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Abstract 

For many supervised learning tasks it is very costly to 
produce training data with class labels. Active learn-
ing acquires data incrementally, at each stage using 
the model learned so far to help identify especially 
useful additional data for labeling.  Existing empirical 
active learning approaches have focused on learning 
classifiers.  However, many applications require es-
timations of the probability of class membership, or 
scores that can be used to rank new cases.  We pre-
sent a new active learning method for class probabil-
ity estimation (CPE) and ranking. BOOTSTRAP-LV 
selects new data for labeling based on the variance in 
probability estimates, as determined by learning mul-
tiple models from bootstrap samples of the existing 
labeled data.  We show empirically that the method 
reduces the number of data items that must be la-
beled, across a wide variety of data sets.  We also 
compare BOOTSTRAP-LV with UNCERTAINTY SAMPLING, 
an existing active learning method designed to maxi-
mize classification accuracy.  The results show that 
BOOTSTRAP-LV dominates for CPE. Surprisingly it also 
often is preferable for accelerating simple accuracy 
maximization. 

1   Introduction 
Supervised classifier learning requires data with class la-
bels.  In many applications, procuring class labels can be 
costly. For example, to learn diagnostic models experts 
may need to analyze many historical cases. To learn docu-
ment classifiers experts may need read many documents 
and assign them labels.  To learn customer response mod-
els, consumers may have to be given costly incentives to 
reveal their preferences.   
 Active learning processes training data incrementally, 
using the model learned "so far" to select particularly help-
ful additional training examples for labeling.  When 
successful, active learning methods reduce the number of 
instances that must be labeled to achieve a particular level 
of accuracy. Most existing methods and particularly em-
pirical approaches for active learning address classification 

problems—they assume the task is to assign cases to one 
of a fixed number of classes.  
 Many applications require more than simple classifica-
tion. Decision-making often requires estimates of the 
probability of class membership. Class probability esti-
mates (CPEs) can be combined with decision-making 
costs/benefits to minimize expected cost (maximize ex-
pected benefit).  For example, in target marketing the esti-
mated probability that a customer will respond to an offer 
is combined with the estimated profit (produced with a 
different model) [Zadrozny and Elkan, 2001]. Other appli-
cations require ranking of cases, to add flexibility to user 
processing.1 We agree with Turney [Turney, 2000] that 
machine learning systems should be able to take into ac-
count various cost/benefit information, including deci-
sion-making costs as well as labeling costs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Learning curves for the Car data set 
 

 In this paper, we consider active learning to produce 
accurate CPEs and class-based rankings.  Figure 1 shows 
the desired behavior of an active learner.  The horizontal 
axis represents the number of training data, and the vertical 
axis represents the error rate of the probabilities produced 
by the model learned. Each learning curve shows how 
error rate decreases as more training data are used.  The 
upper curve represents the decrease in error from randomly 

                                                             
1 Classification accuracy has been criticized previously as a metric 
for machine learning research (Provost et al., 1998). 
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selecting training data; the lower curve represents active 
learning. The two curves form a "banana" shape: very early 
on, the curves are comparable because a model is not yet 
available for active learning.  The active learning curve soon 
accelerates, because of the careful choice of training data. 
Given enough data, random selection catches up. 
  We introduce a new active learning technique, BOOT-
STRAP-LV, which uses bootstrap samples of existing training 
data to examine the variance in the probability estimates for 
not-yet-labeled data. We show empirically across a wide 
range of data sets that BOOTSTRAP-LV decreases the number 
of labeled instances needed to achieve accurate probability 
estimates, or alternatively that it increases the accuracy of 
the probability estimates for a fixed number of training 
data. We also show that BOOTSTRAP-LV is surprisingly effec-
tive even for accuracy maximization. 

