
Activity Monitoring: Noticing interesting changes in behaviorTom FawcettBell Atlantic Science and Technology500 Westchester AveWhite Plains, New York 10604tfawcett@acm.org Foster ProvostBell Atlantic Science and Technology500 Westchester AveWhite Plains, New York 10604provost@acm.orgAbstractWe introduce a problem class which we term activity moni-toring. Such problems involve monitoring the behavior of alarge population of entities for interesting events requiringaction. We present a framework within which each of theindividual problems has a natural expression, as well as amethodology for evaluating performance of activity moni-toring techniques. We show that two super�cially di�erenttasks, news story monitoring and intrusion detection, canbe expressed naturally within the framework, and show thatkey di�erences in solution methods can be compared.1 IntroductionIn this paper we introduce a problem class which weterm activity monitoring. Such problems typically in-volve monitoring the behavior of a large population ofentities for interesting events requiring action. Exam-ples include the tasks of fraud detection, computer in-trusion detection, network performance monitoring, cri-sis monitoring, some forms of fault detection, and newsstory monitoring. These applications may di�er greatlyin representation. For example, the data streams be-ing monitored may be streams of numbers, mixed-typefeature vectors, or free-text documents. However, prob-lems in this class share signi�cant characteristics thatdi�erentiate them from other KDD problems.The goal of activity monitoring is to issue alarms ac-curately and in a timely fashion. Standard KDD tech-niques such as classi�cation, regression and time seriesanalysis are useful as solution components, but thesetechniques do not completely address the goal. Al-though activity monitoring applications have receivedmuch attention individually, to our knowledge theyCopyright 1999 by the Association for Computing Machinery, Inc.Permission to make digital or hard copies of part or all of this workfor personal or classroom use is granted without fee provided thatcopies are not made or distributed for pro�t or commercial advantageand that copies bear this notice and the full citation on the �rstpage. Copyrights for components of this work owned by others thanACM must be honored. Abstracting with credit is permitted. Tocopy otherwise, to republish, to post on servers, or to redistributeto lists, requires prior speci�c permission and/or a fee. Requestpermissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

have never been generalized and analyzed in a commonframework. We present a framework within which thesetasks have a natural expression. This framework cod-i�es similarities of the tasks and highlights signi�cantdi�erences.We begin by discussing briey cellular phone frauddetection as a domain to illustrate some of the issuesin activity monitoring. We de�ne the problem formallyand present an evaluation methodology. Then we ex-plain some important di�erences between types of ac-tivity monitoring tasks. The resulting framework com-prises the problem de�nition, the evaluation methodol-ogy, and the categorization of activity monitoring tech-niques. We believe this framework is a signi�cant con-tribution because it helps to understand activity moni-toring better in general. To demonstrate this, we showthat it aids in understanding how methods from frauddetection can apply directly to the seemingly di�erentproblem of creating stock market alerts based on newsstories, yet the same methods do not seem to work wellon the problem of computer intrusion detection, whichseems closely related to fraud detection.2 Cellular phone fraud detectionCellular phone fraud detection is a typical activitymonitoring problem. The task is to scan a large setof accounts, examining the calling behavior of each,and to issue an alarm when an account appears to havebeen defrauded. This can be done in many ways, suchas pro�ling users' behavior, looking for known fraudpatterns, etc. The goal is to identify fraudulent activityas soon as possible without creating too many falsealarms [7].Calling activity may be represented in various ways,but is usually described with call records. Each callrecord is a vector of features, both continuous (e.g.,CALL DURATION) and discrete (e.g., CALLING CITY).However, there is no inherent primitive representationin this domain. Calls can be aggregated by time,for example into call-hours or call-days. Though itis not obvious, they can also be broken up into a
