Data Science for Business

Foster Provost and Tom Fawcett

Beijing · Cambridge · Farnham · Köln · Sebastopol · Tokyo O'REILLY

Table of Contents

Preface		xiii
1.	Introduction: Data-Analytic Thinking	1
	The Ubiquity of Data Opportunities	1
	Example: Hurricane Frances	3
	Example: Predicting Customer Churn	4
	Data Science, Engineering, and Data-Driven Decision Making	4
	Data Processing and "Big Data"	7
	From Big Data 1.0 to Big Data 2.0	8
	Data and Data Science Capability as a Strategic Asset	9
	Data-Analytic Thinking	12
	This Book	14
	Data Mining and Data Science, Revisited	14
	Chemistry Is Not About Test Tubes: Data Science Versus the Work of the D	ata
	Scientist	15
	Summary	16
2.	Business Problems and Data Science Solutions	19
	Fundamental concepts: A set of canonical data mining tasks; The data mining p	
	Supervised versus unsupervised data mining.	
	From Business Problems to Data Mining Tasks	19
	Supervised Versus Unsupervised Methods	24
	Data Mining and Its Results	25
	The Data Mining Process	26
	Business Understanding	28
	Data Understanding	28
	Data Preparation	30
	Modeling	31
	Evaluation	31

	Deployment	32
	Implications for Managing the Data Science Team	34
	Other Analytics Techniques and Technologies	35
	Statistics	35
	Database Querying	37
	Data Warehousing	38
	Regression Analysis	39
	Machine Learning and Data Mining	39
	Answering Business Questions with These Techniques	40
	Summary	41
3.	Introduction to Predictive Modeling: From Correlation to Supervised Segmentation	n. 43
	Fundamental concepts: Identifying informative attributes; Segmenting data by progressive attribute selection.	
	Exemplary techniques: Finding correlations; Attribute/variable selection; Tree induction.	
	Models, Induction, and Prediction	44
	Supervised Segmentation	48
	Selecting Informative Attributes	49
	Example: Attribute Selection with Information Gain	56
	Supervised Segmentation with Tree-Structured Models	62
	Visualizing Segmentations	67
	Trees as Sets of Rûles	71
	Probability Estimation	71
	Example: Addressing the Churn Problem with Tree Induction	73
	Summary	78
4.	Fitting a Model to Data Fundamental concepts: Finding "optimal" model parameters based on data; Choo	81
	the goal for data mining; Objective functions; Loss functions.	
	Exemplary techniques: Linear regression; Logistic regression; Support-vector mach	
	Classification via Mathematical Functions	83
	Linear Discriminant Functions	85
	Optimizing an Objective Function	88
	An Example of Mining a Linear Discriminant from Data	89
	Linear Discriminant Functions for Scoring and Ranking Instances	91
	Support Vector Machines, Briefly	92
	Regression via Mathematical Functions	95
	Class Probability Estimation and Logistic "Regression"	97
	* Logistic Regression: Some Technical Details	100
	Example: Logistic Regression versus Tree Induction	103
	Nonlinear Functions, Support Vector Machines, and Neural Networks	107

	Nearest Neighbors Revisited: Clustering Around Centroids Example: Clustering Business News Stories Understanding the Results of Clustering * Using Supervised Learning to Generate Cluster Descriptions Stepping Back: Solving a Business Problem Versus Data Exploration Summary	170 175 178 180 183 186
7.	Decision Analytic Thinking I: What Is a Good Model? Fundamental concepts: Careful consideration of what is desired from data science results; Expected value as a key evaluation framework; Consideration of appropriate comparative baselines.	187 e
י	Exemplary techniques: Various evaluation metrics; Estimating costs and benefits; Calculating expected profit; Creating baseline methods for comparison.	
	Evaluating Classifiers	188
	Plain Accuracy and Its Problems	189
	The Confusion Matrix	189
	Problems with Unbalanced Classes	190
	Problems with Unequal Costs and Benefits	193
	Generalizing Beyond Classification	193
	A Key Analytical Framework: Expected Value	194
	Using Expected Value to Frame Classifier Use	195
	Using Expected Value to Frame Classifier Evaluation	196
	Evaluation, Baseline Performance, and Implications for Investments in Data Summary	204 207
8.	Visualizing Model Performance . Fundamental concepts: Visualization of model performance under various kinds of uncertainty; Further consideration of what is desired from data mining results. Exemplary techniques: Profit curves; Cumulative response curves; Lift curves; ROC	
	curves.	200
	Ranking Instead of Classifying Profit Curves	209 212
	ROC Graphs and Curves	212
	The Area Under the ROC Curve (AUC)	219
	Cumulative Response and Lift Curves	219
	Example: Performance Analytics for Churn Modeling	223
	Summary	231
9.	Evidence and Probabilities. Fundamental concepts: Explicit evidence combination with Bayes' Rule; Probabilisti reasoning via assumptions of conditional independence. Exemplary techniques: Naive Bayes classification; Evidence lift.	233 ic

