canex-

pressconceptof upto level 4. All othermethodsarewithin

level 2. The next sectiongpresenthe domaindescription,a
brief overview of the methodologyandour results.

4.1 Domain: Initial Public Offerings

Initial public stockofferingshave auniquetickerfor thefirm
that is selling sharesof their equity. An IPO is typically
headedby oneor occasionallytwo banksand supportedby
a numberof additionalbanksas underwriters. The task of
the bankis to put shareson the market, to seta price,andto
guaranteavith their experienceandreputationthatthe stock
of theissuingfirm is indeedvaluedcorrectly
The IPO domainconsistof 5 tables:

¢ IPO(Date,Size,Priceigker,Exchange,SIC,Rump)
e HEAD(Ticker,Bank)

e UNDER(Ticker,Bank)

¢ IND(SIC,Ind2)

¢ IND2(Ind2,Ind)

ThelasttworelationsIND andIND2 represenaninstance
of anabstractiorhierarchyon SIC classificationsFor exam-
ple theindustrycode7372identifiesthedivision of ‘Prepack-
agedsoftware’. This particularcategory of industrygroupis
amemberof the major group‘BusinessServices'with the 2
digit code73.

In this domain,Date,Size,PriceandRunuparenumerical
variables;Ticker, Bank, SIC, Ind2 are cateyorical and keys,
andInd and Exchangeare simple categorical attributes. The



Method | Description

Name

NO No featureconstructionpnly the attribtuesn the IPO table

MOC Attributesin IPO tableandcountsof mostcommoncateyoricals(MOC)

VD Attributesin theIPO tableandvectordistance€U, ED, COS,MA to unconditionakeferencevector

MVD Attributesin IPO table,mostcommoncategoricalsandunconditionalvectordistancegEU, ED, COS,MA)

MPN Attributesin IPO tableandcountsof mostcommonpositve (MOP) andnegatve (MON) categoricals

VDPN Attributesin the IPO table and vector distancego positive and negative referencevectors(EUP, EUN, EDPR,
EDN, COSRCOSN,MAP, MAN)

MVDPN | Attributesin the IPO table, mostcommonpositive (MOP) and negative (MON) categoricals,andvectordis-
tancedo positive andnegative referencevectors(EUP, EUN, EDP, EDN, COSR COSN,MAP, MAN)

MD Attributesin IPO tableandcountsof mostcommondiscriminatve cateyoricals(MOD, MOM)

VDD Attributesin the IPO table and differencesof the vectordistancedo positive and negative referencevectors
(EUD, EDD, COSD,MAD)

MVDD | Attributesin thelPO table,andcountsof mostcommondiscriminative catgoricals(MOD, MOM), anddiffer-
encef thevectordistancedo positive andnegative referencevectors(EUD, EDD, COSD,MAD)

AH Attribtuesin PO andattribute Ind in tableInd2 relatedthroughtabstractiorhierarchy

AC Attributesin IPO andproportionof positive trainingcasegexcludingtheparticularcasethata casewasrelated
to

LF Logic-basedeaturesxtractedfrom the clausedearnedby FOIL

Table3: Summaryof contrastegggreyationapproaches

classificatiortaskis to predictwhetherthe offer was (would
be)madeonthe NASDAQ exchange.

4.2 Methods

We comparethe generalizatiorperformancenf 4 generalap-
proachessimplenumericaggreation,ILP, logic-basedea-
ture construction andtarget-dependergetaggreyation. We
alsoconstructedwo otherfeaturesrom therelationalback-
grounddata:whenthereis aninstanceof anabstractiorhier-
archy(asequencef n:1joins) weincludethevaluesdirectly
in thefeaturevector(AH). We alsowantedto testfor (andpo-
tentially take advantageof) relationalautocorrelationThere-
fore, we allowedjoins to go backto the targettableandcre-
atedan “autocorrelation’aggreyation (AC) representinghe
proportionof linked, positive training cases(excluding the
particularcasein questionof course). Table 1 summarizes
theapproaches.

For the evaluationof the aggreationmethodswe hadto
implement(1) an exploration strateyy that finds relatedob-
jects,(2) afeatureselectionstepto reducethe numberof fea-
tures,and(3) alearnerthatfindsa modelto predictthetarget
giventheaggrayates We usedstraightforvardapproachefor
eachof thesesteps.