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�ner grainsize: more detailed intra-call information isavailable, such as the delays between button presses,switch hand-o�s during each call, etc.The task is to monitor all accounts continuously andto identify fraudulent activity as soon as possible. Inone intervention scenario, when an alarm is issued, ahuman fraud analyst must check the account carefullyand decide what to do. Therefore, it is important thatthe system not create too many false alarms. Theprecise de�nitions of \as soon as possible" and \toomany false alarms" vary with the amount of fraud, thesize of the workforce, and other factors.In evaluating solutions to this problem, several issuesarise:� Granularity: Because of the di�erent possibleproblem representations, it is di�cult to evaluateand compare di�erent solutions. A method thatclassi�es individual calls cannot be compared easilyto one that classi�es account-days or individualsegments of calls. Both the false alarm rate and thetrue alarm rate must be normalized before solutionscan be compared.� Multiple alarms: Alarms do not have equal value.For example, a monitor might generate severalalarms in a row for a given defrauded account. The�rst alarm is important, but subsequent alarms oc-curring closely thereafter contribute virtually noth-ing. Evaluation should take into account the dimin-ished importance of multiple alarms.� Bene�t of timely alarms: Fraud should bedetected as soon as possible and evaluation shouldreect this. The bene�t of an earlier alarm can oftenbe quanti�ed. In cellular phone fraud detection,the cost of delaying an alarm may be measured inreal time, the number of fraudulent calls missed,the amount of uncompensated airtime or the totalexpense incurred by the fraud.These characteristics are common among activitymonitoring domains. Perhaps surprisingly, most priorwork in such domains ignores one or more of these is-sues, even though they are exhibited in the correspond-ing application. Section 5 argues that standard evalu-ation metrics such as classi�cation accuracy, cost, andeven ROC analysis are insu�cient for evaluating activ-ity monitoring systems. In the next section we intro-duce a formalism and a framework that can accommo-date these complexities.3 Activity MonitoringWe de�ne the general problem as follows. Let D be aset of data streams, where each data stream Di 2 D isan ordered set of data items fdi;1; : : : ; di;kig (ki need

not equal kj , for i 6= j|that is, the length of theepisodes need not be equal). We will be liberal in whatare considered data|numeric measurements, vectorsof symbolic features, text, etc. Each data streamrepresents information about a single entity in thepopulation being monitored, for example, customers,users, network equipment, nuclear reactor components,or even potential investment opportunities. For therest of this paper we only refer to one data streamat a time, so for simplicity we omit the subscript i,and refer instead to a data stream D and its elementsfdjg; j = 1; : : : ; k.The dj 's are information related to the entity be-ing monitored, and comprise the evidence upon whichalarms are to be issued. The data may be measurementstaken directly from the entity, such as the temperatureof an engine part at a point in time. They may be de-scriptions of the entity's behavior, such as transactionsbilled to an account. They may also be indirect descrip-tions of the behavior from a third party, such as newsstories about a particular company. The dj 's are totallyordered in time, so j > k , time(dj) > time(dk). Thedj 's are not necessarily evenly spaced in time.Activity monitoring is the task of analyzing thedata streams in order to detect the occurrence ofinteresting behavior, which we refer to as positiveactivity. Episodes of positive activity need not besimilar to each other, nor do is the non-positive activityin one data stream necessarily similar to that of anyother. Let � be a point in time denoting the onset ofpositive activity. For this paper, we assume that eachD contains at most one � , and that if there is a periodof positive activity, it is at the end of D. Althoughreal data streams may contain multiple periods ofpositive activity, we will see that this assumption isnot overly restrictive. For the data stream D, �designates the beginning of a contiguous subsequenceD� = hdp1 ; : : : ; dpmi such that time(di) � � , di 2D� . Because the positive activity is necessarily at theend of D, pm = k. Note that the positive activity isseparate from the existence of the activity's evidence:D� may be the empty sequence. The goal of an activitymonitor is to give an indication that the sequence isexhibiting positive activity; such an indication is calledan alarm. Formally, an alarm � represents the point intime when it is issued.Figure 1 illustrates a data stream with two alarms.A monitor may issue multiple alarms for any D. Forcompleteness, a D that contains no positive activityimplies � = 1; if a monitor never alarms on a D, weconsider � =1.3.1 Costs and bene�tsThere is a crucial di�erence between this problemformulation and those used in previous work. The goal