2    Active Learning: Prior Work 
The fundamental notion of active learning has a long history 
in machine learning. To our knowledge, the first to discuss 
it explicitly were [Simon and Lea, 1974] and [Winston, 
1975].  Simon and Lea describe how machine learning is 
different from other types of problem solving, because 
learning involves the simultaneous search of two spaces: 
the hypothesis space and the instance space.  The results of 
searching the hypothesis space can affect how the instance 
space will be searched. Winston discusses how the best 
examples to select next for learning are "near misses," 
instances that miss being class members for only a few 
reasons. Subsequently, theoretical results showed that the 
number of training data can be reduced substantially if they 
can be selected carefully  [Angluin, 1988; Valiant, 1984].  
The term active learning was coined later to describe 
induction where the algorithm controls the selection from 
a set of potential training examples [Cohn et al., 1994].  
  
Input: an initial labeled set L, an unlabeled set UL, an inducer I, 
a stopping criterion, and an integer M specifying the number of actively 
selected examples in each phase. 
While stopping criterion not met    
   /* perform next phase: */ 
 Apply inducer I to L  
   For each example { ULxx ii ∈| } compute 

iES , the effective-

ness score  
 Select a subset S of size M from UL based on 

iES  

 Remove S from UL, label examples in S, and add S to L 
Output: estimator E induced with I from the final labeled set L 

Figure 2: Generic Active Learning Algorithm  
 
 A generic algorithm for active learning is shown in Fig-
ure 2. A learner first is applied to an initial set L of labeled 
examples (usually selected at random or provided by an 
expert). Subsequently, sets of M examples are selected in 
phases from a set of unlabeled examples UL, until some 
predefined condition is met (e.g., the labeling budget is 
exhausted). In each phase, each candidate example ULxi ∈  
is given an effectiveness score 

iES  based on its contribu-
tion to an objective function, reflecting the estimated mag-
nitude of its contribution to subsequent learning (or simply 

whether it will or will not contribute). Examples then are 
ranked by their effectiveness scores and the top M exam-
ples are selected for labeling. Usually, multiple examples, 
rather than a single example, are selected at each phase due 
to computational constraints. Once examples are selected, 
their labels are obtained (e.g., by querying an expert) before 
being added to L, on which the learner is applied next.  
  Cohn et al. [Cohn et al., 1994] determine

iES based on 
identifying what they called the “region of uncertainty,” 
defined such that concepts from the current version space 
are inconsistent with respect to examples in the region. The 
region of uncertainty is redetermined at each phase and 
subsequent examples are selected from this region. The 
main practical problem with this approach is that the esti-
mation of the uncertainty region becomes increasingly 
difficult, as the concept becomes more complex. In addi-
tion, for complex concepts the region of uncertainty ini-
tially may span the entire domain before the concept is well 
understood, rendering the selection process ineffective . A 
closely related approach is Query By Committee 
(QBC)[Seung et al.,1992]: classifiers are sampled from 
the version space, and the examples on which they disagree 
are considered for labeling. However, QBC is a theoretical 
approach that poses computational and practical con-
straints. Particularly, it assumes the existence of hypothe-
ses from the version space available for sampling, as well 
as noise-free data. Several other approaches also address 
learning for classification. These methods target examples 
for which predictions of class membership are evenly split 
(for binary classes) among an ensemble of classifiers, or 
alternatively examples for which a single probabilistic 
classifier assigns CPE near 0.5, as indicating class uncer-
tainty. Specifically, Lewis and Gale [Lewis and Gale, 1994] 
proposed UNCERTAINTY SAMPLING where a probabilistic 
classifier is employed, and examples whose probabilities 
of class membership are closest to 0.5 are considered for 
labeling. Abe and Mamitsuka [Abe and Mamitsuka, 1998] 
generate a set of classifiers and then select examples for 
which the classifiers are close to being evenly split. An 
approach due to Iyengar et al. [Iyengar et al., 2000] directly 
estimates whether a classifier will assign an example to the 
wrong class. They employ a second classifier to assign 
classes to unlabeled examples, and examples are consid-
ered more informative for learning if estimated as being 
likely to be misclassified by the current ensemble of clas-
sifiers. These approaches are designed specifically for 
maximizing classification accuracy, not for optimizing 
CPEs or rankings, which are our concern. 
  The method most closely related to our technique was 
presented by Cohn et al. [Cohn et al., 1996] for statistical 
learning models. At each phase they compute the expecta-
tion of the variance of the model over the example space 
resulting from adding each candidate example to the train-
ing set. Our approach is similar in that it estimates variance, 
but instead of modeling the variance of the model over the 
input space, we estimate the “local” variance for each 