Exploration: Given a setof tablesand keys, the system
constructsa graphwith tablesasnodesandkeys aslinks be-
tweentablesandexecutesa breadth-firssearchstartingfrom
thetargetrelation,over all possibleexplorationchainsof in-
creasinglength. The exploration stopsoncethe numberof
chainsexceedsa stoppingcriterion. The secondnumberin
thesizecolumnin table4 showvs the stoppingcriterion (max-
imal numberof joins) for the exploration. For eachexplo-
ration chain, the systemexecuteghe correspondingoin and
selectsall attributesfrom thelasttablejoinedto. It thenap-
pliestheaggregyationmethodsof varyingcomplexity to every
attribute independently The resultingvalues(one for every

row in the targettable) are appendedo the original feature
vectorfrom thetargettable.

Feature Selection:  Once the stopping criterion is met
the systemselects(10 times) a subsetof 10 featuresusing
weightedsamplingbasedn estimategerformanceWe tried
alternatve methoddor featureselectiorwithoutmuchdiffer-
encein performance.

Model Estimation: We usedC4.5[17] to learnthe model
for eachof the 10 featuresetsandreportedthe averageasthe
final prediction. The resultsdid not changesignificantlyus-
ing logistic regressiorfor the modeling.

Logic-Based Feature Construction: In orderto evalu-

atelogic-basedeatureconstructionve usedthe ILP system
FOIL [18] to learnn FOL clausesand appendedhe corre-

spondingbinary featuresto the featurevectorin the target

table IPO. This methodologyhasbeenappliedsuccessfully
by King [20] andby Populescuktal. [16] to text classifica-
tion.

ILP: Weselectedour ILP systenmbasednavailability, plat-

formindependencanddiversity FOIL [18] usesatop-dawn,

separate-and-conqustrateyy addingliteralsto theoriginally

empty clauseuntil a minimum accuray is achieved. Tilde

[1] learnsa relationaldecisiontreeusing FOL clausesn the
nodesto split the data. Lime [13] is a top-davn ILP system
thatusesBayesiarcriteriato selectiterals. Progol[14] learns
asetof clausedollowing a bottom-upapproactthatgeneral-
izesthetrainingexamples.We did not provide any additional
(intensional)backgoundknowledgebeyond the factsin the
databaseWe supplieda declaratve languagebiasfor Tilde,

Lime, andProgol(asrequired).

Evaluation:  Generalizationperformanceis evaluatedin

termsof classificationaccurag andareaunderthe recever
operatingcurve (ROC) [2]. NotethatILP systemsonly pro-
duceclasslabelsbut no probability scores.We thereforein-
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Size NO || MOC VD | MVD || MPN | VDPN | MVDPN MD | VDD | MVDD
250:6 | 0.619]| 0.641| 0.679| 0.634| 0.627| 0.683 0.671| 0.635| 0.675| 0.690
250:9 | 0.619| 0.685| 0.665| 0.665| 0.664| 0.685 0.697| 0.695| 0.682| 0.703
250:12 | 0.619| 0.674| 0.655| 0.706 || 0.675| 0.714 0.694 | 0.659| 0.697| 0.703
500:6 | 0.635( 0.663| 0.674| 0.679| 0.674| 0.679 0.685| 0.675| 0.711| 0.741
500:9 | 0.635| 0.706| 0.686| 0.684| 0.692| 0.705 0.721 || 0.725| 0.697| 0.737
500:12 | 0.635| 0.689| 0.689| 0.71 | 0.706| 0.707 0.696 || 0.711| 0.741 0.739
1000:6 | 0.671| 0.677| 0.691| 0.685]| 0.667| 0.717 0.709 0.702]| 0.713| 0.747
1000:9 | 0.671| 0.705| 0.71 | 0.688| 0.715| 0.745 0.745 || 0.735| 0.747| 0.747
1000:12| 0.671| 0.702| 0.705| 0.708 || 0.711| 0.723 0.727| 0.715| 0.767 0.759
2000:6 | 0.699| 0.675| 0.689| 0.681| 0.667| 0.709 0.729] 0.691| 0.73| 0.758
2000:9 | 0.699| 0.729| 0.69| 0.719| 0.731| 0.728 0.76 || 0.731| 0.753| 0.764
2000:12| 0.699| 0.715| 0.709| 0.73 || 0.718| 0.733 0.723| 0.72] 0.779 0.758
Table4: Classificatioraccurag of setaggreyationmethodsggroupedby compleity