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Figure 1: A data stream D with alarms �1 and �2.in activity monitoring is not to identify completely allthe positive activity, nor to classify each dj as positiveor negative. Rather, the goal is to identify in a timelyfashion that positive activity has begun. Alarmingearlier may be more bene�cial, but after a �rst alarm, asecond alarm on the same sequence may add no value.To accommodate these considerations, we de�ne twotask-dependent functions: a score function s and afalse alarm function f . Let sD(�; �;H;D) be a scorefunction which returns the value (bene�t) of an alarm� on a given subsequence, with respect to a given � .The variable H is a sequence of the alarms that havealready occurred on the sequence. We can now de�nethe positive activity in terms of s: it is the subsequenceof D for which sD(�; time(dj); hi; D) > 0.A symmetric function fD can be de�ned for falsealarm penalties. Let fD(�;H;D) be the cost of a falsealarm on sequence D, with H being the sequence offalse alarms already issued.We make several simpli�cations to these functions forpresentation. Within a given domain we can eliminatethe D subscript, although it is important to rememberthat the score function depends on the domain and onthe particular sequence of activity. For this paper wewill assume that for most domains the �rst alarm issigni�cant but subsequent alarms add no value, so thescore function returns a non-zero value only if H is theempty sequence. Thus we remove H from s and assumean implicit clause within s:s(�; �;H;D) = 0 ifH 6= hiSimilarly, for this paper we assume that the cost of afalse alarm is constant and does not depend on history,so f reduces to a variable representing this cost.The goal of activity monitoring is two-fold. A tech-nique should maximize the expected value of s(�; �;D)for any given alarm, while minimizing the number offalse alarms. Adopting standard terminology, � isa false alarm if � < � ; � is a hit if � � � and

s(�; �;D) > 0. If � < 1 and there does not existan � such that � � � < 1 then the interesting periodwas missed.It is important to understand that the concept of\true negative" is not well de�ned in activity monitor-ing. In practice, one can create de�nitions based on theparticular representation used, but in principle thereare in�nitely many possible \true negatives," because ofthe continuity of time. This observation has been madebefore, for example in classi�cation for visual patternrecognition [2], and we will return to it when we discussthe evaluation framework.3.2 Cellular phone fraud detection revisitedThe problem formulation may be clari�ed by anexample from cellular phone fraud detection [7].1 EachD 2 D represents a customer account, comprising asequence of cellular phone calls (the dj). Each dj is atime-stamped vector of features representing details ofthe call. \Positive activity" is cellular cloning fraud.In this domain there are several realistic ways tode�ne a score function s(�; �;D) to measure the bene�tof alarming at �. One possibility is to count the numberof fraudulent calls that would have been made had thefraud not been caught. These are the calls after �:s(�; �;D) = ��� fdi 2 D �� callstart(di) � �g ���A more elaborate score function calculates the costof the airtime of these fraudulent calls:s(�; �;D) = aircost � Xdi2fc2D �� callstart(c)>�gairtime(di)where callstart is the start time of a given call, andaircost is the (constant) cost of a unit of call airtime.Our previous work assumed a monetary cost of $.40per minute for airtime, and a �xed cost of $5 for a falsealarm, so aircost = 0:4 and f = 5;Our assumption of at most one � per episode isnot problematic in practice. If a customer account isdefrauded twice, the sequence can be decomposed intotwo single-� sequences without a�ecting the evaluation.More generally, as long as the value of s depends on onlyone � , the subsequence can be decomposed into separateepisodes for the purpose of evaluation. There may becases where s would combine value from multiple � 's,but we are aware of no non-contrived examples.3.3 Evaluating activity monitoringperformanceWe have argued elsewhere [12, 13] that ReceiverOperating Characteristic (ROC) analysis, a method1We did not use this framework in our prior work, which wecriticize later along with other prior work.