ULxi ∈ . The approach of Cohen et al. requires knowledge 
of the underlying domain, as well as the computation in 
closed form of the learner’s variance, a constraint that 
renders it impracticable for arbitrary models. Our approach 
can be used for arbitrary models.  

3   The Bootstrap-LV Algorithm  
 BOOTSTRAP-LV actively samples examples from UL to 
learn class probability estimates (CPEs). The description 
we provide here pertains to binary class problems where 
the set of class labels is { }1,0=C . As the discussion above 
indicates, we wish to add to L examples that are likely to 
improve the available evidence pertaining to poorly under-
stood subspaces of the example space.  
 Ideally, the most direct indication of the quality of the 
current class probability estimate for example ix  is the 
discrepancy between the estimated probability and its true 
probability. However, the true class probability for an in-
stance is not known, nor is its actual class.  Therefore we 
use the “local variance” (LV) to estimate this quality. Local 
variance refers to the variance in CPE for a particular ex-
ample. If the estimated LV is high compared to that of 
other examples, we infer that this example is “difficult” for 
the learner to estimate given the available data, and is thus 
more desirable to be selected for learning. Otherwise, if 
the LV is low, we interpret it as an indication that either the 
class probability is well learned or, on the contrary, that it 
will be extremely difficult to improve. We therefore de-
crease the likelihood of these examples being added to L.  

Given that a closed-form computation/estimation of this 
local variance may not (easily) be obtained, we estimate it 
empirically. We generate a set of k bootstrap subsamples 
[Efron and Tibshirani, 1993] jB , kj ,...,1=  from L, and 

apply the inducer I to each subsample to generate k estima-
tors jE , kj ,...,1= . For each example in UL we estimate 

the variance in CPEs given by the estimators {
jE }. Each 

example in UL is assigned a weight, which determines its 
probability of being sampled, and which is proportional to 
the variance of the CPEs. More specifically, the distribu-
tion from which examples are sampled is given by 
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distribution. This is the BOOTSTRAP-LV algorithm, shown in 
Figure 3. 
Algorithm BOOTSTRAP-LV  

1 Input: an initial labeled set L  sampled at random, an unlabeled set UL, 
an inducer I , a stopping criterion, and a sample size M. 
  
2  for (s=1;until stopping criterion is met; s++)  
3      Generate k  bootstrap subsamples 

jB , kj ,...,1=  from L 

4  Apply inducer I on each subsample 
jB  and induce estimator 

jE   

5 For all examples { ULxx ii ∈| } compute 
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6 Sample from the probability distribution 
sD , a subset S of M exam-

ples from UL without replacement  
7 Remove S from UL, label examples in S, and add them to L 
8  end for 
9 Output: estimator E induced with I from L 

Figure 3: The BOOTSTRAP-LV Algorithm 

There is one additional technical point of note.  Consider 
the case where the classes are not represented equally in 
the training data. When high variance exists in regions of 
the domain for which the minority class is assigned high 
probability, it is likely that the region is relatively better 
understood than regions with the same variance but for 
which the majority class is assigned high probability. In the 
latter case, the class probability estimation may be exhibit-
ing high variance due simply to lack of representation of 
the minority class in the training data, and would benefit 
from oversampling from the respected region. That is why 
we divide the estimated variance by the average value of the 
minority-class probability estimates min,ip . We determine 

the minority class once from the initial random sample.  