cludedILP only in theaccuray comparisonsAll resultsare e

generalizatiomperformancen atestsetof size800averaged

over 5 runs. We refrainedfrom including the error barsof & e / T

onestandarddeviation in the tablebut includedthemin the ;

figures. erer | / i

4.3 Results 074 | i,

Table 2 shaows the generalizatiorperformanceof the set of > 02t i i

aggregation methodsas a function of training-setsize and 5 . 4

the numberof joins allowed. The methodsaregroupedinto < | o | ]

four classe®f increasingcomplexity: nofeatureconstruction b

(NO), target-independerstetaggregation(MOC, VD, MVD), 068 | A .

target-dependenset aggreyation dependenbn either posi- 1 ,

tive or negative class(MPN, VDPN, MVDPN), and target- 0.66 | v g

dependenset aggregation dependenbn the differencebe- 3 &

tweenthe positive andnegative referencevectors(MD,VDD, 0.64 o o

MVDD). To helpwith theabbreviations(neededo make the VSNZE i

tablelegible) a condensedummaryof the differentmethods
undercomparisorcanbe foundin tablel. Within eachclass
of methodsin table 2, the first column presentsan aggreya-
tion methodthatusesonly singlecateyoricalaggreation,the
seconcbnly vectordistancesandthethird both.

The bestperformancdor eachtrainingsizeis highlighted
in bold, andthe bestperformancdor eachof the complexity
classesn italics. Theresultsshav thatasthe complexity of
the aggreationmethodincreasesthe performancencreases
aswell. The bestperformancewithin a block is alwaysone
of thetwo aggreyationsincluding vectordistancesandusing
only singlecateyorical valuesis almostalwaysoutperformed
by vectordistanceaggreyation. Increasingthe exploration
depth(humberof joins) improvesperformanceén mostcases,
however the marginal effect decreasesSpecifically the in-
creasan performancenoving from 6 joinsto 9 is largerthan
moving from 9 to 12 joins. In somecasesmoving from 9
to 12 joins hurts the performancefor two reasons:(1) the
longerthe chainthatrelatesobjectsto a target case the fur-
theraway the objectsandthelessrelevantthey are;(2) since
featuresare constructedrom every join, the numberof fea-
turesincreasedinearly in the numberof joins andthefeature
selectionbecomedesseffective dueto multiple comparison
problemd4].

Figure2 shaws learningcurvesfor classificatioraccurag,

I
100 1000 1000
Training Size

Figure2: Learningcurves:accurag asafunctionof training-
setsizefor NO, VD, VDNP, andVDD

including error barsof + one standarddeviation for the ex-
perimentsexploring 12 joins. Thelearningcurvesshav that
increasinghetraining-setsize alwaysimprovesthe general-
ization performance.The graphalsohighlightsthe different
performancdevels of the 4 levels of aggregation complex-
ity. The more complec the aggreation, the betterthe per
formance.In addition,themostcomplex aggreyation(VDD)
hasthe smallestvarianceof thefour contrastednethods.
Analysingthe treelearnedby C4.5for the mostcomplec
modelMVDD identifiesthefollowing variablesaspredictive:
whetheroneunderwritewas’Hambrecht’ thedifferencebe-
tweentheeditdistanceso thepositive andnegativereference
vector of the underwitingbanks,the numberof IPO’s pre-
viously underwrittenby the headbank, the dateof the IPO,
the differencebetweeredit distanceof the headbank,thein-
dustry codeof level 2 (2 digits), andthe differencein Ma-
halanobiglistanceo theIPOs(Ticker) previously performed
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Size NO AH | FOIL | Tilde | Lime | Progol AC LF
250 | 0.649] 0.641| 0.645]| 0.646| 0.568| 0.594| 0.73| 0.592
500 | 0.650| 0.665| 0.664| 0.628 | 0.563| 0.558| 0.719| 0.643
1000 | 0.662| 0.701| 0.658| 0.630| 0.530| 0.530| 0.724| 0.638
2000| 0.681| 0.711| 0.671| 0.650| 0.512| 0.541| 0.753| 0.641

Table5: Classificatioraccurag of methodsndependenof join depth

by the underwritingbanks. This confirmsour conclusions
thatthe differencedetweerthe vectordistancesndeedplay
animportantrole for this task.