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(a) (b) (c)Figure 2: (a) AMOC curve of a random classi�er, (b) ROC curves of three classi�ers, (c) AMOC curves of the samethree classi�ers.from signal detection theory, is the appropriate metricfor analyzing classi�ers under imprecision. ROCanalysis depicts the tradeo� between true positiveclassi�cations and false positive ones, which is similar tothe goal of activity monitoring. For activity monitoringwe use ROC analysis with two minor modi�cations,which for this paper we call AMOC (Activity MonitorOperating Characteristic).On the X-axis, ROC curves plot the false-positiverate, meaning here the percentage of the negativeexamples classi�ed as positive. Since we have no �xednotion of a \negative example," we de�ne the false-alarm rate to be the number of false alarms, normalizedby the distance metric used in s, for example, theexpected number of false alarms per unit time. Thisis analogous to the FROC technique found in visualpattern recognition [2], which also assumes no �xednotion of a negative example so false alarms per unitarea are measured. Normalizing false-alarm rate allowsus to compare methods that cannot be comparedunder standard ROC analysis. For example, in frauddetection a transaction classi�er and an account-dayclassi�er have di�erent notions of negative example, sotheir standard false-positive rates cannot be compareddirectly. However, their normalized false-alarm ratescan, because each produces a certain number of falsealarms per hour. The second modi�cation to ROCanalysis is that on the Y-axis, rather than plotting thetrue positive rate, AMOCs plot the expected value ofs(�; �;D).AMOCs retain some of the advantages of ROC curves[12] but are tailored to activity monitoring. An examplehighlights the di�erences. Consider a fraud detectionproblem where fraud must be caught within �ve hoursof its onset. The score function is binary, where the

bene�t of fraud detection is 1 only if detection is within�ve hours:s(�; �;D) = � 1 if 0 � �� � � 50 otherwiseThe false alarm rate is normalized per hour.Figure 2a illustrates why even when simpli�ed thereis a fundamental di�erence between AMOC and ROCcurves. The �gure shows an AMOC curve for ahypothetical fraud detector. How good is the detection?In fact, this curve shows the performance of classi�ersthat alarm randomly with di�erent frequencies (0.1 perhour, 0.2 per hour, etc.). Unlike ROC curves, for whichthe diagonal y = x depicts the performance of randomguessing, in AMOCs performance depends upon thede�nition of s. Even with a simple binary de�nitionof s, an AMOC is not necessarily the same as an ROC.Figures 2b and c show why the AMOC formulationis important for evaluating activity monitoring. The�gures show ROC and AMOC curves for three classi�erson an activity monitoring domain. The ROC curves inb show that classi�er 3 dominates the other two in ROCspace [12], so its instance classi�cation performance isgenerally superior. From this we might conclude thatit is unconditionally best. However, the AMOC curvesin c show that classi�er 2 performs better for activitymonitoring if maximal detection score is much moreimportant than false alarm rate.Figure 3 shows an algorithm for generating an AMOCcurve from a probabilistic classi�er. As with ROCcurves, to generate AMOCs it is not necessary tospecify thresholds on the classi�er's continuous output.Given an assignment of probabilities to examples,the examples are sorted decreasing by their assignedprobabilities. Then the sorted list is traversed, updating
4



Given: Alarms: Set of alarm tuples hp; �; ii where:p: probability calculated by the classi�er�: alarmi: index of DiOutput: R: Set of points on AMOC.S = 0; /* Current cumulative score */F = 0; /* False alarm rate */R = f(0; 0)g;sort Alarms in decreasing order by p values;for (hp; �; ii 2 Alarms) doif (� < �i) then /* � is a false alarm */F = F + f ;else /* � is in activity period */if (Hi is unde�ned) then /* First alarm */S = S + s(�i; �;D);Hi = �;else if (� < Hi) then/* Earlier than previous �rst alarm */S = S � s(�i; Hi;D);S = S + s(�i; �;D);Hi = �;end ifend ifend ifAdd point (F , S) to R;end for;Stotal = S;Ftotal = F ;/* Scale F and S values to [0,1] */for ((F ,S) 2 R) doF = F=Ftotal;S = S=Stotal;end for;Figure 3: Algorithm for generating an AMOC curvefrom a set of alarmsthe score and the false-alarm rate after each example.Each update produces a point on the AMOC curve; thispoint represents the performance of the classi�er thatwould result from placing a threshold just below thecorresponding probability. One list traversal generatespoints for all thresholds. Because we have made asimplifying assumption that any true alarms after the�rst have no contribution to the score, we need dealonly with one other alarm (Hi) as history. This keepsthe algorithm's time complexity to O(n).3.4 Key di�erences between methodsThere are many similarities between activity monitoringproblems. A framework for a problem class alsoshould aid in understanding intraclass di�erences; forexample, which di�erences are super�cial and which arefundamental. We now focus on one distinction: thenature of the modeling and monitoring process. Thereare two high-level classes of methods:� A pro�ling method builds a model of normal(non-positive) activity without reference to positiveactivity. A system can then use pro�les to alarm on