4   Experimental Evaluation  

We are interested primarily in comprehensible models, 
so for these experiments we use decision trees to produce 
class probability estimates. However, BOOTSTRAP-LV applies 
to any technique for learning CPEs. Particularly, the under-
lying probability estimator we use is a probability estima-
tion tree (PET)—an unpruned C4.5 decision tree [Quinlan, 
1993] for which the Laplace correction [Cestnik, 1990] is 
applied at the leaves. The Laplace correction has been 
shown to improve the CPEs produced by PETs [Bauer and 
Kohavi, 1998; Provost et al., 1998; Provost & Domingos, 
2000]. 

When evaluating CPE accuracy, if the true underlying 
class probability distribution were known, an evaluation of 
an estimator’s accuracy could be based on a measure of the 
actual error in probability estimation. Since the true prob-
abilities of class membership are not known we compare 
the probabilities assigned by the model induced at each 
phase with those assigned by a “best” estimator, BE , as 
surrogates to the true probabilities. BE  is induced from the 
entire set of examples (UL ∪ L), using bagged-PETs, which 



have been shown to produce superior probability estimates 
compared to individual PETs [Bauer and Kohavi, 1998; 
Provost et al., 1998; Provost & Domingos, 2000]. We 
compute the mean absolute error (MAE) for an estimator E 
with respect to BE 's estimation, denoted by BMAE. Spe-

cifically, 
N

xpxp
BMAE

N

i iEiEB∑=
−

= 1
)()( , where )( iE xp

B
 is the 

estimated probability given by BE ; )( iE xp is the probability 
estimated by E, and N is the number of examples examined.  

To evaluate its performance, we applied BOOTSTRAP-LV to 
20 data sets, 17 from the UCI machine learning repository 
[Blake et al., 1998] and 3 used previously to evaluate rule-
learning algorithms [Cohen and Singer, 1999]. Data sets 
with more than two classes were mapped into two-class 
problems. We compare the performance of BOOTSTRAP-LV 
against a method denoted by RANDOM , where estimators are 
induced with the same inducer and training set size, but for 
which examples are sampled at random. We show the com-
parison for different sizes of the labeled set L. In order not 
have very large sample sizes M for large data sets and very 
small ones for small data sets, we applied different num-
bers of phases for different data sets, varying between 10 
and 30; at each phase the same number of examples was 
added to L. Results are averaged over 10 random partitions 
of the data sets into an initial labeled set, an unlabeled set, 
and a test set against which the two estimators are evalu-
ated.  For control the same partitions were used by both 
RANDOM  and BOOTSTRAP-LV.  

The banana curve in Figure 1 above shows the relative 
performance for the Car data set (where Active Learning 
refers to BOOTSTRAP-LV). As shown in Figure 1, the error of 
the estimator induced with BOOTSTRAP-LV decreases faster 
initially, exhibiting lower error for fewer examples. This 
demonstrates that examples actively added to the labeled 
set are more informative (on average), allowing the inducer 
to construct a better estimator with fewer examples. For 
some data sets BOOTSTRAP-LV exhibits even more dramatic 
results; Figure 4 shows results for the Pendigits data set.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: CPE learning curves for the Pendigits data set 
 

BOOTSTRAP-LV achieves its almost minimal level of error at 
4500 examples. RANDOM  requires more than 9300 exam-

ples to obtain this error level. For 5 of the 20 data sets, our 
approach did not succeed in accelerating learning much or 
at all, as is shown for the Weather data set in Figure 5. 
Note, however, that neither curve consistently resides 
above the other and the two methods’ performance is com-
parable. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 5: CPE learning curves for the Weather data set 
 