1

ļ

	Example: Targeting Online Consumers With Advertisements	233
	Combining Evidence Probabilistically	235
	Joint Probability and Independence	236
	Bayes' Rule	237
	Applying Bayes' Rule to Data Science	239
	Conditional Independence and Naive Bayes	241
	Advantages and Disadvantages of Naive Bayes	243
	A Model of Evidence "Lift"	244
	Example: Evidence Lifts from Facebook "Likes"	246
	Evidence in Action: Targeting Consumers with Ads	248
	Summary	248
10.	Representing and Mining Text	251
	Fundamental concepts: The importance of constructing mining-friendly data representations; Representation of text for data mining.	
	Exemplary techniques: Bag of words representation; TFIDF calculation; N-grams; Stemming; Named entity extraction; Topic models.	
	Why Text Is Important	252
	Why Text Is Difficult	252
	Representation	253
	Bag of Words	254
	Term Frequency	254
	Measuring Sparseness: Inverse Document Frequency	256
	Combining Them: TFIDF	258
	Example: Jazz Musicians	258
	* The Relationship of IDF to Entropy	263
	Beyond Bag of Words	265
	N-gram Sequences	265
	Named Entity Extraction	266
	Topic Models	266
	Example: Mining News Stories to Predict Stock Price Movement	268
	The Task	268
	The Data	270
	Data Preprocessing	273
	Results	273
	Summary	277
11.	Decision Analytic Thinking II: Toward Analytical Engineering.	279
	Fundamental concept: Solving business problems with data science starts with analytical engineering: designing an analytical solution, based on the data, tools, a techniques available.	ind

Exemplary technique: Expected value as a framework for data science solution design.

	Targeting the Best Prospects for a Charity Mailing The Expected Value Framework: Decomposing the Business Problem and	280
	Recomposing the Solution Pieces	280
	A Brief Digression on Selection Bias	282
	Our Churn Example Revisited with Even More Sophistication	283
	The Expected Value Framework: Structuring a More Complicated Business	
	Problem	283
	Assessing the Influence of the Incentive	285
	From an Expected Value Decomposition to a Data Science Solution	286
	Summary	289
12.	Other Data Science Tasks and Techniques.	291
	Fundamental concepts: Our fundamental concepts as the basis of many common or science techniques; The importance of familiarity with the building blocks of data science.	lata
	Exemplary techniques: Association and co-occurrences; Behavior profiling; Link prediction; Data reduction; Latent information mining; Movie recommendation; Bio variance decomposition of error; Ensembles of models; Causal reasoning from data	
	Co-occurrences and Associations: Finding Items That Go Together	292
	Measuring Surprise: Lift and Leverage	293
	Example: Beer and Lottery Tickets	294
	Associations Among Facebook Likes	295
	Profiling: Finding Typical Behavior	298
	Link Prediction and Social Recommendation	303
	Data Reduction, Latent Information, and Movie Recommendation	304
	Bias, Variance, and Ensemble Methods	308
	Data-Driven Causal Explanation and a Viral Marketing Example	311
	Summary	312
13.	Data Science and Business Strategy.	315
	Fundamental concepts: Our principles as the basis of success for a data-driven	
	business; Acquiring and sustaining competitive advantage via data science; The	
	importance of careful curation of data science capability.	
	Thinking Data-Analytically, Redux	315
	Achieving Competitive Advantage with Data Science	317
	Sustaining Competitive Advantage with Data Science	318
	Formidable Historical Advantage	319
	Unique Intellectual Property	319
	Unique Intangible Collateral Assets	320
	Superior Data Scientists	320
	Superior Data Science Management	322
	Attracting and Nurturing Data Scientists and Their Teams	323
	5 6	

	Examine Data Science Case Studies	325
	Be Ready to Accept Creative Ideas from Any Source	326
	Be Ready to Evaluate Proposals for Data Science Projects	326
	Example Data Mining Proposal	327
	Flaws in the Big Red Proposal	328
	A Firm's Data Science Maturity	329
14	Conclusion	333
1 11	The Fundamental Concepts of Data Science	333
	Applying Our Fundamental Concepts to a New Problem: Mining Mobile	555
	Device Data	336
	Changing the Way We Think about Solutions to Business Problems	339
	What Data Can't Do: Humans in the Loop, Revisited	340
	Privacy, Ethics, and Mining Data About Individuals	343
	Is There More to Data Science?	344
	Final Example: From Crowd-Sourcing to Cloud-Sourcing	345
	Final Words	346
		540
A.	Proposal Review Guide	349
B.	Another Sample Proposal.	353
_		
Glo	ossary	357
Bi	bliography	361
In	dex	369