activity that deviates signi�cantly from normal.� A discriminating method builds a model of inter-esting (positive) activity, usually with reference tonormal activity. This model is then used to scan forpositive activity.Similar distinctions have been made regarding meth-ods for simple classi�cation [14]. Here the distinctionis based on a fundamental asymmetry of activity mon-itoring problems: normal activity is common and posi-tive activity is rare. Therefore, methods other than su-pervised learning algorithms can play a signi�cant role.For example, modeling normal activity with a regres-sion curve or a probability distribution may be usefulfor judging typicality of subsequent activity.An orthogonal distinction separates methods thatconsider activity to be uniform over all Di from thosethat model each individual Di. Adding this seconddistinction yields four distinct categories of methods:1. Uniform pro�ling builds a pro�le of normal activity,assuming it is uniform across all Di. For example,in a network surveillance task where only errors arereported, a general pro�le might be a stream ofzeros, or a mean and standard deviation of errorsover the population.2. Individual pro�ling builds a pro�le of the normalactivity of each Di. For example, one type ofintrusion detection creates a pro�le of each user'snormal activity, and then looks for deviations fromthe pro�le.3. Uniform discriminating builds a general model todistinguish positive from uniform normal activity.For example, creating investment alerts from com-pany news bulletins requires forming a model of thetype of news that indicates an interesting investmentopportunity.4. Individual discriminating builds a model to distin-guish positive activity from the normal activity ofeach Di. For example, examples of intrusions maybe compared with each user's normal activity tobuild individualized scanning models.We have considered the uniform/individual distinc-tion only with respect to normal activity. For discrimi-nating models, this distinction may be made with re-spect to the positive activity as well. For example,in monitoring device behaviors, particular devices mayhave idiosyncratic failure modes that must be modeled.However, such individualized positive activity is un-usual; positive activity typically either is too scarce tobe modeled individually, or simply is not related to anyparticular data stream.
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For some tasks, discriminating models may be suf-�cient. In intrusion detection, misuse detection is asimple example: \de�ning intrusions ahead of time andwatching for their occurrence" [9, p.26]. As anotherexample, consider monitoring news stories for interest-ing investment opportunities. Noticing that today'snews text di�ers from prior news text is not particu-larly promising, but a discriminating model of \usefulinvestment news" could be quite valuable.Are there cases where pro�ling would be more use-ful than discriminating? Detecting non-malicious intru-sions is one example. For this task a model of positiveactivity may not exist, so discriminating may be im-possible. An instance of pro�ling, anomaly detection\observes the activity of subjects and generates pro�lesfor them that represent their behavior" [9, p.16]. Pro�l-ing is much more useful than discriminating in the bur-geoning application of news story topic detection andtracking [1]. When positive activity is simply the intro-duction of new news topics, discriminating via modelingpositive activity may be of little use.Pro�ling and discriminating are two disjoint classesof techniques, but in practice they often are interwoven.For example, the DC-1 system [7] builds fraud detectorsautomatically by �rst using normal and positive activityto construct dimensions along which pro�ling will bee�ective. Then it creates pro�ling monitors that modeleach account's normal activity with respect to a singledimension. Finally it uses the outputs of the pro�lingmonitors (indicating how far from normal the currentactivity is) as inputs to a discriminator that wastrained to distinguish positive deviations from normaldeviations.DC-1 uses a particular type of discriminating methodwe call change detection, which is based on a model oftransitions that occur from normal to positive activityin each individual account. To be useful, a changemodel must be able to refer to a pro�le of normalactivity for each account. Change detection maybe e�ective when there is little commonality withinpositive activity, but signi�cant di�erences betweennormal and positive activity. For example, in frauddetection, there may be no times of day or locationsthat indicate fraud, but for a given account changesfrom its typical time of day or location usage may bevery reliable indicators. Change detection capitalizes(in the modeling) on the temporal nature of activitymonitoring problems.Technically, uniform and individual modeling are twoends of a spectrum of groupings of data streams. Inmany applications, Di's can be clustered into usefulgroups such that pro�ling or discriminating may bemade more e�ective. For example, for phone-frauddetection, customers often can be grouped usefully ashigh-volume users, nine-to-�ve users, emergency-only