Table 1 presents a summary of our results for all the data 

sets. The primary motivation for applying active learning 
techniques is to allow learning with fewer examples. Table 
1 provides a set of measures pertaining to the number of 
examples “gained” using BOOTSTRAP-LV instead of RANDOM . 
The second column shows the percent of phases in which 
BOOTSTRAP-LV produced the same level of CPE accuracy 
with fewer examples than RANDOM  (we will call this 
“phases-gained”). The third and fourth columns show the 
percentage and number of examples gained by applying 
BOOTSTRAP-LV. The gain is calculated as the difference 
between the number of examples used by RANDOM  and that 
used by BOOTSTRAP-LV to obtain the same CPE accuracy. 
The percentage is calculated based on the number of exam-
ples used by RANDOM . Because of the natural banana shape 
even for the ideal case, the performance of estimators 
induced from any two samples cannot be considerably 
different at the final phases, thus the averages as well as the 
phases-gained merely provide an indication of whether 
BOOTSTRAP-LV produces superior estimations. It is impor-
tant also to observe the improvement at the “fat” part of the 
banana (where the benefit of active learning is concen-
trated). To allow a stable assessment we provide rather than 
the single best gain, the average of the largest 20% of the 
gains. Columns 5 and 6 of Table 1 show the average percent 
and average number (respectively) of examples gained for 
the top 20% gains.  It is important that these figures be 
viewed in tandem with column 2 (phases-gained), to ensure 
that there is in fact a banana shape to the graph. 

Table 1 also includes summary results pertaining to the 
error rates achieved by both methods for the same number 
of examples. Column 7 presents the average error reduc-
tion for the 20% of the sampling phases exhibiting the 
highest error reduction. For some data sets the generaliza-
tion error for the initial training sets was small and was not 
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considerably reduced even when the entire data was used 
for training (e.g., for connect-4, only 34% error reduction 
was obtained, from 11.7 to 7.7). We therefore also provide, 
in the last column, the top-20% error gain as a percentage 
of the reduction required to obtain the minimal error (the 
latter is referred to in the table as maximal gain). In the 
Adult data set, for instance, BOOTSTRAP-LV exhibited only 
6.6% error gain (for the top 20%), but this improvement 
constitutes 25% of the possible improvement were the 
entire data set used for training.  

 
 Examples Error (%) 

Data set 

Phases with 
positive gain 

(%) 

Avg % 
gained  

 
  

Avg # 
gained  

 
 

Top 20% 
 % 

gained  
 
 

Top 20% 
# gained  
 
 

Avg top 
20% 
(%) 

 

Avg top 
20%  (% 

from maximal 
gain) 

 abalone 92.5 34.9 574 76.9 1152 10.1 64.0 
adult  96 17.8 302 30.2 585 6.6 25.0 
breast cancer-w 100 23.8 44 51.6 110 9.3 41.0 
car  89.6 23.3 155 35.4 281 31.3 53.3 
coding1  80 16.2 228 47.1 475 2.5 28.9 
connect-4  100 45.5 984 75.4 1939 9.5 27.5 
contraceptive  93.7 18.4 55 42.3 129 5.7 31.3 
german*  57.1 5.8 7 46.5 113 5.9 31.0 
hypothyroid  100 64.6 705 69.0 1233 41.1 72.4 
kr-v s-kp  100 18.1 37 27.1 57 25.5 30.8 
letter-a** 72.4 14.5 229 24.8 529 10.4 26.0 
letter-vowel 50 2.1 121 12.8 429 3.4 18.0 
move1  65 17.2 23 68.4 75 3.9 12.8 
ocr1  93.7 24.5 83 42.9 168 21.7 65.0 
optdigits  94.4 24.5 412 50.0 762 32.6 47.8 
pendigits  100 61.0 3773 68.6 5352 29.9 75.6 
sick-euthyroid  93.1 45.2 600 70.2 924 26.2 58.5 
solar-flare  64.2 13.5 25 41.5 58 6.3 9.9 
weather 41.6 -10.4 -46 35.9 438 1.7 20.1 
yeast  75 23.6 79 58.7 159 4.9 30.8 
* German credit database 
** letter-recognition, letter a 
Table 1: Improvement in examples needed and improvement in error 