Table5 contrastgheresultsfor the othermethodghatare
independenbf the numberof joins: abstractiorhierarchies
(AH) in thedomaintablesIND2 andIND, thefour ILP sys-
temsFOIL, Tilde, Lime, and Progol, relationalautocorrela-
tion (AC), andlogic-basedeatureconstructionLF).

Includingthe valuesof the abstractiorhierarchy(AH) im-
proves slightly over no relational backgroundknowledge,
(suggestinghat the industry classesarelinkedto exchange)
but cannotcompetewith target-basedsetaggrayation. The
AC resultsshawv thatthereis significantdegreeof autocorre-
lationin thisdomain.Banksseento operaterimarily onone
exchangeor theother AC outperformsll methodsn thista-
ble, and only falls shortof the bestset-aggrgationmethod
MVDD in Table4.

§ 0.75 [

0.6 -
100 1000 1000

Training Size

Figure3: Learningcurves: areaunderROC asa function of
training-setizefor NO, VD, VDNP, andVDD

Thetwo ILP systemd=OIL andTilde arestill competitve
for small datasetsbut for larger training setsfall short of
using no relationalbackgrouncknowledge. Therearethree
potentialreasondor the low performanceof thelogic-based
methods: (1) the task is noisy and the searchmechanism
within the systemis overly sensitve to noise; (2) ILP sys-
temsarenotoptimizedfor numericvaluesand/or(3) therela-
tionaldomainpropertiege.g. cardinalityof therelationships)

186

arenot suitablefor the particularsystems.Logic-basedsys-
temscanbe usedon simplefeature-ectordomainsandhave
(on thosedomains)the sameexpressve power asa decision
tree or a rule learner However doing worsethan C4.5 on
the mostly numericalfeaturevectorssuggestshatthe search
strat@y itself is not optimal for this taskor thatthe regular
izationmechanisnis insufficientandthe systemsverfit.
The low performanceof LF is causedentirely by overfit-
ting the training datasinceit contains,in additionto the bi-
nary featuresall the original attributesfrom the target table
IPO usedby NO. The binary featuresare learnedfrom the
training setby optimizing classificationperformance.They
arethereforevery predictive on the training setandthe deci-
siontreeoverestimatesgheir predictive performance.
Theresultsfor probability estimation(reportedn Table6)
aresimilar to theresultson accurag. The mostcomplex ag-
gregation methods(MVDD or VDD) outperformthe other
methodsandthe performanceicreasén training size. Fig-
ure 3 shawvsthelearningcurvesof NO,VD,VDPN, andVDD
includingerrorbarsof + onestandardieviationfor 12 joins.
Figure4 showvs the ROC curvesfor NO, MVD, MVDNP,
andMVDD exploring12joins. MVDD andMVDNP present
an interesting case where the ROC curves are crossing.
MVDNP is betterfor high thresholdswhereasMVDD per
forms betterfor lower thresholds.Analysingthe probability

1

True Positives

0.4

0.21;