users, etc. This paper does not address the problem ofgrouping data streams.4 Empirical DemonstrationWe have claimed that this framework allows activitymonitoring tasks to be viewed as a single type of prob-lem, and that the distinctions that arise help to under-stand this type of problem. We now provide a demon-stration that the framework facilitates understanding ofactivity monitoring across di�erent domains.First we describe the task of creating investment-related news alerts, which is super�cially very di�erentfrom fraud detection, but similar as an activity moni-toring task. Once representational issues are addressed,we can apply a system designed for fraud detection tothis seemingly di�erent problem. We then use the con-cepts of the framework to explain why this is the case.Secondly, we consider a task of computer intrusiondetection. Though it is super�cially similar to frauddetection, the framework suggests that within theclass they are fundamentally di�erent. We show that,as would be predicted, the fraud detection systemunmodi�ed does not perform particularly well, but thata simple modi�cation, suggested by the framework,performs better.The goal here is not to advance the state of the art ineither news monitoring or intrusion detection. Rather,these demonstrations serve to illustrate the value ofviewing activity monitoring as a problem class.4.1 An overview of the DC-1 systemBefore discussing the two domains, we review briey theDC-1 system which will be used in the experiments.DC-1 was designed previously to create detectors forcellular phone fraud by mining data on the behaviorof cellular phone accounts. It is described in detailelsewhere [7]; only its salient aspects will be coveredhere, cast in the activity monitoring framework.DC-1 constructs a fraud detector in three stages.First it generates rules that distinguish fraudulentcalls from legitimate ones. This can be done usingeither uniform discriminating modeling (e.g., learninga classi�er from positive and negative calls) or changemodeling (e.g., learning rules to distinguish fraudulentchanges in behavior within individual accounts). Theserules are then used to create pro�ling monitors. Eachmonitor models the behavior of each account withrespect to one rule and, when monitoring, describes howfar the account's activity is from its typical behavior.Finally, DC-1 weights the monitor outputs to maximizethe e�ectiveness of the resulting fraud detector. To doso, the outputs of the monitors are provided as featuresto a standard learning program along with the desiredoutput (an account-day's correct class: fraud or non-fraud). The result is a weighted sum of the outputs of
6



said [it] expects same period revenues increase over per sharefourth compare[d] income quarter fiscalearnings per diluted fiscal quarter ended expenses months endedtoday reported consensus quarter earnings year ended repurchaselower than research [and] development fourth-quarter first call Q[1234]below analyst for quarter shortfallTable 1: Change indicators from news stories preceding stock spikes. Text in brackets was removed in lexical analysis.the monitors, along with a threshold on the sum.In use, the monitors view each day's calls from agiven account, and each monitor generates a numberindicating how unusual that account-day looks for theaccount. The numeric outputs from the monitors aretreated as evidence and are combined by the detector.When the detector has enough evidence of fraudulentactivity on an account, based on the indications of themonitors, it generates an alarm.4.2 News Story MonitoringThe goal of this task is to scan news stories associatedwith a large number of companies and to issue alarmson speci�c companies when their stocks are about toexhibit positive activity. We collected stories and stockprices for approximately 6000 companies over a threemonth period. Each story was tagged with a list ofcompanies to which it pertained; each company's storiesconstituted a di�erent data stream, and an \interestingevent" (positive activity) was de�ned to be a 10%change in the company's stock price (a price \spike")in either direction. The activity monitoring goal is tominimize the number of false alarms and to maximizethe number of correctly predicted price spikes.This domain seems very di�erent from fraud detec-tion. The data items are represented as free text ratherthan as prede�ned feature vectors of numeric and dis-crete attributes. The news stories are not as clearlyassociated with positive activity as are cellular phonecalls, which are carefully tagged by a cellular company'sbilling system. Also, the alarms of this domain arefundamentally \opportunistic" rather than failure- orcrisis-driven. A researcher attacking this problem wouldlikely see it as very dissimilar to fraud detection, andwould probably would seek an information retrieval so-lution, using precision and recall as evaluation metrics.However, generating stock alerts is easily cast asan activity monitoring problem. Each news storyconstitutes a dj of its associated company (D). Weheuristically associate with a price spike any storyappearing from midnight the day before the spike upuntil 10:30 AM of the day of the spike.2 With the prior2The actual heuristics used are more complex than this, inorder to �lter secondary stories reporting on the stock's activity.This does not a�ect the de�nition of � .