using BOOTSTRAP-LV 

Since not all plots can be presented due to space con-
straints, we tried to express in the table various perform-
ance measures that would provide a comprehensive 
perspective. To assess BOOTSTRAP-LV’s superiority we  apply 
the combination of the following: phases-gained should be 
above 60%; both the average example and error gains 
should be positive, and the top-20% error reduction from 
the maximal gain should be 25% or higher. If phases-gained 
is between 40% and 60% we consider the methods to be 
comparable, and when it is below 40% we consider BOOT-

STRAP-LV to be inferior.  As can be seen in Table 1 (in bold), 
in 15 out of the 20 data sets BOOTSTRAP-LV exhibited supe-
rior performance. Particularly, in all but one phases-gained 
is 75% or above. In 13 of those, more than 30% of the 
examples were saved (for the top 20%), and in 9 data sets 
our method used less than 50% of the number of examples 
required for RANDOM  to achieve the same level of accuracy.  
For the Sick-euthyroid data set, for instance, BOOTSTRAP-LV 
gradually improves until it requires fewer than 30% of the 
examples required by RANDOM  to obtain the same level of 
accuracy. These results pertain to the top-20% improve-
ment, so the maximal gain can be much higher.   

For a single data set (Weather) BOOTSTRAP-LV exhibited a 
negative average examples gain. However, phases-gained, 

showing that BOOTSTRAP-LV uses fewer examples in 41% of 
phases examined, and Figure 5, both indicate that the two 
methods indeed exhibit comparable learning curves for this 
data set.  

The measures pertaining to the number of examples 
gained and the error gain complement each other and may 
provide interesting insight. For instance, the number of 
examples gained can help evaluate the “difficulty” in error 
reduction in terms of the number of examples required by 
RANDOM  to obtain such reduction. For example, although 
the average top-20% error gain for Connect-4 was less than 
10%, Table 1 shows that it required RANDOM  984 additional 
examples on average to obtain the same improvement. A 
single data set, Letter-vowel, exhibited a negative average 
error gain. However, phases-gained is exactly 50%, indicat-
ing that RANDOM  indeed does not exhibit superior perform-
ance overall. Both methods have similar learning curves.  

We also assessed both methods with two alternatives to 
BMAE: the mean squared error measure proposed by Bauer 
and Kohavi [1998], as well as the area under the ROC curve 
[Bradley 1997] which specifically evaluates ranking accu-
racy. The results for these measures agree with those ob-
tained with BMAE.  For example, Bootstrap-LV generally 
leads to fatter ROC curves with fewer examples. 

For those data sets in which BOOTSTRAP-LV exhibits in-
significant or no improvement at all, training examples 
chosen at random seem to contribute to error reduction at 
an almost constant rate. Their learning curves have an atypi-
cal shape, as shown for the Weather data set in Figure 5, 
where additional examples bring an almost constant reduc-
tion in error rather than the expected decreasing marginal 
error reduction. This may indicate that it is easy to obtain 
good examples for learning, and any additional example 
contributes to error reduction equally, regardless of what 
or how many examples have been already used for training.  
Thus intelligent selection of learning examples is less 
likely to improve learning significantly.  

5   Additional Experiments 

 Tree-based models offer a comprehensible structure that 
is important in many decision-making contexts. However, 
they often do not provide the best probability estimates. In 
order to assess BOOTSTRAP-LV 's performance on a better 
CPE learner, we experimented with bagged-PETs, which 
are not comprehensible models, but have been shown to 
produce markedly superior CPEs [Bauer and Kohavi, 1998; 
Provost et al., 1998; Provost & Domingos, 2000].  