0 I I I I
0 0.2 0.4 0.6 0.8 1

Fal se Postives

Figure4: ROC curvesfor NO, MVD, MVDNP andMVDD

estimationperformance®f methodsthatareindependenof



Size NO || MOC VD | MVD || MPN | VDPN | MVDPN MD | VDD | MVDD
250:6 | 0.642| 0.697| 0.717| 0.691| 0.672| 0.748 0.716|| 0.68| 0.729| 0.734
250:9 | 0.642| 0.707| 0.711| 0.74 | 0.725| 0.756 0.761 || 0.749| 0.75 0.764
250:12 | 0.642| 0.729| 0.722| 0.755 || 0.715 0.79 0.74| 0.713| 0.763| 0.760
500:6 | 0.666| 0.702| 0.738| 0.741| 0.72| 0.746 0.739(| 0.75]| 0.774 0.79
500:9 | 0.666| 0.775| 0.753| 0.757| 0.758 0.77 0.802 || 0.796| 0.775| 0.821
500:12 | 0.666| 0.741| 0.744| 0.787 || 0.775| 0.785 0.76 || 0.792| 0.812| 0.812
1000:6 | 0.672] 0.743| 0.754| 0.749| 0.735| 0.793 0.797] 0.767| 0.788| 0.802
1000:9 | 0.672| 0.765| 0.768| 0.763 || 0.787| 0.808 0.825 || 0.797| 0.818| 0.826
1000:12| 0.672 | 0.778| 0.774| 0.781 0.78| 0.809 0.797 || 0.793| 0.842 0.829
2000:6 | 0.709 || 0.727| 0.744| 0.752| 0.732| 0.795 0.796| 0.787| 0.794| 0.824
2000:9 | 0.709| 0.785| 0.772| 0.781| 0.807| 0.805 0.835 || 0.799| 0.832| 0.838
2000:12| 0.709 || 0.791| 0.779| 0.801 || 0.790 0.81 0.788| 0.798| 0.855 0.836

Table6: Probabilityestimationperformancéareaunderthe ROC) for setaggreyationmethodsgroupedoby compleity

join depthin table4.3 shows that the autocorrelatioraggre-
gator (AC) performsvery well and almostreacheghe per

formanceof MVDD. AbstractionhierarchiegAH) arenotas
usefulfor probability estimationasthey werefor classifica-
tion. Note, thatILP systemsonly predicta classlabel and
thereforedo notappeain thetable.

No
0.642
0.666
0.672
0.709

AH

0.63
0.673
0.699
0.714

AC
0.79
0.814
0.821
0.838

LF
0.626
0.694
0.703
0.702

Size
250
500

1000
2000

Table7: Probabilityestimationusing AUC of methodsnde-
pendenbf join depth

5 Conclusion and Future Work

We have shown that looking carefully at aggreyationfor re-
lationallearningcreatesa considerabl@lesignspacdor rela-
tional featureconstruction(eitherseparatelyrom learningor
internally to a learningprogram). We are not aware of ary
learningprogramthatconsidersgvenasmallfractionof these
aggregationoperatorsnor ary thatusesthe moresuccessful,
target-dependergetaggreyations.

Within the scopeof the IPO domainthe empiricalresults
demonstrat¢hat aggreyationoperatorsof highercomplexity
cansignificantlyimprove the generalizatiorperformanceof
relationallearners. The bestmethods(VDD, MVDD) use
target-dependentectordistanceaggreyators(that transform
the relationaltaskinto a corventionalfeature-ectorrepre-
sentationthat allows the useof corventionallearningmeth-
ods). An adwantageof this transformation-basedpproach
is its generalapplicability to regression,classification,and
probability estimatiortasks.

Ourresultsfurthermoreshaow thatfor thesamedevel of per
formancejncreasedggreationcompleity cantradeoff ex-
plorationdepth. This is animportantpoint sincethe size of
the spaceincreasesxponentiallyin the searchdepthif the
relationshave a one-to-nor m-to-ncardinality Scalabilityof
relationallearningis still animportantresearchopicin rela-
tionallearning[3].
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The primary contribution of this work is the first detailed
examinationof aggreyation for relationallearning. Along
with searchthroughthe relationshipgraph,aggreationis a
majorcomponenbf ary relationallearningmethod.We have
shawn, with the conceptierarchythatwith respecto aggre-
gationthereare variousclassef relationallearning prob-
lems, and that problemswith high aggreyation complexity
canbedeceptvely simplein description.

Although quite suggestre, the generalizabilityof our pos-
itive findings (in favor of the more complex aggreyators)is
limited dueto the focus on one particulardomainand the
limited maximumtrainingsizeof 2000. Futurework includes
extendingtheseexperimentgo multiple domainswith differ-
entrelationalcharacteristics.

The presentecggrejationmethodsarecertainlynot com-
plete. Our findings motivate further exploration of potential
aggreyationmethods. In particularthereis still an openis-
sueof numericmultidimensionabndmulti-type aggreyation.
Anotheropenissueis the joint optimizationof aggrejation
andmodelestimation.(Ratherthantreatingthemseparately
aswe have done.)

More generally this work highlights that existing ap-
proachego relationalclassificationcan shov major perfor
mancedifferencesThefield of relationallearningstill needs
to developabetterunderstandingf why certainmethodsut-
performon certaindomains.
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