midnight as � , the scoring function s for an alarm � canbe de�ned as:s(�; �;D) = � 1 if 0 � �� � � 34:5 hours0 otherwiseThe news story domain is similar to fraud detectionwith respect to building discriminating models. Speci�-cally, \positive" news stories can be di�erentiated from\normal" stories using DC-1's data mining. Becausenews story text is super�cially quite di�erent from cel-lular call records, the representation had to be adjustedbefore DC-1 could be applied. Each story was lexicallyanalyzed and reduced to its constituent words. Thewords were stemmed, then a stop list was applied to re-move common noise words. The �nal representation fora story was a set of its processed words and bi-grams.The reduced stories were each labeled as positive or neg-ative using the heuristics discussed above. DC-1 thenlearned indicators of positive activity (discriminatingmodels) from these stories. Some speci�c indicators areshown in Table 1. These indicators were used to forma DC-1 monitor (as described above).Figure 4 shows the performance of di�erent activitymonitors applied to this domain. Each curve wasgenerated by 10-fold cross-validation. Random showsthe performance of monitors that alarm randomly onstories with varying probabilities (each probability givesone curve point). DC-1 shows the performance of theDC-1 monitor.Consider this problem in terms of the distinctionsmade in Section 3.4. Because of the large numberof features (approximately 105 words and bi-gramsappeared more than once), and because the news isalways changing, we would expect little behavioralconsistency at the word level. Consequently, we wouldpredict that pro�ling would add little compared todiscriminating; speci�cally, that the pro�ling done byDC-1 adds little to the activity monitoring performanceon this task. The curve labeled DC-1 withoutpro�ling demonstrates this: the performance indeeddecreases little when pro�ling is turned o�, at whichpoint DC-1 just scans using the learned classi�er.4.3 Intrusion DetectionIntrusion detection is a �eld of computer securityconcerned with detecting attacks on computers and
7
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Figure 4: Performance of several methods for news storymonitoringcomputer networks [8, 9]. Within intrusion detection,anomaly detection systems characterize behavior ofindividual users and issue alarms of intrusions, basedon anomalies in behavior.Since traces of actual computer intrusions are rareand di�cult to obtain, we chose a variant of this taskcommon in computer intrusion research [6, 10, 15]. Inthis variant, the goal is to predict, based on commandstyped, when the user of a given account is not the actuallegitimate user. With such a task, typically one userat a time is chosen to be the \legitimate" user andone to be the \intruder." The task then becomes oneof characterizing the behavior of each user. For thisdomain we used a dataset of Unix commands taken fromabout 8000 login sessions collected from a population of77 users.3Intrusion detection is easily cast as activity moni-toring. Each user constitutes a D with an associatedstream of sessions dj . Each session is a set of Unix com-mands. False positives were normalized per session. Weconsider an alarm e�ective only if it occurs within the�rst �ve intrusion sessions, so the s function was de�nedas:s(�; �;D) = ( 1 if 0 � ��� fdi 2 D� �� time(di) � �g��� < 50 otherwiseChange modeling can be used to discover di�erencesbetween command sets used by various users. Table 2shows some of the change indicators extracted fromthe Davison-Hirsh dataset. Although these commandsmay seem mundane, some indicate common distinctionsamong Unix users: emacs vs vi, exit vs logout, and3These data were provided by Davison and Hirsh [5] who usedthem in a study on command sequence prediction.
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Figure 5: Performance of several methods for intrusiondetectiongs kill ps emacsa.out project6.out ftp exitChat Client gcc finger moreTable 2: Indicators from change-modeling Unix users.text processing (gs) vs code development (gcc anda.out).Figure 5 shows the performance of several classi�ers.Each curve was generated by 10-fold cross-validation.Random represents the e�ect of issuing random alarmswith varying probabilities (as above). DC-1 generatedindicators such as those above to generate features fordistinguishing users, and used these indicators to formits pro�ling monitor. As shown in Figure 5, DC-1detects intrusions better than random.However, given our experience with the e�ectivenessof DC-1 for fraud detection, its performance on intru-sion detection was disappointing. We believe that thereasons for the performance are clari�ed by viewingthe two problems within the activity monitoring frame-work. In cellular fraud detection, for which DC-1 wasdesigned, discriminating positive activity is an impor-tant component because fraudulent behavior often isquite di�erent from legitimate behavior. Super�cially,detection intrusions is very similar to detecting cellularfraud. However, note that there is no distinguishableintruder behavior because any user can �ll the role ofan intruder with respect to some other user. Discrimi-native modeling is impracticable because there is no dis-tinct positive activity. Pro�ling should be much moreimportant.To (partially) test this hypothesis we created a pro-�ler based on the �2 statistical test, which models each