The results for the bagged-PETs model agree with those 
obtained for individual PETs. Particularly, for 15 of the 
data sets BOOTSTRAP-LV exhibited phases-gained of more 
than 65% (in 13 of those phases-gained is more than 75%). 
The average top-20% example gain was 25% or higher in 
11 of those data sets. Only in two data sets is phases-gained 
less than 50%. Figure 6 shows a comparison between 
BOOTSTRAP-LV and RANDOM  for individual PETs and for 
bagged-PETs. As expected, the overall error exhibited by 



the bagged-PETs is lower than for the PET, and for both 
models BOOTSTRAP-LV achieves its lowest error with con-
siderably fewer examples than are required for RANDOM . 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: CPE learning curves for the Hypothyroid data set 

 Described above, UNCERTAINTY SAMPLING [Lewis and 
Gale, 1994] was proposed for binary text classification. 
However, it too samples examples that are not well under-
stood by the model. Since it was shown to improve a 
model’s classification accuracy, it may improve the 
model’s CPE as well. It therefore is interesting to compare 
the improvements exhibited by BOOTSTRAP-LV against UN-

CERTAINTY SAMPLING. We present a summary of the com-
parison results in Table 2, where all the measures are the 
same as in Table 1, except that the baseline comparison is 
UNCERTAINTY SAMPLING rather than RANDOM . 
 
 Examples Error (%) 

Data set 

Phases with 
positive gain 

(%) 

Avg % 
gained  

 
 

Avg # 
gained  

 
 

Top 20% 
% gained  

 
 

Top 20% 
# gained  

 
 

Avg top 
20% 
(%) 

 

Avg top 20%  
(% from 

maximal gain) 
 

abalone 50.00 17.63 102 61.09 801 14.11 57.57 
adult  69.23 9.56 69 35.03 284 11.13 27.18 
breast cancer-w 55.56 10.90 15 49.37 144 20.20 43.91 
car  62.50 9.95 6 50.46 68 36.30 43.26 
coding1  93.75 31.77 686 63.25 1027 6.74 49.26 
connect-4  89.47 43.89 1958 85.52 3230 54.02 82.91 
contraceptive  50.00 11.76 21 54.87 126 10.01 29.13 
German  81.25 24.74 69 48.14 146 8.12 37.63 
hypothyroid  71.43 17.10 85 62.30 307 62.72 77.74 
kr-v s-kp  94.74 33.90 90 57.71 144 60.43 64.07 
letter-a 85.00 15.50 395 44.34 771 21.29 30.65 
letter-vowel 100.00 63.80 11463 81.27 14210 44.97 43.41 
move1  100.00 39.96 194 62.89 247 16.29 36.26 
ocr1  100.00 35.86 146 51.90 256 34.30 61.75 
optdigits  100.00 26.08 570 44.13 1359 34.91 58.16 
pendigits  95.00 27.45 996 60.85 1636 38.30 58.03 
sick-euthyroid  100.00 59.13 1093 84.12 1692 40.51 64.49 
solar-flare  0.00 -16.66 -69 -2.98 -17 -1.64 -6.54 
weather 56.25 6.32 3 35.06 351 1.98 24.74 
yeast  53.33 7.74 3 40.38 121 6.03 28.88 

Table 2: Summary results of BOOTSTRAP-LV versus  
UNCERTAINTY SAMPLING (CPE) 

 
BOOTSTRAP-LV exhibits markedly superior performance 
compared to UNCERTAINTY SAMPLING. Particularly, BOOT-

STRAP-LV is superior in 14 of the data sets, and in 5 data sets 
the methods exhibit comparable performance, where 
phases-gained for BOOTSTRAP-LV between 50% and 60%. 

UNCERTAINTY SAMPLING exhibits superior performance in 
one data set, Solar-Flare, for which it consistently produces 
better probability estimations.  

In 9 out of the 14 data sets in which BOOTSTRAP-LV was 
superior, the average top error reduction was more than 
30%. These results demonstrate that BOOTSTRAP-LV has a 
solid advantage when compared to UNCERTAINTY SAMPLING 
for class probability estimation. Moreover, for several data 
sets UNCERTAINTY SAMPLING’S performance was inferior to 
that of RANDOM . It is important to emphasize once again 
that indeed UNCERTAINTY SAMPLING was not designed to 
improve class probability estimation, but rather to improve 
classification accuracy.  

We also compared the performance of UNCERTAINTY 

SAMPLING against BOOTSTRAP-LV for improving classifica-
tion accuracy. Since BOOTSTRAP-LV was found to improve 
CPEs, a similar effect may be obtained for classification 
accuracy, but not necessarily: BOOTSTRAP-LV may select 
examples to improve class probability estimation even 
when the estimated decision boundary required for classi-
fication is already well understood, thereby “wasting” ex-
amples that do not improve classification accuracy.  

Our results for classification accuracy show that in 11 
data sets BOOTSTRAP-LV exhibited superior performance for 
accuracy maximization. UNCERTAINTY SAMPLING was supe-
rior in 7 data sets and the methods exhibited comparable 
performance for the remaining two. These results indicate 
that although BOOTSTRAP-LV is not uniformly superior to 
UNCERTAINTY SAMPLING for classification tasks, it should be 
considered a viable alternative—it often yields much better 
performance.  Interestingly, in most cases where BOOT-

STRAP-LV does not dominate, it performs better in the initial 
phases, whereas UNCERTAINTY SAMPLING surpasses BOOT-

STRAP-LV in later phases. This phenomenon is demonstrated 
in Figure 7 for the Breast-Cancer data set.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Classification accuracy rate for Breast-Cancer  
 
Recall that UNCERTAINTY SAMPLING uses the CPEs to de-

termine the potential contribution of an example for learn-
ing. Therefore, its performance will be sensitive to CPE 
accuracy. Poor CPEs produced in the initial phases under-
mine the data selections by UNCERTAINTY SAMPLING.  On the 
other hand, in later phases, more accurate probability esti-
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mations allow the selection process to focus in on the 
decision boundary. BOOTSTRAP-LV, on the contrary, focuses 
early on improving the CPEs, and therefore performs well 
even very early on the learning curve; however, later on it 
indeed “wastes” examples to improve CPE.  

In light of this behavior, a better strategy for actively im-
proving classification accuracy may be a hybrid approach: 
BOOTSTRAP-LV is applied in initial phases and UNCERTAINTY 

SAMPLING later. “When to switch?” is an open question.  

6  Conclusions and Limitations 
We introduced a new technique for active learning.  

BOOTSTRAP-LV was designed to use fewer labeled training 
data to produce better class probability estimates from 
fewer labeled data. We showed empirically that it does this 
remarkably well. We also showed that BOOTSTRAP-LV is 
competitive with UNCERTAINTY SAMPLING even for accuracy 
maximization. Inspecting these last results also suggests a 
hybrid strategy that may be even more effective than either 
technique alone. 

BOOTSTRAP-LV was designed to identify particularly in-
formative examples to use for training in order to econo-
mize on labeling costs to obtain higher CPE accuracy. It 
does not address computational concerns, as do Lewis and 
Catlett [Lewis and Catlett, 1994].  Indeed BOOTSTRAP-LV is a 
computationally intensive approach, because of the need to 
induce at each phase multiple models from a set of boot-
strap samples. Yet, because of the typical shape of the 
learning curve, beyond a certain training set size the mar-
ginal error reduction is insignificant, whether active learn-
ing or random sampling is employed. Thus, intelligent 
selection of examples for learning is only critical in the 
early part of the curve, where a relatively small number of 
examples are used for training. Therefore, as long as the 
number of training examples remains relatively small—
multiple model inductions from these samples do not con-
stitute a considerable computational toll.  Moreover, BOOT-

STRAP-LV provides an appropriate solution whenever 
labeling costs are more important than computational 
costs, for example, when the primary concern is to obtain 
accurate CPE or ranking with minimal costly labeling. 
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