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user's normal behavior as a probability distributionacross the commands they use. As predicted, the �2technique outperformed the DC-1 technique. A com-parison of this simple pro�ler to existing intrusion de-tection methods might be revealing.5 Prior workMuch work in KDD has involved monitoring activity forunusual behavior; for example, fraud detection [3, 4, 7],intrusion detection [6, 10, 11], and network monitoring[16, 17]. Indeed it is this wealth of prior work onclosely related problems that makes the formulation ofa general class worthwhile. It is important to examinehow activity monitoring problems have been framedin prior work, in order to compare them with theframework we propose.Much prior work frames activity monitoring as aclassi�cation problem in which the e�ectiveness ofalarms is evaluated based on simple classi�cationaccuracy or error rate. However, such measures areparticularly inappropriate for problems such as activitymonitoring where one class is rare and where the cost ofa miss and the cost of a false alarm are not equal [13].Other related work addresses unequal costs by fram-ing the task as a cost-sensitive classi�cation problem[3, 7]. Unfortunately, in activity monitoring domains itis usually di�cult to specify costs precisely. More im-portantly, cost-sensitive classi�cation relies on a speci-�cation of class priors, which can be even more di�cultto determine precisely. In fact, the work cited uses pri-ors known to be inaccurate. It is di�cult to generalizefrom such results without special studies weakening thebasic, framing assumption of knowledge of class priors.Some prior work relies on classi�cation frameworksthat make explicit the tradeo� between hits and falsealarms, including frameworks that use ROC curves,precision/recall curves, and others [6, 10]. If done well,this addresses the problem of imprecision in knowledgeof costs and of class distributions.However, all these classi�cation-based frameworksshare a basic aw, which our prior work on frauddetection admitted:In this work we have dealt with di�ering costsof false positive and false negative errors. How-ever, we have still glossed over some complexity.For a given account, the only false negative frauddays that incur cost to the company are thoseprior to the �rst true positive alarm. After thefraud is detected, it is terminated. Thus, ouranalysis overestimates the costs ... [7, p. 308]The aw is that they ignore the fundamental sequentialnature of the problem and, thereby, the goal of timelyclassi�cation. We have concentrated on classi�cation-based frameworks because they are the most prevalent;

corresponding simpli�cations are found in activitymonitoring work rooted in other disciplines.Weiss and Hirsh [17] created an activity monitoringframework for their study of activity preceding failuresin a telecommunications network. Their frameworkmodels the sequential nature of the problem as time-stamped data streams, de�nes the goal as identifyinga \rare event," notes that there is a window of thedata stream where (in our terminology) s(�; �;D) > 0,and looks at the tradeo� between hits and false alarms.Their framework can be expressed within ours byappropriate de�nitions of � and s(�; �;D), but oursapplies more generally. In particular, their frameworkrequires that the event to be identi�ed be one of thedj . Our framework allows the event initiating theactivity to be separate from the data; for example,some action of a company triggers news agencies toreport on the action. More fundamentally, Weiss andHirsh require that the activity precede the event inquestion. While this is appropriate for their application(network performance degrades before a failure), wefound it hard to extend in general (predictive activitydoes not precede a case of fraud). We prefer torecast such problems: � marks the beginning of theperiod prior to the failure for which detection willbe useful, and activity contained therein would beconsidered positive in the application. For example,there may be an underlying occurrence that causes(and therefore precedes) the performance degradation;the failure itself, just a further manifestation of theunderlying cause, may be a key factor in the de�nitionof s. In other cases, such as those described by Weissand Hirsh, � can be de�ned as a �xed o�set prior tothe hard failure, representing \the maximum amountof time prior to the target event for which a predictionis considered correct" [17, p. 359].An important bene�t of an activity monitoring frame-work is to allow fundamentally di�erent approaches tobe compared. For example, many fraud detection meth-ods focus on individual transactions [7, 3], and eval-uation typically measures classi�cations of individualtransactions. Other methods [7] aggregate transactionsinto account-days and measure di�erences in activitybetween them. A classi�cation-based framework makesperformance on di�erent representations (transactionsversus account days) di�cult to compare. However,they can be compared within the activity monitoringframework.Activity monitoring tries to identify where in a se-quence an interesting change in behavior has occurred.This di�ers from the typical goals of time series anal-ysis, such as predicting the next value of a series orcharacterizing the functional form of the series. How-ever, we are not claiming that any of these methods isinappropriate as part of the solution to a activity mon-
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